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An edge detection method based on projection transformation is proposed. First, the vertical projection transformation is carried
out on the target point cloud. Data X and data Y are normalized to the width and height of the image, respectively. Data Z is
normalized to the range of 0-255, and the depth represents the gray level of the image. Then, the Canny algorithm is used to
detect the edge of the projection transformed image, and the detected edge data is back projected to extract the edge point
cloud in the point cloud. Evaluate the performance by calculating the normal vector of the edge point cloud. Compared with
the normal vector of the whole data point cloud of the target, the normal vector of the edge point cloud can well express the
characteristics of the target, and the calculation time is reduced to 10% of the original.

1. Introduction

As a key automation technology, machine vision is very
important to the modernization of the economy. Machine
vision has been widely studied by scholars. Machine vision
uses machines to measure the size of target or detect the sur-
face of target instead of eyes. Machine vision mainly uses
computers to simulate the function of human visual and
reproduce certain intelligent behaviors related to human
vision. Information is extracted from the image of an objec-
tive object, processed and understood, and finally used for
practical detection and control. Machine vision started from
statistical pattern recognition in the 1950s. The main work is
focused on two-dimensional image analysis, recognition,
and understanding. In recent years, various noncontact
research results emerged [1–4]. Machine vision in the indus-
trial field can be divided into four aspects. Surface detection
is always used in product quality inspection and product
classification. A camera and a robot are combined to pack-
age products. Feature detection is always used in robot posi-
tioning. Civil Machine Vision Technology is widely used in
intelligent transportation, safety protection, character recog-
nition, identity verification, medical equipment, etc. In the

field of scientific research, machine vision can be used for
material analysis, biological analysis, chemical analysis, and
life science. In the military field, it can be used in aerospace,
aviation, weapons, and mapping. Its technology mainly
includes image processing, mechanical engineering, control,
and optical imaging.

With the rapid development of 3D acquisition technol-
ogy, 3D sensors are becoming more available and affordable,
including various types of 3D scanners, LiDAR, and RGB-D
cameras (such as Kinect, RealSense, and Apple depth cam-
eras). The 3D data from these sensors can provide rich
geometry, shape, and scale information. Complementing
2D images, 3D data provides an opportunity to better under-
stand the environment around the machine. 3D data can
often be represented in different formats, including depth
images, point clouds, grids, and volumetric grids. As a com-
mon format, the point cloud representation preserves the
original geometry in 3D space without any discretization.
It is the preferred notation for understanding related appli-
cations in many scenarios. 3D point cloud detection is
widely researched by scholars. Ali et al. [5] build on the suc-
cess of the one-shot regression meta-architecture in the 2D
perspective image space and extend it to generate oriented
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3D object bounding boxes from LiDAR point cloud. Zhou
et al. [6] remove the need of manual feature engineering
for 3D point clouds and propose VoxelNet, a generic 3D
detection network that unifies feature extraction and bound-
ing box prediction into a single-stage, end-to-end trainable
deep network. Meyer et al. [7] present LaserNet, a computa-
tionally efficient method for 3D object detection from
LiDAR data for autonomous driving. Beltran et al. [8] pres-
ent a LiDAR-based 3D object detection pipeline entailing
three stages. Minemura et al. [9] employ dilated convolu-
tions to gradually increase the perceptive field as depth
increases; this helps to reduce the computation time by
about 30%. Asvadi et al. [10] address the problem of vehicle
detection using Deep Convolutional Neural Network (Con-
vNet) and 3D-LIDAR data with application in advanced
driver assistance systems and autonomous driving. Propose
a vehicle detection system based on the Hypothesis Genera-
tion (HG) and Verification (HV) paradigms. Simon et al.
[11] propose a specific Euler-Region-Proposal Network (E-
RPN) to estimate the pose of the object by adding an imag-
inary and real fraction to the regression network.

