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Although the millimeter wave (mmWave) massive multiple-input and multiple-output (MIMO) system can potentially boost the
network capacity for future communications, the pilot overhead of the system in practice will greatly increase, which causes a
significant decrease in system performance. In this paper, we propose a novel grouping-based channel estimation and tracking
approach to reduce the pilot overhead and computational complexity while improving the estimation accuracy. Specifically, we
design a low-complexity iterative channel estimation and tracking algorithm by fully exploiting the sparsity of mmWave
massive MIMO channels, where the signal eigenvectors are estimated and tracked based on the received signals at the base
station (BS). With the recovered signal eigenvectors, the celebrated multiple-signal classification (MUSIC) algorithm can be
employed to estimate the direction of arrival (DoA) angles and the path amplitude for the user terminals (UTs). To improve the
estimation accuracy and accelerate the tracking speed, we develop a closed-form solution for updating the step-size in the
proposed iterative algorithm. Furthermore, a grouping method is proposed to reduce the number of sharing pilots in the
scenario of multiple UTs to shorten the pilot overhead. The computational complexity of the proposed algorithm is analyzed.
Simulation results are provided to verify the effectiveness of the proposed schemes in terms of the estimation accuracy, tracking
speed, and overhead reduction.

1. Introduction

The fifth generation (5G) wireless communication system
has been proposed to meet the increasing demands on spec-
trum efficiency (SE), energy efficiency (EE), and network effi-
ciency (NE). Millimeter wave (mmWave) communications
operating in the frequency band spanning from 30 to
300GHz have received great attention for 5G and beyond
5G (B5G) systems, since they are readily combined with mas-
sive multiple-input multiple-output (MIMO) [1, 2] tech-
niques for dramatically improving the system SE, EE, and
latency performance [3, 4].

The channel state information (CSI) accuracy is very
important for the design of mmWave massive MIMO sys-
tems, and it plays a key role to achieve high SE and EE [5,
6]. Particularly, obtaining accurate CSI is the premise to
leverage the full benefits brought by the massive MIMO tech-

nique on the mmWave frequency band [7]. Conventionally,
CSI is commonly obtained with the assistance of the pilot
sequences. Attributed to the orthogonality of pilot sequences,
the CSI estimation with high accuracy can be obtained.
Nonetheless, there is a positive linear relationship between
the pilot overhead and the number of antennas. Therefore,
when hundreds of antennas are deployed at the BS, the pilot
overhead increases linearly, which may deteriorate the sys-
tem performance significantly [8] due to the pilot
contamination.

To reduce the pilot overhead, proper allocation of pilot
sequences is one of the main solutions. The authors in [9]
have designed a pilot reuse algorithm for massive MIMO
with in-phase and quadrature-phase imbalances (IQI).
Moreover, a pilot reuse method has been proposed in [8],
where the channel power distribution in angular domain is
derived via the channel covariance matrix analysis.
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Accordingly, a pilot reuse pattern has been designed to
reduce pilot overhead. In [10, 11], a novel dynamic pilot allo-
cation scheme has been proposed with low complexity. A
fractional pilot reuse scheme based on threshold optimiza-
tion has been developed in [12], where different pilots are
allocated to the users classified based on the fluid model.

In fact, the pilot reuse scheme unavoidably affects the
accuracy of CSI estimation, which motivates the blind CSI
estimation methods developed to reduce the estimation error
without using pilot sequences, such as the subspace method
(SM) and monte carlo methods (MCMs). However, these
conventional methods have extremely high computational
complexity due to the matrix decomposition and are not suit-
able to implement in practice. To reduce the computational
complexity, a spatial basis expansion model (SBEM) has been
proposed to model the mmWave massive MIMO channel
with a uniform linear array (ULA) of antennas in [13]. Then,
a unified transmission strategy for the mmWave massive
MIMO systems in the spatial domain has been proposed,
which includes low complex CSI estimation and user sched-
uling. The same channel model has been extended to the uni-
form rectangular array- (URA-) based massive MIMO
systems in [14]. By combining two-dimensional fast Fourier
transformation (2D-FFT) and spatial spectrum analysis, the
CSI can be estimated with low-complexity based on 2D-
FFT operation in [15].

By exploiting the sparse characteristic of mmWave chan-
nel, an open-loop channel estimator based on orthogonal
matching pursuit has been proposed for mmWave hybrid
MIMO system [16]. Based on the channel reciprocity charac-
teristics in TDD systems, the Arnoldi iteration has been used
to estimate the left and right singular subspaces of the
mmWave MIMO channel in [17]. To reduce the computa-
tional complexity, a sequential and adaptive subspace estima-
tion (SASE) method has been proposed to estimate the
column and row subspaces of the mmWave MIMO channel
in [18].

Most of the aforementioned works cannot track the var-
iation on the CSI, which needs to be reimplemented after the
channel coherence time to catch up with the varying channel
coefficients. Therefore, tracking and simultaneously estimat-
ing the CSI can further reduce the computational complexity
to achieve accurate CSI. In [19], a modified unscented Kal-
man filter has been proposed to track the DoA angles with
known channel power gain as a priori information. In [20],
the predetermined user motion model has been exploited to
predict the change in the CSI of massive MIMO systems.
The assumptions in both works hinder their practical opera-
tion. A sparse complex-valued neural network has been
applied to approximate the uplink-to-downlink mapping
function in [21]. However, the overhead required for the
uplink channel estimation is also intolerable. In [22], a prin-
cipal subspace analysis- (PSA-) based iterative method has
been applied to estimate and track the CSI. However, the
computational complexity of this method is still very high
due to the eigenvalue decomposition (EVD), and the step size
of the iterative algorithm is not optimized.

