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Recently, fresh agricultural cold-chain logistics have been greatly developed with the increasing needs of people’s life. Reducing
costs of cold-chain distribution has become the main object of loss control in logistics enterprises. The objective of this
research is to find a set of optimal routes that minimize the total loss, including fuel cost, refrigeration cost, soft time window
penalty cost, and cargo damage cost over transit time. In this paper, the definition and model construction of vehicle routing
problem (VRP) with multiobjective minimum lost are introduced first. Then, an ant colony optimization (ACO) algorithm
combined with Pareto local search (PLS) is put forward to solve the minimum loss model. In order to avoid the influence of
complex road conditions during distribution, the distance matrix and the transit time matrix are both derived from the
recommended navigation road based on E-map API. At last, a compare experiment between the traditional method and our
proposed method is performed. The results indicate that our method has strong applicability and potential advantages in cold-
chain logistic and has important practical significance and application value.

1. Introduction

According to relevant media reports, rotting fruit, vegeta-
bles, and other foods transported by truck alone are worth
about 70 billion yuan each year, causing a huge economic
waste. Agricultural products especially for fruit, vegetables,
fish, meat, etc. require strictly limited temperature, humid-
ity, and time in the process of transportation and storage.
As a branch of the logistics industry, cold-chain logistics
provides a guarantee for the safe transportation of fresh agri-
cultural products. In the process of transportation from cold
storage to customers, a complete cold-chain logistics realizes
the temperature control of the whole process of refrigerated
and frozen food, as well as the closed environment, storage,
and transportation during loading and unloading of goods.
By selecting the optimal path in the process of cold-chain
logistics transmission, the circulating rate of fruits and vege-
tables, meat, and aquatic products is reduced; the waste of
resources and the cost of logistics costs are reduced too.

The vehicle routing problem (VRP) introduced by Dantzig
and Ramser [1] plays a central role in the optimization of
distribution networks.

Recently, the loss problem of cold-chain distribution
has attracted the attention of many scholars and experts.
For distribution problem of fresh agricultural products,
fuel cost, refrigeration cost, cargo damage cost, and soft
time window penalty cost have become the important
components of loss control in distribution companies [2].
Li et al. [3] proposed a low-carbon model for fresh food
and a genetic simulated annealing algorithm to solve the
model in the cold-chain distribution. Yao et al. [4] pro-
posed a minimizing fuel consumption solution to time-
dependent VRP with time window. Kim et al. [5] pro-
posed a Markov decision process method to solve a
dynamic VRP (DVRP) model with nonstationary transit
times under actual traffic congestion. Chen et al. [6] devel-
oped a hybrid heuristic algorithm including harmony
search and neighborhood descent to solve DVRP with
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time window. Abidi et al. [7] proposed a GA with a sim-
ple heuristic to solve a variant of RVPR (Rich VPR) with
time widows and dynamically changing orders. Dongdong
and Yinzhen [8] proposed a green multitype VRP with time
windows to reduce the wastes of fuel consumption and car-
bon emission and use an improved tabu search algorithm
to solve the G-MVRPTW. Fan et al. [9] pointed out that
in fresh agricultural product cold-chain logistics, the total
costs are composed of five kinds: fixed, transportation,
damage, penalty, and energy consumption. Fang and Ai
[10] proposed a mathematical model with soft time window
penalty cost, refrigeration cost, cargo damage cost, and a
hybrid ant colony algorithm to minimize the total costs.
The DVRP mainly deal with the time-variation information
of customer demands and road conditions. To share the
traffic information and classify traffic conditions, Big Data
and classification techniques are used in logistics and trans-
portation. If the drivers receive the information of the traf-
fic congestion or poor weather, they can change their way
to reduce the costs and save time. Dimensionality reduction
must be performed first in Big Data transmitted and stored
process. Thippa et al. [11] proposed a machine learning
(ML) algorithm with PCA to reduce the dimension of Big
Data when the data sets are high. Gadekallu et al. [12] have
studied the hybrid PCA-whale optimization algorithm to
extract features and used a deep neural network to classify
the diseases of tomato. Guha et al. [13] proposed an
ANN-based content classification in combination with n
-grame TF-IDF feature descriptor to classify the documents
with accurate, sensitive information. The ant colony opti-
mization (ACO) proposed by Colorni et al. [14] has been
widely used in solving NP-hard vehicle routing problems.
Many scholars used ACO algorithms to solve multiobjec-
tive combinatorial optimization problems [15–19]. These
papers considered the costs of fuel, refrigeration, cargo
damage, and delay simultaneously. However, their studies
are not comprehensive enough in factors affecting the loss,
such as the cost of energy consumption and rotting con-
sumption when the door of compartment is opening.