Edge detection is a key technology to detect the target
[12]. Most of the information of the image exists in the edge
of the image, which is mainly represented by the discontinu-
ity of the local features of the image. Edge detection is first
proposed for a two-dimensional digital image; the purpose
is to identify and detect the position where the image char-
acteristics change [13]. Point cloud edge refers to some edge
measurement points that can express the target features.
Point cloud edge can not only express the geometric charac-
teristics of the object but also play an important role in the
quality and accuracy of object recognition and surface model
reconstruction [14, 15]. As an important research field of
image analysis and computer vision, edge detection has
attracted the attention of many scholars. A variety of mature
edge detection algorithms have been developed.

Different point cloud data models have different edge
feature extraction methods, which can be roughly divided
into grid-based and scattered point cloud-based feature
extraction methods [16, 17]. In feature extraction based on
mesh, firstly, the point cloud is gridded, and then, the edge
features of the point cloud are obtained by traversing the tri-
angulated point cloud and threshold constraints. Among
them, the most famous algorithm of Delaunay is simple
and intuitive. But in the process of triangulation, we need
to evaluate the Euclidean distance between point clouds. If
the Euclidean distance is not suitable, holes will be gener-
ated. In addition, if the method is applied to three-
dimensional point clouds, it needs to use the normal direc-
tion of each point cloud to determine the projection direc-
tion, so the algorithm is more suitable for uniform and
smooth point clouds. The feature extraction based on scat-
tered point cloud mainly extracts some regular points, lines,
surfaces, and other features from this type of point cloud, so
it pays more attention to local features. Song et al. [18] take
the vector of each point in the point cloud and the vector of
K adjacent points as the root mean square as the standard of
edge feature extraction, although this method well reflects
the relationship between the normal direction of each point

in the point cloud and its adjacent points, the nonedge
points adjacent to the edge will be detected in the result of
edge extraction. Han et al. [19] keep the edge feature by
using the feature that the normal direction of the boundary
point is different from the nonboundary normal direction,
but the density of the edge is the same as that of the nonedge
part. Chen et al. [20] proposed a feature extraction algorithm
with multiparameter constraints. Feature points are deter-
mined by normal, curvature, and Euclidean distance. In
[21, 22], principal component analysis (PCA) and normal
method were used to extract edge feature points.

Referring to the edge detection algorithm of two-
dimensional image, this paper proposes a Canny operator
based on projection transformation for edge detection of
point cloud data and obtains the normal vector of the edge
point cloud after edge detection. The point cloud can better
reflect the characteristics of the target, and the speed of solv-
ing the normal vector is greatly improved. Compared with
the normal vector of the whole data point cloud of the target,
the normal vector of the edge point cloud can well express
the characteristics of the target, and the calculation time is
reduced to 10% of the original.

2. Methodology Vertical Projection of
Point Data

Projection transformation is the process of transforming the
coordinates of one map projection point into the coordi-
nates of another map projection point. 3D point cloud is a
massive set of points that express the spatial distribution
and surface characteristics of targets in the same spatial ref-
erence system. It is a collection of points after obtaining the
spatial coordinates of each sampling point on the object sur-
face. Compared with a 2D image, 3D point cloud usually
only has X, Y , Z coordinate information. Its spatial informa-
tion is redundant to a 2D image. The corresponding geomet-
ric structure is more complex, and the neighbour structure
of point cloud data is more complex.

In this paper, the Canny edge detection algorithm based
on projection transformation is proposed to detect the edge
of point cloud data. The point cloud data is projected along
the vertical direction to the XY two-dimensional plane, and
the projected point cloud data is normalized. The X direc-
tion represents the width, the Y direction represents the
height, and the Z value represents the gray value of the pixel
in the image. The edge of the transformed data is detected,
and then, the final edge point cloud is obtained by inverse
transformation.