To reduce the computational complexity and the pilot
overhead, we propose a novel channel estimation and track-

ing algorithm for the mmWave massive MIMO systems with
URA antennas at the BS. First, the channel sparsity of the
mmWave frequency channel is fully exploited. Based on the
principal component analysis (PCA) method, a weighted
iterative method with the optimized step size is proposed to
estimate and track the signal eigenvectors. Second, the
obtained eigenvectors are used to estimate DoA angles and
path amplitudes via the classic multiple-signal classification
(MUSIC) algorithm. Then, a standard inner product is used
to match the elevation DoA angles with the right azimuth
DoA angles on the same path. Moreover, a user terminal
(UT) grouping scheme is proposed to realize the training
sequence reuse in the scenario of multiple UTs, which sub-
stantially reduces the number of required pilots and the pilot
contamination. The main contributions of this work can be
summarized as follows.

(1) Based on the PCA, a weighted iterative method is
proposed to estimate and track the eigenvectors of
the signal subspace, which are used to recover the
CSI. Since the complex matrix decomposition opera-
tion is avoided, the computational complexity
decreases significantly

(2) To accelerate the convergence speed for the proposed
iterative scheme, we develop a closed-from solution
for updating the step-size in the proposed iterative
algorithm

(3) To reduce the pilot overhead, a UT grouping method
based on the spatial separability is proposed to divide
the UTs into different groups. The spatial separability
implies that the UTs in the same group do not have
overlapping paths so that they can share the same
pilot sequence and transmit simultaneously without
causing interference

This paper is organized as follows. In Section 2, a
mmWave massive MIMO system is described. The singular
value decomposition (SVD) method and the method to esti-
mate the CSI based on the signal eigenvectors are introduced
in Section 3. In Section 4, a novel iterative method is pro-
posed. The simulation results are demonstrated in Section
6. Finally, conclusions are drawn in Section 7.

2. System Model

In this section, we describe the wireless channel model of the
investigated mmWave massive MIMO system. As shown in
Figure 1, the BS equipped with a URA of M ×N antennas
serves UTs, each of which is equipped with a single antenna.
Moreover, the wavelength is denoted as λ, and the interan-
tenna spacing of both elevation and horizontal directions is
denoted as ds which is set to be half of the λ.

We assume that the signal transmitted from each UT,
i ∈I ≜ f1,⋯,Ug where U is the number of UTs, to the
BS arrives along Pi clusters consisting of a number of
independent resolvable paths, and each path has a corre-
sponding elevation DoA angle and azimuth DoA angle.
Moreover, the mean and angle spread (AS) of the
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elevation DoA angle of the p-th cluster are denoted by θp
and Δθp, respectively. Similarly, the mean and AS of the
azimuth DoA angle of the p-th cluster are denoted by ϕp
and Δϕp, respectively. When the signal propagates along
the pth cluster, the channel can be written by integrating
over the angular region as

Hp =
ðθp+Δθp
θp−Δθp

ðϕp+Δϕp
ϕp−Δϕp

β θ, ϕð Þa θð ÞbT θ, ϕð Þdθdϕ, ð1Þ

where Hp denotes the channel matrix corresponding to the
pth cluster, βðθ, ϕÞ = jαðθ, ϕÞj exp f−jΦðθ, ϕÞg, αðθ, ϕÞ is
the attenuation and Φðθ, ϕÞ is the initial phase, and aðθÞ
and bTðθ, ϕÞ are the array manifold vectors (AMVs),
which are written as

a θð Þ = 1, ejχ cos θð Þ,⋯,ejχ M−1ð Þ cos θð Þ
h iT

, ð2Þ

b θ, ϕð ÞÞ = 1, ejχ sin θð Þ cos ϕð Þ,⋯,ejχ N−1ð Þ sin θð Þ cos ϕð Þ
h iT

,

ð3Þ
where χ ≜ 2πðd/λÞ.

Then, we define a steering matrix denoted as Aðθ, ϕÞ =
aðθÞbTðθ, ϕÞ ∈ℂM×N on the basis of AMVs, which can be
written as

1 ⋯ ejχ N−1ð Þ sin θð Þ cos ϕð Þ

ejχ cos θð Þ ⋯ ejχ cos θð Þ+ N−1ð Þ sin θð Þ cos ϕð Þð Þ

⋮ ⋮ ⋮

ejχ M−1ð Þ cos θð Þ ⋯ ejχ M−1ð Þ cos θð Þ+ N−1ð Þ sin θð Þ cos ϕð Þð Þ

2666664

3777775:
ð4Þ

Based on (4), the channel for the p-th cluster can be
rewritten as

Hp =
ðθp+Δθp
θp−Δθp

ðϕp+Δϕp
ϕp−Δϕp

β θ, ϕð ÞA θ, ϕð Þdθdϕ: ð5Þ

Based on (5), we can observe that the channel matrix,Hp,
mainly depends on βðθ, ϕÞ and Aðθ, ϕÞ, where the former is
directly related to the channel attenuation and initial phase,
and the latter is determined by the DoA angles. Note that if
Aðθ, ϕÞ and βðθ, ϕÞ are estimated with high accuracy, the
CSI matrix would be reconstructed with high quality. To
recover the CSI, there are six parameters to be estimated,
i.e., θp, Δθp, ϕp, Δϕp, αðθ, ϕÞ, and Φðθ, ϕÞ.

Actually, (5) can be simplified when a mmWave fre-
quency band is used in the massive MIMO system. From
[2], Δθp and Δϕp tend to be zero in the scenario where the
massive MIMO system operates over the mmWave fre-
quency band. Therefore, each cluster can be seen as an inde-
pendent path, and each path is formed by the line-of-sight
(LOS) and the first-order reflection components. Conse-
quently, (5) can be rewritten as

Hp = β θp, ϕp
� �

A θp, ϕp
� �

: ð6Þ

Then, the received signals at the BS is expressed as

Yk = 〠
U

i=1
〠
Pi

p=1
β θi,p, ϕi,p
� �

A θi,p, ϕi,p
� �

xi,k +W = 〠
U

i=1
〠
Pi

p=1
Hi,pxi,k +W, ð7Þ

where k is the index of the received signal snapshot, xi,k is the
transmitted signal from UT i, W is the Additive White
Gaussian Noise (AWGN) matrix, and Hi,p ∈ℂM×N is the
channel matrix for UT i on the pth path. From (7), we can
observe that to recover the channel matrix, only four param-
eters need to be estimated for each path p, which are θi,p, ϕi,p,
αðθi,p, ϕi,pÞ, and Φðθi,p, ϕi,pÞ. Therefore, by comparing with
estimating entries in the original channel matrix, the compu-
tational complexity of recovering the parameters related to
the paths is significantly reduced.

3. PCA-Based Eigenvectors Estimation
and Tracking

In this section, a PCA-based iterative method to estimate and
track the signal eigenvectors is proposed.

3.1. Channel Decomposition. Conventionally, SVD operation
can be applied to estimate the eigenvectors related to the
channel, which can be used to recover the channel. To
explain the related notations and theories clearly, we assume
that there is one UT in the system with P distinguishable
paths first.

According to the SVD operation, the received signal, Yk,
can be written as Yk = SVDH , where S is a unitary matrix S
∈ℂM×M , D is a unitary matrix with D ∈ℂN×N , the column

BS

Scatters

Path p

Scatters

𝜃p

Фp

UTs

Figure 1: Massive MIMO system with URA of antennas at the BS.
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vectors of S and D are all referred to as singular vectors, and
V is a diagonal matrix,V ∈ℂM×N , which is named as singular
value matrix and sorted in descending order.

Besides, when using the EVD to decompose the covari-
ance matrices, CL = EfYkYH

k g and CR = EfYH
k Ykg, the col-

umn vectors of S and D are the eigenvectors of CL and CR,
respectively. Based on the array signal processing knowledge,
the first P column vectors of S and D are mainly dependent
on elevation and azimuth DoA angles of P resolvable paths,
which are denoted as SP and DP, respectively. Accordingly,
the DoA angles and amplitudes of resolvable paths can be
estimated after recovering the SP and DP .

Based on above investigation, by applying the EVD oper-
ation, the covariance matrix, CL, can be written as

CL = SPVsSHP + SzVzL
SHz , ð8Þ

where matrix SP∈ℂM×P, and the column vectors of SP are
eigenvectors, Vs is a diagonal matrix and Vs ∈ℂP×P with
entries from λ1 to λP, SZ is a matrix ∈ℂM×ðM−PÞ, and the col-
umn vectors of SZ are eigenvectors, and VzL

is a diagonal

matrix VzL
∈ℂðM−PÞ×ðM−PÞ with entries of eigenvalues from

λP+1 to λM .
Similarly, applying EVD operation to CR, we can obtain

CR =DPVdDH
P +DzVzR

DH
z , ð9Þ

where DP ∈ℂN×P, and the column vectors in DP are eigen-
vectors, Vd is a diagonal matrix, Vd ∈ℂP×P , with entries from
γ1 to γP , DZ ∈ℂM×ðN−PÞ, and the column vectors of SZ are
eigenvectors, VzR

is a diagonal matrix, and VzR
∈

ℂðN−PÞ×ðN−PÞ, with entries of eigenvalues from γP+1 to γM .
Even though SP and DP can be recovered via the SVD

or EVD operation as analyzed above, each of them has
very high computational complexity, which is OðM3Þ and
OðM3 +N3Þ, respectively. Therefore, they are not suitable
for channel estimation in practice. Moreover, it cannot
trace the change on the channel matrix caused by the
mobility of UTs.

3.2. Adaptive PCA-Based Iterative Method. In order to esti-
mate and track the eigenvectors with low computational
complexity, an adaptive PCA-based iterative method is pro-
posed in this subsection. First, we take the estimation and
tracking of SP for instance. Define a matrix T1 = SPU ∈
ℂM×P, where U is a unitary matrix with P × P dimension.
The estimation on T1 can be formulated as the following
optimization problem

min
T1

J T1ð Þ = E tr Yk − T1TH
1 Yk

�� ��2� �n o
= tr CLð Þ − 2tr TH

1 CLT1
� �

+ tr TH
1 CLT1TH

1 T1
� �

,
ð10Þ

which is to minimize the mean square error (MSE) of the
estimation. A simple iterative gradient descent method can

be used to solve the optimization problem in (10). The gradi-
ent of JðT1Þ with respect to T1 is updated by

T1,j = T1,j−1 − η
∂J T1ð Þ
∂T1

����
T1=T1, j−1

, ð11Þ

where j denotes the iteration index, η > 0 is a step size, and
ð∂JðT1ÞÞ/ð∂T1Þ is to represent the gradient of JðT1Þ with
respect to T1. To obtain the partial derivative of JðT1Þ with
respect to T1, we first calculate the differential of JðT1Þ with
respect to T1 via the chain rule, which is given by

dJ T1ð Þ = −2tr TH
1 CH

L + CL

� �
dT1

� �
+ tr dTH

1 CLT1TH
1 T1

� �
+ tr TH

1 CLdT1TH
1 T1

� �
+ tr TH

1 CLT1dTH
1 T1

� �
+ tr TH

1 CLT1TH
1 dT1

� �
= −4tr TH

1 CLdT1
� �

+ 2tr TH
1 T1TH

1 CLdT1
� �

+ 2tr TH
1 CLT1TH

1 dT1
� �

:

ð12Þ

Based on the matrix analysis, the gradient of JðT1Þ is
given by

∂J T1ð Þ
∂T1

= −2 2CL −CLT1TH
1 − T1TH

1 CL

� �
T1: ð13Þ

After substituting (13) into (11), the update rule on T1
can be rewritten as

T1,j = T1,j−1 + 2η 2CL − CLT1,j−1TH
1,j−1 − T1,j−1TH

1,j−1CL

� �
T1,j−1:

ð14Þ

With Equation (14), T1 will converge to the principal
subspace, SPU, which is not equal to SP due to the unitary
matrix U.