Supposing the number of point clouds is m, all point
clouds are represented as

P =
x1, x2,⋯, xm
y1, y2,⋯, ym
z1, z2,⋯, zm

2
664

3
775: ð1Þ

Here, Pi = ½xi, yi, zi�T is the three-dimensional coordi-
nates of point i.
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The point cloud data is vertically projected in the Z
direction, and the Z value is converted into the depth value
of the current point. The projected point set is expressed as

f xi, yið Þ = zi: ð2Þ

For the projected point set, the maximum value and
minimum value of X and Y directions are counted, which
are marked as follows: xmin, xmax, ymin, and ymax. The X, Y
axis data is quantized into a form corresponding to the
image width W and height H. Then, the abscissa and ordi-
nate of xi, yi are as

i =W ∗
xi − xmin

xmax − xmin
+ 1, ð3Þ

j =H ∗
yi − ymin

ymax − ymin
+ 1: ð4Þ

A linear transformation is performed on the matrix zi. In
order to realize the corresponding relationship between
point cloud and image, statistically, the minimum and max-
imum values of Z are marked as follows: zmin and zmax. The
Z value is linearly transformed to the range of 100~255. For
a coordinate where there is no point cloud, it is represented
by 0. The Z value is like the gray value of an image. The pro-
jection transformation is shown in

gray zið Þ = 100 + zi − zminð Þ ∗ 155
zmax − zmin

: ð5Þ

The point set after quantization is expressed as

f i, jð Þ = gray zið Þ: ð6Þ

As an example, the industrial part target is vertically pro-
jected, and the projection result is shown in Figure 1.

Figures 1(a) and 1(d) are the original target of tee and
elbow. Figures 1(b) and 1(e) are the point cloud of tee and
elbow. Figures 1(c) and 1(f) are the vertical projection of
tee and elbow. Because the angle of view is the Z direction
when shooting the target, the data shape of the target point
cloud data after vertical projection in the Z direction is con-
sistent with the original image features.

3. Edge Detection with Canny Operator

Canny edge detection was first proposed by John Canny in
the paper with a computational approach to edge detection
in 1986. Canny edge detection is a technology to extract use-
ful structural information from different visual objects and
greatly reduce the amount of data to be processed. It has
been widely used in various computer vision systems. Canny
found that the requirements of edge detection in different
vision systems are similar, so it can achieve a widely used
edge detection technology. The Canny algorithm is based
on three basic objectives. (1) In the low error rate, all edges
should be found with no pseudoresponse. Capture as many
edges as possible in the image as accurately as possible. (2)

The detected edge should be accurately located in the center
of the real edge. (3) In single edge point response, the detec-
tor should not point out multiple pixel edges where there is
only one single edge point. In order to meet these require-
ments, Canny uses the variation method. The optimal func-
tion in Canny detector is described by the sum of four
exponential terms, which can be approximated by the first
derivative of Gaussian function. The Canny edge detection
algorithm can be divided into the following five steps. (1)
Gaussian filter is used to smooth the image and remove
the noise. (2) Calculate the gradient intensity and direction
of each pixel point in the image. (3) Nonmaximum suppres-
sion is applied to eliminate the spurious response caused by
edge detection. (4) Double threshold detection is applied to
determine real and potential edges. (5) Finally, the edge
detection is completed by suppressing the isolated weak
edge.

3.1. Gaussian Smoothing. Gaussian smoothing is a 2D con-
volution operation, which is applied to blurred images to
remove details and noise. In order to reduce the influence
of noise on the result of edge detection as much as possible,
the noise must be filtered to prevent false detection caused
by noise. In order to smoothen the image, Gaussian filter is
used to convolute the image. In this step, the image is
smoothed to reduce the obvious noise effect on the edge
detector. The generation equation of Gaussian filter kernel
with size of ð2k + 1Þ ∗ ð2k + 1Þ is given by

Hij =
1

2πσ2 e
− i− k+1ð Þð Þ2+ j− k+1ð Þð Þ2ð Þ/2σ2 , 1 ≤ i, j ≤ 2k + 1: ð7Þ

Here, σ is the standard deviation of the distribution
K = i + j. Assume that the mean of the distribution is 0;
that is, its center is on the line x = 0. The distribution of
two-dimension Gaussian filter kernel is shown in Figure 2.

When σ = 1:4, k = i, and the size of Gaussian filter kernel
is 3 ∗ 3, the corresponding Gauss kernel is shown in

0:0924 0:1192 0:0924
0:1192 0:1538 0:1192
0:0924 0:1192 0:0924

2
664

3
775: ð8Þ

When σ = 1:4, k = 2, and the size of Gaussian filter kernel
is 5 ∗ 5, the corresponding Gauss kernel is shown in

0:0105 0:0227 0:0293 0:0227 0:0105
0:0227 0:0924 0:1192 0:0924 0:0227
0:0293 0:1192 0:1538 0:1192 0:0293
0:0227 0:0924 0:1192 0:0924 0:0227
0:0105 0:0227 0:0293 0:0227 0:0105

2
666666664

3
777777775
: ð9Þ

When σ = 2, k = 1, and the size of Gaussian filter kernel
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is 3 ∗ 3, the corresponding Gauss kernel is shown in

0:0310 0:0351 0:0310
0:0351 0:0398 0:0351
0:0310 0:0351 0:0310

2
664

3
775: ð10Þ

When σ = 2, k = 2, and the size of Gaussian filter kernel
is 5 ∗ 5, the corresponding Gauss kernel is shown

0:0416 0:0213 0:0241 0:0213 0:0416
0:0213 0:0310 0:0351 0:0310 0:0213
0:0241 0:0351 0:0398 0:0351 0:0241
0:0213 0:0310 0:0351 0:0310 0:0213
0:0416 0:0213 0:0241 0:0213 0:0416

2
666666664

3
777777775
: ð11Þ

The choice of Gaussian convolution kernel size will
affect the performance of Canny detector. The larger the
size, the lower the sensitivity of the detector to noise, but
the positioning error of edge detection will increase slightly.

If a 3 ∗ 3 window in the image is f and the Pixel to be fil-
tered is f ði, jÞ, then after Gauss filtering, the value of pixel

(a) Original target of tee
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Figure 1: Target point cloud and vertical projection.
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Figure 2: Distribution of 2D Gaussian filter kernel.
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f ði, jÞ is shown in

f i, jð Þ =H ∗ f =

h11 h12 h13

h21 h22 h23

h31 h32 h33

2
6664

3
7775

∗

f i − 1, j − 1ð Þ f i − 1, jð Þ f i − 1, j + 1ð Þ
f i, j − 1ð Þ f i, jð Þ f i, j + 1ð Þ

f i + 1, j − 1ð Þ f i + 1, jð Þ f i + 1, j + 1ð Þ

2
6664

3
7775:

ð12Þ

In equation (12), ∗ is a convolution symbol.

3.2. Calculate the Intensity and Direction of the Gradient.
Using a discrete difference operator, convolution operation
is carried out from the x-axis and y-axis, respectively. The
gray change value and direction in the horizontal and verti-
cal directions are obtained. Determine the gradient ampli-
tude and direction with

M i, jð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x i, jð Þ + G2

y i, jð Þ
q

, ð13Þ

θ i, jð Þ = arctan
Gy i, jð Þ
Gx i, jð Þ : ð14Þ

Here, Gxði, jÞ and Gyði, jÞ are the first derivatives of hor-
izontal and vertical directions, respectively. Suppose Gx and

(a) Vertical projection of tee (b) Edge of tee

(c) Vertical projection of elbow (d) Edge of elbow

Figure 3: Edge detection of vertical projection images.

pc=[];
for i=1:k

m = find(abs(f(:,1)-newx(i))<0.1);
n = find(abs(f(:,2)-newy(i))<0.1);
R = intersect(m(:),n(:));
[a,b]=size(R);
if a&&b
for j=1:a

temp(j,1)=f(R(j),1);
temp(j,2)=f(R(j),2);
temp(j,3)=f(R(j),3);

end
pc=[pc;temp];

end
end

Code 1
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Gy are the Sobel operators which are shown in

Gx =
−1 0 1
−2 0 2
−1 0 1

2
664

3
775,

Gy =
−1 −2 −1
0 0 0
1 2 1

2
664

3
775,

ð15Þ

where Gx is the Sobel operator in the x direction, which is
used to detect the edge in the y direction and Gy is the Sobel
operator in the y direction, which is used to detect the edge
in the x direction (edge direction is perpendicular to gradi-
ent direction). Gxði, jÞ and Gyði, jÞ are the convolution of
GxðGyÞ and the image data. The calculation formula is
shown in