3.3. Optimization Problem. To estimate the corresponding
eigenvectors, we reconstruct the optimization problem based
on the weighted method proposed in [23]. The new optimi-
zation problem is formulated as

min
T1

J T1ð Þ = tr CLð Þ − 2tr ΩTH
1 CLT1

� �
+ tr ΩTH

1 CLT1TH
1 T1

� �
,

ð15Þ

where Ω is a diagonal matrix whose diagonal item is wi,i. If
the diagonal items of Ω are set with different and positive
values and w1,1 >w2,2 >⋯>wP,P , the estimation of T1 will
converge to SP [23]. Based on (15), the gradient of JðT1Þ
can be rewritten as

∂J T1ð Þ
∂T1

= − 4CLT1Ω − CLT1ΩTH
1 T1 − T1TH

1 CLT1Ω
�

−CLT1TH
1 T1Ω − T1ΩTH

1 CLT1
�
:

ð16Þ
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With (16), matrix T1 in (14) is updated by

T1,j = T1,j−1 + η 4CLT1,k−1Ω − CLT1,j−1ΩTH
1 T1,j−1

�
− T1,j−1TH

1,j−1CLT1,j−1Ω − CLT1,j−1TH
1,j−1T1,j−1Ω

− T1,j−1ΩTH
1,j−1CLT1,j−1

�
:

ð17Þ

It has been proven in [23] that T1 converges to SP when j
tends to infinity. From (17), we can observe that the covari-
ance matrix CL is essential to update T1, but the accurate
CL is difficult to be obtained due to CL is the expectation of
YkYH

k . To obtain CL, an approximated method has been pro-
posed in [24], which uses a sampling covariance matrix ĈL,j.

The ĈL,j is given by

ĈL,j =
1
j
〠
j

k=0
τj−iYkYH

k = τ
j − 1
j

ĈL,j−1 +
1
j
YjYH

j , ð18Þ

where τ ∈ ½0, 1� is the forgetting factor, the variable k is
used to indicate the kth time slot, and j is to indicate
the current time slot. The initial matrix ĈL,1 is set to be
equal to Y1YH

1 . Moreover, it is noteworthy that the param-
eter τ can be adjusted to trace channel variance. If the
channel is modeled as a stationary process, (18) can be
regarded as the calculation on the average value of YkYH

k
, and τ is equal to 1. However, the τ is taken in the range
of (0,1) due to the massive MIMO channel is not station-
ary in practice.

With (18), the updating rule for T1 can be rewritten as

T1,k = T1,k−1 + η 4Ĉ1,k−1T1,k−1Ω − ĈL,k−1T1,k−1ΩTH
1 T1,k−1

�
− T1,k−1TH

1,k−1Ĉ1,k−1T1,k−1Ω − Ĉ1,k−1T1,k−1TH
1,k−1T1,k−1Ω

− T1,k−1ΩTH
1,k−1Ĉ1,kT1,k−1

�
:

ð19Þ

It is noteworthy that the step size, η, is essential to obtain
T1 with high accuracy and convergence speed. However,
deriving an appropriate step size η is nontrivial. On the one
hand, if η is small, the convergence speed will be slow. On
the other hand, the accuracy will be impaired if η is high.
Therefore, in the next subsection, the optimal η is derived
to accelerate the convergence speed while keeping the
accuracy.

3.4. Optimal Step Size. To find the optimal step size ηopt, we
consider the objection function JðT1Þ at the ðk + 1Þth itera-
tion step which is given by

J T1,k+1ð Þ = tr R1,k+1ð Þ − 2tr ΩTH
1,k+1R1,k+1T1,k+1

� �
+ tr ΩTH

1,k+1R1,k+1T1,k+1TH
1,k+1T1,k+1

� �
:

ð20Þ

To simplify the equation, we replace ð∂JðT1ÞÞ/ð∂T1Þ with
∇. Then, combining (11) with (20), (20) can be rewritten as

J T1,k+1, ηð Þ = tr ĈL,k+1
� �

− 2tr Ω T1,k − η∇ð ÞHĈL,k+1 T1,k − η∇ð Þ� 	
+ tr Ω T1,k − η∇ð ÞHĈL,k+1 T1,k − η∇ð Þ T1,k − η∇ð ÞH�
� T1,k − η∇ð Þ�:

ð21Þ

Since TH
1,k+1T1,k+1 =UHSHP SPU = I, (21) can be written as

J T1,k+1, ηð Þ = tr ĈL,k+1
� �

− tr Ω T1,k − η∇ð ÞHĈL,k+1 T1,k − η∇ð Þ� 	
:

ð22Þ

Therefore, JðT1,k+1Þ has a global maximum with the opti-
mal step size, ηopt. Based on (22), we can differentiate Jð
T1,k+1, ηÞ with respect to η, which is given by

∂J T1,k+1, ηð Þ
∂η

=
∂
∂η

−2tr Ω T1,k − η∇ð ÞHĈL,k+1 T1,k − η∇ð Þ� 	

+ tr Ω T1,k − η∇ð ÞHĈL,k+1 T1,k − η∇ð Þ�
� T1,k − η∇ð ÞH T1,k − η∇ð Þ	�

= −2tr Ω −∇ð ÞHĈ1,k+1 T1,k − η∇ð Þ� 	
− 2tr Ω T1,k−∇ð ÞHĈL,k+1 −η∇ð Þ� 	

= 2tr Ω∇HĈL,k+1T1,k
� 	

− 2ηtr Ω∇HĈL,k+1∇
� 	

+ 2tr ΩTH
1,kĈL,k+1∇

� 	
− tr Ω∇HĈL,k+1∇
� 	

:

ð23Þ

When ð∂JðT1,k+1ÞÞ/ð∂ηÞ = 0, JðT1,k+1Þ has a global maxi-
mum. As a result, the optimal step size, ηopt, is the solution
of ð∂JðT1,k+1ÞÞ/ð∂ηÞ = 0, which is given by

ηopt =
tr Ω∇HĈL,k+1T1,k
� 	

+ tr ΩTH
1,kĈL,k+1∇

� 	
2tr Ω∇HĈL,k+1∇
� 	 : ð24Þ

Based on (24), we can achieve the optimal updating rule
to estimate and track the signal eigenvector matrix, SP . In
the same way, we can estimate and track the DP.