Gx i, jð Þ = −1 ∗ f i − 1, j − 1ð Þ − 2 ∗ f i, j − 1ð Þ − f i + 1, j − 1ð Þ
+ f i − 1, j + 1ð Þ + 2 ∗ f i, j + 1ð Þ + 2 ∗ f i + 1, j + 1ð Þ,

ð16Þ

Gy i, jð Þ = −1 ∗ f i − 1, j − 1ð Þ − 2 ∗ f i − 1, jð Þ − f i − 1, j + 1ð Þ
+ f i + 1, j − 1ð Þ + 2 ∗ f i + 1, jð Þ + 2 ∗ f i + 1, j + 1ð Þ:

ð17Þ
3.3. Nonmaximum Suppression. Nonmaximum suppression

is a kind of edge sparsity technology. The effect of non-
maximum suppression lies in the “thin” edge. After calcu-
lating the gradient of the image, the edge extracted only
based on the gradient value is still very fuzzy. The edge
should have only one accurate response. Nonmaximum
suppression can help to suppress all gradient values except
local maximum to 0. The algorithm of nonmaximum sup-
pression for each pixel in gradient image is as follows. (1)
The gradient intensity of the current pixel is compared
with two pixels along the positive and negative gradient
direction. (2) If the gradient intensity of the current pixel
is the largest compared with the other two pixels, the pixel
will remain as the edge point; otherwise, the pixel will be
suppressed.

3.4. Double Threshold Detection and Suppress Isolated Low
Threshold Points. In order to delete the edge pixels that are
caused by noise, delete the edge pixels with weak gradient,
and retain edge pixels with high gradient through selecting
high and low thresholds. The gradient of weak edge pixel
is less than the high threshold and greater than the low
threshold that should be suppressed.

Generally, weak edge pixels caused by real edges are con-
nected to strong edge pixels, but noise response is not con-
nected, in order to track the edge connection, by looking at
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Figure 4: Back projection transform of edge detection data.

Table 1: The number of original point and edge point.

Target type Original point Edge point

Tee 647984 60015

Elbow 520915 53353
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the weak edge pixel and its eight neighbours. When one of
them is a strong edge pixel, the weak edge point can be
retained as a real edge.

Edge detection is performed on the image after the point
cloud is vertically projected, and the result is shown in
Figure 3.

Figures 3(a) and 3(c) are the vertical projection images of
tee and elbow. Figures 3(b) and 3(d) are the edges of vertical
projection images. Through edge detection, the edge feature
of target can be detected. Compared with the target point
cloud, the edge feature can represents the target very well
and the point number is reduced greatly.
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Figure 5: Normal vector of tee and elbow.
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4. Back Projection Transform of Edge
Detection Data

In order to express the three-dimensional information of
edge points, the edge detection data is back projected to
the origin cloud. The points in the edge map after projection
transformation of point cloud are represented as f ði, jÞ, in
which i is the horizontal ordinate. The value range is 1 ~
W. j is the vertical ordinate. The value range is 1 ~H. When
f ði, jÞ = 1, that means the point is the edge point. The corre-
sponding point in point cloud should be found. First, calcu-
late the x and y of point cloud. The transformation method
is as follows:

xi = i − 1ð Þ ∗ xmax − xmin
W

+ xmin, ð18Þ

yi = j − 1ð Þ ∗ ymax − ymin
H

+ ymin: ð19Þ

In the origin point cloud data, search the horizontal
ordinate and vertical ordinate. Then, mark the points as edge
points. The search code is as follows:

The effect of the edge point cloud after the inverse trans-
formation of the edge points is shown in Figure 4, in which
gray represents the target and red represents the edge point
cloud.

Figures 4(a) and 4(c) are the point cloud of tee and
elbow. Figures 4(b) and 4(d) are the edge point cloud of
them. Calculate the number of original point and edge point.
The number is shown in Table 1.

The edge point of each target is around 10% of the orig-
inal point. After extracting the edge points, it can provide a
reliable basis for the subsequent point cloud normal vector
calculation and point cloud registration.

5. Normal Vector Calculation of Edge Points
Based on PCA

After edge detection, the normal vector of the local fitting
plane is taken as the normal vector of the point. Suppose
the edge point is Pi = ½xi, yi, zi�T , K-Neighbourhood search
in origin cloud dataset. Calculate the best fit plane Ax + By
+ Cz −D = 0. Here, A, B, C is the normal vector of a plane
equation. D represents the distance from the origin to the
plane, A2 + B2 + C2 = 1, and D > 0. The distance from each
point to the plane is di = jAxi + Byi + Czi − dj. The sum of
the distance from each point to the best fit plane is the smal-

lest, that is,

e = 〠
n

i=1
d2i ⟶min: ð20Þ

The normal vector estimation of the edge point cloud is
shown in Figure 5.

Because the number of points corresponding to edge fea-
tures is greatly reduced, the calculation time of using edge
features to calculate normal vector is also greatly shortened.
The calculation time is shown in Table 2.

It can be seen from the figure that compared with the
normal vector of all data point clouds of the target, the nor-
mal vector of the edge point cloud can well express the char-
acteristics of the target, and the processing time of the tee
target is reduced from 53.03 s to 4.94 s, and the elbow target
is reduced from 42.03 s to 4.37 s, which is around 10% of the
original.

6. Conclusions

The data of point cloud is large and contains a lot of invalid
information. It is very important to extract the characteris-
tics of point cloud. Edge features can well express the geo-
metric features of the target, so it is very important to
extract edge point cloud. This paper proposes an edge detec-
tion algorithm based on projection transformation. Firstly,
the target point cloud is projected vertically. Then, the
Canny algorithm is used to detect the edge of the image.
The detected edge data is back projected to extract the edge
point cloud. By calculating the normal vector of the edge
point cloud, compared with the normal vector of the whole
data point cloud of the target, the normal vector of the edge
point cloud can well express the characteristics of the target,
and the calculation time is reduced to 10% of the original,
which greatly saves the calculation time. This paper only
detects 3D tee and elbow. Give the advantages of edge fea-
tures in normal vector calculation. The advantages of edge
point cloud in point cloud matching need to be further
studied.
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Table 2: The calculation time of normal vector.

Order number Target Calculation time (s)

1 Point cloud of tee 53.03

2 Edge point cloud of tee 4.94

3 Point cloud of elbow 42.03

4 Edge point cloud of elbow 4.37

8 Wireless Communications and Mobile Computing



References

[1] S. W. Lee, S. Sarp, D. J. Jeon, and J. H. Kim, “Smart water grid:
the future water management platform,” Desalination and
Water Treatment, vol. 55, no. 2, pp. 339–346, 2015.

[2] J. Zhang, J. J. Cao, X. Liu, H. Chen, B. Li, and L. Liu, “Multi-
normal estimation via pair consistency voting,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 25, no. 4,
pp. 1693–1706, 2019.

[3] W. Dong, “Building point cloud feature extraction using geo-
metric features of adjacent points,” Laser and Optoelectronics,
vol. 55, no. 7, pp. 181–188, 2018.

[4] J. Zhu, J. P. Huang, and L. M. Wang, “Laser printing files
detection method based on double features,” International
Journal of Pattern Recognition and Artificial Intelligence.,
vol. 32, no. 10, p. 1854028, 2018.

[5] W. Ali, S. Abdelkarim, and M. Zidan, “Yolo3d: end-to-end
real-time 3d oriented object bounding box detection from
LiDAR point cloud,” in Lecture Notes in Computer Science,
pp. 716–728, Springer, Cham, 2019.

[6] Y. Zhou and O. Tuzel, “Voxelnet: end-to-end learning for
point cloud based 3d object detection,” 2017, https://arxi-
v.org/abs/1711.06396.