4. Estimation on the Channel Parameters

After estimating SP and DP in Section 3, the DoA angles of
the resolvable paths on both elevation and azimuth directions
can be recovered based on the classic MUSIC algorithm.
Define up and vp as

up = χ cos θp, ð25Þ

vp = χ sin θp cos ϕp: ð26Þ

With these two variables, the steering matrix, Aðθ, ϕÞ =
aðθÞbTðθ, ϕÞ, can be rewritten as Aðup, vpÞ = aðupÞbTðvpÞ.
Then, the MUSIC method is used to estimate up and vp.
Then, the DoA angles can be recovered according to (25)
and (26).
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4.1. Estimation on up and vp.Multiplying CL = EfYkYH
k g and

(8) with Sz , we obtain

CLSz = 〠
P

p=1
HpψiH

H
p Sz + σ2Sz , ð27Þ

CLSz = SPΛsSHP Sz + SzΛz1
SHz Sz = σ2Sz: ð28Þ

where ψi = EfxixHi g.
Then, subtracting (27) to (28), there is

HH
p Sz = 0: ð29Þ

Since hp = βðθp, ϕpÞAðup, vpÞ, we can derive the following
equation from (29)

A up, vp
� �HSz = 0: ð30Þ

Based on matrix manipulation, from (30), we can obtain

aH up
� �

sz,k = 〠
M−1

m=0
ejmupsz,k,m = 0, ð31Þ

where sz,k is the kth column of matrix Sz and sz,k,m is the mth
entry of sz,k.

Based on (31), the pseudospectrum with respect to u can
be derived as

f uð Þ = 1

∑M
k=P+1 a up

� �Hsz,k��� ���2 =
1

pH ζð ÞSzSHz p ζð Þ , ð32Þ

where pðζÞ = ½1, ζ,⋯, ζðM−1Þ�T . According to (32), if ζ =
eju, the roots of the denominator would locate on the unit cir-
cle and be the estimation on u since the steering vector, að
upÞ, 1 ≤ p ≤ P, is orthogonal to the noise subspace, Sz . More-

over, SzSHz can be derived based on the estimation on SP in
Section 2, which is given by

SzSHz = I − SPSHP : ð33Þ

Then, inserting (33) into (32), up, ∀1 ≤ i ≤ P, can be esti-
mated by finding the peaks of the pseudospectrum in (32). By
using the same method, we can estimate vp, ∀1 ≤ p ≤ P, with
DP .

4.2. Matching on up and vp. After estimating up and vp in the
above subsection, it needs to match up with the right vp on the
same path since each path has a corresponding pair of eleva-
tion and azimuth DoA angles. To do so, a standard inner
product is defined to match up with vp, which is given by

Pr = <J,K > = tr JHK
� �

, ð34Þ

where J andK are two matrices. The inner product is to calcu-
late the energy of the received signals on certain direction.

Accordingly, with the estimation of up and vp on the above
subsection, the inner products of received signals matrix Y
with the steering matrix Aðui, vjÞ is given by

Pr = <A ui, vj
� �

, Y > = tr AH ui, vj
� �

Y
� �

= tr b vj
� �∗aH uið ÞY� �

= aH uið ÞYb vj
� �∗,

ð35Þ

where i, j = 1, 2, 3⋯ P. Pr will be the maximum value when
i = j. The received signals from P paths make the most contri-
bution to the received energy at the BS. Then, we can match up
with vp by searching the maximum value of Pr. After that,
based on (25) and (26), the DoA angles of each path can be
estimated by the following formulas

θp = arccos
up
χ

� 

, ∀1 ≤ p ≤ P, ð36Þ

ϕp = arccos
vp

χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uP/χð Þ2

q
0B@

1CA, ∀1 ≤ p ≤ P: ð37Þ

4.3. Estimation on βðθ, ϕÞ. Based on (7) and SVD operation,
the received signals Yk is rewritten as

Yk = SΣDH = 〠
P

p=1
β θp, ϕp
� �

A up, vp
� �

xk +W = 〠
P

p=1
ρpspd

H
p :

ð38Þ

where ρp is the pth eigenvalue of Yk; sp and dp are the pth

eigenvectors of SP and DP, respectively. Then, we set Gp = sp
dHp and construct an orthonormal space as follows

<Gi,Gj> = tr GH
i Gj

� �
=

0, if i ≠ j,

1, if i = j:

 
ð39Þ

According to (39), the pth eigenvalue, ρp, can be written as

ρp = <Gp, Yk > = <Gp, 〠
P

p=1
β θp, ϕp
� �

A up, vp
� �

x +W >

= 〠
P

p=1
β θp, ϕp
� �

sHp A up, vp
� �

dpx + sHp Wdp

= 〠
P

p=1
β θp, ϕp
� �

sHp A up, vp
� �

dpx + σ2:

ð40Þ
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Based on (40), define

O = det

sH1 A u1, v1ð Þd1 sH1 A u2, v2ð Þd1 ⋯ sH1 A uP, vPð Þd1
sH2 A u1, v1ð Þd2 sH2 A u2, v2ð Þd2 ⋯ sH2 A uP , vPð Þd2

⋮ ⋮ ⋱ ⋮

sHP A u1, v1ð ÞdP sHP A u2, v2ð ÞdP ⋯ sHP A uP , vPð ÞdP

2666664

3777775

0BBBBB@

1CCCCCA,

ð41Þ

Op = det

sH1 A u1, v1ð Þd1 ⋯ ρ1 − σ ⋯ sH1 A uP, vPð Þd1
sH2 A u1, v1ð Þd2 ⋯ ρ2 − σ ⋯ sH2 AP uP , vPð Þd2

⋮ ⋮ ⋮ ⋱ ⋮

sHP A u1, v1ð ÞdP ⋯ ρP − σ ⋯ sHP A uP , vPð ÞdP

2666664

3777775

0BBBBB@

1CCCCCA:

ð42Þ

Based on the Cramer’s Rule, the amplitude of path i can be
calculated as

β θp, ϕp
� �

=
Op

O
, 1 ≤ p ≤ P: ð43Þ

Then, the complete algorithm flow of the proposed
scheme is given in Algorithm 1.

Algorithm 1: Channel estimation and tracking scheme1:
Receive the kth signal snapshot in the kth time slot, Yk.
Then, the BS updates the covariance matrix, ĈL,k, based
on (18);

2: Estimate and track the eigenvector matrix of the
received signal, SP, based on the PCA algorithm in (19).
Recover DP in the same way;

3: Estimate up and vp, 1 ≤ i ≤ P, based on (32);

4: Pair up, 1 ≤ p ≤ P, with vp, 1 ≤ p ≤ P, based on (35);

5: Estimate θp, 1 ≤ p ≤ P and ϕp, 1 ≤ p ≤ P based on (36)
and (37);

6: Estimate the amplitude corresponding to each path
based on (43);

7: Recover the channel based on (6);

5. Extension for Multiple UTs

In this section, the proposed method is extended to the mul-
tiple UT scenario. When the UTs have the same paths, their
signals cannot be distinguished at the BS. To solve this prob-
lem and reduce the pilot overhead, a user grouping scheme is
proposed in this section.

5.1. Initial DoA Angle Estimation. The initial DoA angles of
different UTs need to be known at the BS before dividing
them into different groups. To reach this goal, the training
process is necessary. Assume that there are I orthogonal
training sequences, denoted as fr1,⋯,ri,⋯,rIg, where ri is
an L-dimensional vector with krik2 = L. During the training
stage, each UT is assigned to a training sequence, and the
received signals at BS can be expressed as

�Y = 〠
i∈U

�Hiri + �W, ð44Þ

where �Y ∈ℂM×N×L, and �Hi ∈ℂM×N×1 is the uplink chan-
nel between the ith UT and the BS; U is the set of UTs. �W
∈ℂM×N×L is the additive white Gaussian noise. The orthogo-
nality of the training sequences can be used to distinguish the
received signals from different UTs. First, multiply (44) with
rHi to get

�Yi =
1
L
�YrHi =

1
L

〠
j∈U

�Hjrj + �W
 !

rHi = �Hi +
1
L
�WrHi : ð45Þ

Based on (45), the transmitted signal from different UTs
can be separated. With the detached signal �Yi, the proposed
channel estimation method can be used to estimate the initial
DoA angles associated with the ith UT. However, the number
of UTs may be more than the number of orthogonal training
sequences, i.e., U > I. To solve this problem, the pilot
sequences can be reused in a time division multiple access
(TDMA) manner. UTs are divided into dU/Ie groups, and
the UTs in each group can reuse the same I orthogonal pilot
sequences in different time slots. Accordingly, the BS can
estimate the initial DoA angles of all UTs.

5.2. Grouping Scheme. After the initial DoA angle estimation,
the UTs can be partitioned into different groups, and the UTs
in the same group can use the same training sequence and
transmit simultaneously.

1: Receive the kth signal snapshot in the kth time slot, Yk. Then, the BS updates the covariance matrix, ĈL,k, based on (18);
2: Estimate and track the eigenvector matrix of the received signal, SP , based on the PCA algorithm in (19). Recover DP in the same
way;
3: Estimate up and vp, 1 ≤ i ≤ P, based on (32);
4: Pair up, 1 ≤ p ≤ P, with vp, 1 ≤ p ≤ P, based on (35);
5: Estimate θp, 1 ≤ p ≤ P and ϕp, 1 ≤ p ≤ P based on (36) and (37);
6: Estimate the amplitude corresponding to each path based on (43);
7: Recover the channel based on (6);

Algorithm 1: Channel estimation and tracking scheme
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The principle of the scheme is to guarantee that the UTs in
the same group do not have overlapping paths. For example,
there are two UTs, u1 and u2 with the DoA angles of θu1 , θu2
and ϕu1 , ϕu2 estimated in the initial stage. If the minimum dif-
ference on the DoA angles between u1 and u2 is bigger than a
threshold denoted as λ, ðmin fjθu1 − θu2 j, jϕu1 − ϕu2 jg ≥ λÞ,
they would be put into the same group. Based on this rule,
the UTs can be designated into different groups, and the
UTs in the same group have different distinguishable paths.
As a result, the UTs in the same group can use the same train-
ing sequence, and their CSI can be estimated and tracked by
Algorithm 1.

Algorithm 2: Grouping Scheme1: Initialization: divide
UTs into dU/Ie groups. Different UTs in the same group
are allocated with different pilot sequences;

2: UTs in the same group transmit the pilots in the same
time slot. The BS distinguishes the received signals from
different UTs;

3: The BS estimates the initial DoA angles of different
UTs;

1: Initialization: divide UTs into dU/Ie groups. Different UTs in the same group are allocated with different pilot sequences;
2: UTs in the same group transmit the pilots in the same time slot. The BS distinguishes the received signals from different UTs;
3: The BS estimates the initial DoA angles of different UTs;
4: If the minimum difference on the DoA angles between any two UTs is bigger than a threshold denoted as λ, they are put into the
same group;
5: The UTs in the same group will use the same pilot sequence.

Algorithm 2: Grouping Scheme
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Figure 2: The Tanimoto coefficient comparison.

Table 1: Matching on up and vp.

<A up, vp
� �

∣ Y > v1 0:6121ð Þ v2 0:3991ð Þ v3 0:3363ð Þ
u1 0:9061ð Þ 18.9036 24.5525 18.9036

u2 0:7071ð Þ 63.1738 15.0303 2.6220

u3 0:1741ð Þ 6.3134 19.4114 22.7863

Table 2: Estimation on up, vp, and βðθp, ϕpÞ.

p 1 2 3

Realθp 25.0000° 45.0000° 80.0000°

Estimation of θp 25.0282° 45.0005° 79.9737°

Realϕp 20.0000° 30.0000° 70.0000°

Estimation of ϕp 19.3768° 30.0451° 70.0308°

Realβ θp, ϕp
� �

0.6000 0.8000 1.0000

Estimation of β θp, ϕp
� �

0.5993 0.8045 1.0011
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4: If the minimum difference on the DoA angles between
any two UTs is bigger than a threshold denoted as λ, they
are put into the same group;

5: The UTs in the same group will use the same pilot
sequence.