[7] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and
C. K. Wellington, “LaserNet: an efficient probabilistic 3D
object detector for autonomous driving,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 2019.

[8] J. Beltran, C. Guindel, F. M. Moreno, D. Cruzado, F. Garcia,
and A. De La Escalera, “BirdNet: a 3D object detection frame-
work from LiDAR information,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
Maui, HI, USA, 2018.

[9] K. Minemura, H. Liau, A. Monrroy, and S. Kato, “LMNet: real-
time multiclass object detection on CPU using 3D LiDARs,” in
2018 3rd Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS), Singapore, 2018.

[10] A. Asvadi, L. Garrote, C. Premebida, P. Peixoto, and U. J.
Nunes, “DepthCN: vehicle detection using 3d-lidar and con-
vnet,” in 2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC), Yokohama, Japan, 2017.

[11] M. Simon, S. Milz, K. Amende, and H. M. Gross, “Complex-
yolo: real-time 3d object detection on point clouds,” 2018,
https://arxiv.org/abs/1803.06199.

[12] S. H. B. Xia and W. R. SH, “A fast edge extraction method for
mobile LiDAR point clouds,” IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 8, pp. 1288–1292, 2017.

[13] C. H. J. Ding, G. Sun, and L. L. Yin, “Boundary extraction of
scattered point cloud,” Computer Technology and Develop-
ment, vol. 27, no. 7, pp. 83–86, 2017.

[14] J. X. Li, E. Q. Wu, and Y. L. Ke, “3D reconstruction of small
diameter pipes inner surface based on structural light,” Chi-
nese Journal of Scientific Instrument, vol. 27, no. 3, pp. 254–
258, 2006.

[15] J. Ye, Z. Gao, X. Liu, W. Wang, and C. Zhang, “Freeform sur-
faces reconstruction based on Zernike polynomials and radial
basis function,” Acta Optical Sinica, vol. 34, no. 8,
pp. 0822003–0822241, 2014.

[16] J. Z. Zhou and Y. J. Yan, “Research on the feature extraction
technology of the point cloud in reverse engineering,” Equip-
ment Manufacturing Technology, vol. 8, no. 13-17, p. 33, 2019.

[17] Z. H. X. Duan, Research on data reduction and surface recon-
struction of 3D laser scanning and its application, China Uni-
versity of mining and technology, 2019.

[18] H. Song, H. Y. Feng, and D. S. Ouyang, “Automatic detection
of tangential discontinuities in point cloud data,” Journal of
Computing and Information Science in Engineering, vol. 8,
no. 2, pp. 1–10, 2008.

[19] H. Y. Han, X. Han, and S. F. SH, “Point cloud simplification
with preserved edge based on normal vector,” International
Journal for Light and Electron Optics, vol. 126, no. 19,
pp. 2157–2162, 2015.

[20] L. Chen, Y. Cai, and J. S. H. Zhang, “Feature extraction of scat-
tered point cloud based on hybrid method of multiple discrim-
inant parameters,” Computer Application Research, vol. 34,
no. 9, pp. 2867–2870, 2017.

[21] T. Hackel, J. D. Wegenr, and K. Schindler, “Contour detection
in unstructured 3D point clouds,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1610–
1618, 2016.

[22] S. H. Y. Pei, N. Du, and L. Wang, “Feature extraction of build-
ing point cloud based on moving least squares normal vector
estimation,” Bulletin of Surveying and Mapping, vol. 4,
pp. 73–77, 2018.

9Wireless Communications and Mobile Computing


	Intelligent Point Cloud Edge Detection Method Based on Projection Transformation
	1. Introduction
	2. Methodology Vertical Projection of Point Data
	3. Edge Detection with Canny Operator
	3.1. Gaussian Smoothing
	3.2. Calculate the Intensity and Direction of the Gradient
	3.3. Nonmaximum Suppression
	3.4. Double Threshold Detection and Suppress Isolated Low Threshold Points

	4. Back Projection Transform of Edge Detection Data
	5. Normal Vector Calculation of Edge Points Based on PCA
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