With the grouping scheme proposed in Algorithm 2,
the channel estimation scheme proposed in Algorithm 1
can be extended to the multi-UT scenario. First, the UT
grouping scheme is executed at the BS. Then, the UTs in
the same group will use the same pilot sequence and
transmit simultaneously. After the BS receives signals from
the UTs in the same group, it updates the covariance
matrix based on (18). Then, it estimates the channel state
information based on Algorithm 1 proposed in Section 4.
It is noteworthy that the BS treats the UTs in the same
group as one “virtual UT.” Since there exists a certain
gap in DoA angles among UTs in the same group, the
paths associated with their channels can be distinguished
at the BS. Based on the initial DoA estimation, the BS
can identify to which the UT paths belong. When the BS
cannot track the CSI accurately, it needs to rerun the
grouping scheme in the algorithm. To guarantee the chan-
nel estimation and tracking accuracy, the BS may run
Algorithm 2 after certain time slots in practice.

6. Numerical Results

In this section, we provide the numerical results to demon-
strate the superiority of the proposed scheme. In the simula-

tion setup, the number of antennas deployed at the BS on
both elevation and azimuth directions is 64 (M =N = 64),
and the interantenna spacing, d, is set to be λ/2. In the
first scenario, we assume that there is a single UT under
coverage of the BS and the received SNR is 10 dB. More-
over, we assume that the propagation from the UT to BS
goes three resolvable paths. The elevation and azimuth
angles corresponding to three paths are (25∘, 45∘, 80∘)
and (20∘, 30∘, 70∘), respectively.

6.1. The Estimation Accuracy and Convergence Speed. First, to
evaluate the estimation accuracy, a Tanimoto coefficient is
defined which is given by

ε kð Þ = 1 −
1
P
〠
P

i=1

t1,i,k · si
t1,i,k
�� ��2 + sik k2 − t1,i,k · si

, ð46Þ

where si is the ith eigenvector of matrix SP , and t1,i,k is the ith
eigenvector of the estimation matrix SP at the kth iteration
step. Tanimoto coefficient defined in (46) implies that if ε
tends to be 0, the estimation approaches to the real SP . To
demonstrate the superiority of the optimal step size derived
in Section 3.4, the Backtracking Line Search (BLS) method
proposed in [25] is used for comparison. From Figure 2, we
can observe that ε achieved by the PCA-based algorithm
and BLS algorithm converges to 0, which indicates the avail-
ability of these algorithm on estimation of eigenvector
matrix. Meanwhile, during the first 400 iterations, the ε
achieved by the PCA-based algorithm is less than the BLS

0

MSE performance of elevation angles estimation by proposed scheme
MSE performance of azimuth angles estimation by proposed scheme
MSE performance of elevation angles estimation by BLS algorithm
MSE performance of azimuth angles estimation by BLS algorithm
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Figure 3: The MSE on DoA estimation.
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algorithm. The result indicates that the proposed scheme has
the high accuracy under the same iterations. From another
point of view, the proposed scheme has the fast convergence
speed on estimation of SP.

After recovering the eigenvectors, the intermediate vari-
ables, up and vp, are estimated and paired according to the
proposed scheme. To demonstrate the match process clearly,
the inner products of the received signal matrix on the steer-
ing matrix are listed in Table 1, where the steering vectors are
constructed by the estimated up and vp.

From Table 1, we can match up with the right vp by find-
ing the maximum value. Consequently, u1, u2, and u3 should
be paired with v2, v1, and v3, respectively. After pairing, the
estimation of DoA angles and path amplitudes can be
obtained through (36), (37), and (43), respectively, which is
listed in Table 2, where the index p is to indicate the pth path.

From Table 2, we can observe that the estimations on
both θp, ϕp, and βðθp, ϕpÞ are close to the real values, which
verifies the effectiveness of the proposed scheme. Moreover,
since the ϕp is determined by both up and vp, the estimation
error on up and vp would affect the estimation accuracy on
ϕp. Therefore, the estimation accuracy of the azimuth angles,
ϕp, is less than that on the elevation angles, θp.

6.2. The Impact of Received SNR on the DoA Estimation. To
reveal estimation performance with different SNRs, the nor-
malized mean square error (MSE) on DoA angle estimation
is demonstrated in this section. The MSE is defined as

MSEθ =
1
P
〠
P

p=1

∣θp − θp ∣
θp

 !
, ð47Þ

MSEϕ =
1
P
〠
P

p=1

ϕp − ϕp

��� ���
ϕp

0@ 1A: ð48Þ

Figure 3 illustrates the MSE performance on DoA angle
estimation. It can be observed that the estimation MSE on
DoA angles reduces as the received SNR at the BS increases.
Figure 3 also compares the proposed scheme with the BLS
algorithm with respect to DoA angle estimation MSE. We
can observe that the proposed scheme outperforms the BLS
algorithm on the estimation accuracy. Since the estimation
on azimuth DoA angle depends on both the estimated up
and vp, the estimation accuracy on the elevation DoA angle
is higher than that on the azimuth DoA angle.
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6.3. Tracking Performance. To verify the tracking ability of
the proposed scheme, the SVD-based channel estimation is
simulated for comparison, where the SVD operation is exe-
cuted periodically to update the channel estimation. Assum-
ing that the elevation angle changes from 45° to 53°, and
azimuth angles change from 30° to 22°, with the changing
rate of 0.02°/stepsize.

As shown in Figure 4, the SVD-based channel estimation
method cannot track the change on the channel even though
it may estimate channel with high accuracy in some times.
On the other hand, the channel estimation based on Algo-
rithm 1 is very close to the perfect one all the time even when
the channel changes. Therefore, this simulation result con-
firms the tracking ability on the channel estimation of
Algorithm 1.

6.4. The Effectiveness of Grouping Scheme. For the sake of
illustration on the effect of the UT grouping scheme, a mul-
tiple UT scenario is considered in this section. The elevation
and azimuth angles corresponding to the distinguish paths
for 10 different UTs are listed in Table 3. Assuming that there
are only 2 orthogonal pilot sequences and set λ = 5°. First, the
UTs are assigned to 5 groups. UTs in 5 groups will reuse the 2
orthogonal pilot sequences in a TDMA manner, and the BS
can obtain the initial DoA angle estimations of UTs. After-
wards, based on the grouping scheme (GS) in Algorithm 2,

UT1, UT2, UT3, UT4, and UT7 should be put into one
group, and the remaining UTs should be put into another
group. To better demonstrate the effectiveness of GS, another
random grouping scheme is adopted for comparison, where
the UT1 to UT5 are put into the same group, and the UT6
to UT10 are put into another group. Accordingly, the estima-
tion on DoA angles is shown in Figure 5.

In Figure 5, the pentagram is used to depict the esti-
mation on DoA angles, the red circle is used to represent
the real DoA angles, and the pink dotted circle is used as
an indicator. From Figure 5(a), we can observe that the BS
can distinguish all paths from different UTs when the pro-
posed GS in Algorithm 2 is adopted. Even the real DoA
angles from the two UTs are very close, they can be differ-
entiated by the BS. On the contrary, in Figure 5(b), the
pink circle with the dotted line shows that two overlapped
circles only contain one corresponding pentagram, which
means the system is failed to distinguish the paths
between UT1 and UT5. Therefore, when multiple UTs
are present in the system, the GS is necessary for the BS
to achieve accurate CSI via the proposed channel estima-
tion and tracking scheme.

6.5. Multiple UTs Tracking. Due to the mobility of UTs,
tracking the CSI accurately needs to run the GS at the BS
periodically. Therefore, the periodicity to execute the GS at
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Figure 5: (a) When the proposed grouping scheme in Algorithm 2 is adopted, all paths from different UTs can be distinguished at the BS. (b)
When the random grouping scheme is adopted, the overlapping paths from different UTs cannot differentiated.

Table 3: Add caption.

The number of UT 1 2 3 4 5 6 7 8 9 10

The corresponding
elevation and azimuth
angles (θp,ϕp)

(25°, 20°) (45°, 30°) (80°, 70°) (37°, 82°) (60°, 38°) (75°, 43°) (16°, 8°) (86°, 53°) (17°, 32°) (53°, 28°)

(55°, 60°) (65°, 10°) (14°, 50°) (50°, 25°) (25°, 19.5°) (31°, 48°) (70°, 55°) (69.5°, 60°) (48°, 14°) (27°, 66°)
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the BS is the key to guarantee tracking accuracy. Without loss
of generality, the scenario with two UTs is simulated in this
section. In the simulation setup, we assume that the signal

transmission from each UT to the BS will go through the
same path. Moreover, different initial DoA angles and step
size are simulated for comparison.
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Figure 7: The impact of initial DoA angle on the tracking accuracy.
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Accordingly, the period to execute Algorithm 2 is
denoted as k time slots. To evaluate the effect of the period
on the tracking accuracy, a coefficient, denoted as τ, is
defined as

τ kð Þ = 〠
U

i=1
〠
J

j=1

bθ kð Þi,j − θ kð Þi,j
��� ��� + bϕ kð Þi,j − ϕ kð Þi,j

��� ���
J

, ð49Þ

where bθðkÞi,j and bϕðkÞi,j are the estimations of elevation
and azimuth angles of the ith UT in the jth time slot, respec-
tively; J is the total running time slots, which is set to J = 600.
τðkÞ implies the average estimation error on the DoA angles
on both elevation and azimuth directions.

The tracking accuracy with different periods is illustrated
in Figures 6 and 7, which indicates that optimal GS period is
directly related to the DoA angle changing rate and the initial
DoA angle difference on elevation direction associated to dif-
ferent UTs. We can observe that the tracking accuracy
decreases when the period, k, increases. Optimal period for
GS is inversely proportional to the changing rate and propor-
tional to the initial DoA angle difference on elevation direc-
tion. Moreover, it is noteworthy that the curve with the
diamond marker is stationary even if the difference in the azi-
muth DoA angles between two UTs is small. Actually, the
difference in the azimuth angles has a little effect on the
tracking accuracy when the elevation angles of UTs are
distinguishable.

7. Conclusion

In this paper, we have proposed a CSI estimation and track-
ing method for millimeter wave massive MIMO system. We
have illustrated the CSI estimation from two aspects: compu-
tational complexity and pilot contamination. First, to reduce
the computational complexity, a PCA-based algorithm is
applied to recover the eigenvectors of the received signal at
the BS. Then, with estimated eigenvectors, DoA angles can
be estimated by using the MUSIC algorithm and inner prod-
ucts operation. To reduce the pilot overhead, we have utilized
the grouping method to divide UTs into different groups.
Then, UTs in the same group can share the same pilot
sequence and transmit simultaneously without causing inter-
ference. In order to express the convergence speed of the pro-
posed algorithm, a BLS algorithm is used for comparison.
Compared to this algorithm, the proposed algorithm has fas-
ter convergence. Meanwhile, most existing methods are one-
time estimation schemes, which need to be rerun after the
channel coherence time, but the proposed method possesses
good tracking behavior. The numerical simulations are estab-
lished to verify the superior performance of the proposed
method.

Notations

ðXÞT: The transpose of a matrix X
ðXÞ∗: The conjugate of a matrix X
ðXÞH: The Hermitian of a matrix X

Ef·g: The statistical expectation
det ðXÞ: The determinant of matrix X
trðXÞ: The trace of matrix X
k·k: The Euclidian norm
d·e: The maximum integer operator
I: The identity matrix
ℂ: The complex domain
ε: The Tanimoto coefficient
θ, ϕ: The DoA angle
Y: The received signals
H: The channel matrix
C: The covariance matrix
<J,K > : The standard inner product of two matrix J and K.
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