We construct a total cost model, including soft time win-
dow penalty cost, fuel cost, refrigeration cost in transit and
during unloading, and cargo damage cost in transit and dur-
ing unloading. In our model, to take into account the actual
traffic condition, the distance matrix and the transit time
matrix are both archived from the navigation functions
based on E-Map API. The traditional heuristic algorithm
ACO has some limitations, such as easy stagnation in the
initial stage and slow search speed. We perform an ACO
algorithm with Pareto local search (PLS) on ants to obtain
the uniform Pareto-optimal frontier and keep the diversity
of Pareto solution set.

The paper is organized as follows. Section 1 introduces
the definition and structure of VRP for cold-chain logistics.
Section 2 constructs a minimum cost model based on actual
traffic conditions. Then, an improved ACO algorithm with
PLS is presented in Section 3. In Section 4, a compare exper-
iment is performed to indicate our proposed model and the
improved method. At last, we make a conclusion of our con-
tributions in Section 5.

2. Problem Description

A cold-chain supplier has a warehouse with a certain num-
ber of transportation vehicles that delivers a variety of fresh
products to a certain number of customers. The capacity of
the transportation vehicles is limited, and the vehicles are
all the same type with a total capacity at the starting point.
The object of vehicle routing problem is to distribute goods
to each customer with correct goods, limited time, minimum
cost, and so on. VRP with time window means that a vehicle
has to visit a customer within a certain time window. So, the
service time, the transit time, and the total time must be cal-
culated when dealing with the VRP. The mathematical
model of VRPTW in cold-chain distribution is defined as
follows [20].

There are K transportation trucks in this distribution
center. The maximum load and the maximum transit time
of per vehicle are Q and T. The kth distribution vehicle is
responsible for path k. N is the total customers. The needs
and the service time of customer point i are qi and ui; tij
means the delivery time from customer points i to j. xki is a
0-1 variable, and xki = 1 means the point i in the path k. xkij
is a 0-1 variable, and xkij = 1 means that the kth distribution
vehicle travels from i to j.

3. Model

Minimizing the loss cost is the target of this paper. There-
fore, the following paper introduces the structure of the loss
cost of cold chain.

Figure 1: Two points on the E-map.

Figure 2: The output of navigation result.
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3.1. Distance and Transit Time Analysis. In traditional
methods, the distance between two points is achieved by
Euclidean distance formula and the transit time is achieved
by the distance divided by assumed average speed. But, the
actual transit time is influenced greatly by road congestion,
traffic accidents, traffic control, raining, snowing, etc. Col-
lecting real-time traffic data will result in large amounts of
data, and Big Data analysis technology should be considered.

In our literature, the navigation function of E-map is
used to avoid the mentioned shortcomings. The distance
matrix and the transit time matrix under actual traffic
conditions among customer points (including the distribu-
tion center) are derived from the E-map public plat-
form [21].

As Figure 1 shows, there are two points with their lati-
tudes and longitudes on the E-map.

Table 1: Parameter setting.

Parameter of the symbol Meaning Value
Parameter of
the symbol

Meaning Value

K The total vehicles 4 p Unit price of goods 5

N The total customer points 20 m Number of ants 50

Q Full load of one vehicle 2000 n Number of iterations 60

C11 Penalty coefficients earlier than TW 2.0 Alpha The pheromone important factor 1

C12 Penalty coefficients later than TW 3.0 Beta Heuristic function important factor 3

C21 Unit fuel cost of no load 2.5 Rho The pheromone factor 0.85

C22 Unit fuel cost of full load 3.0 k1 Positive constant 0.75

C31 Unit refrigeration cost in transit 2.0

C32 Unit refrigeration cost in unloading 2.5

C41 Coefficient of damage in transit 0.01

C42 Coefficient of damage in unloading 0.015

Table 2: The data of the distribution center and customers.

Number of
customers

Latitude and longitude on E-map The demand
of

customer (kg)

Starting time
(min)

Ending time
(min)

Server time
(min)

Latitude
(easting)

Longitude
(northing)

0 116.4843 39.8768 0 0 0 0

1 116.486081 39.801535 300 912 967 15

2 116.43287 39.851657 1100 825 870 30

3 116.571474 39.857011 125 65 146 10

4 116.51774 39.86957 100 727 782 10

5 116.258165 39.896287 200 15 67 10

6 116.598001 39.920533 150 621 702 10

7 116.475892 39.92811 150 170 225 10

8 116.659393 39.9282 450 255 324 20

9 116.110548 39.943414 300 534 605 20

10 116.50121 39.967727 100 357 410 10

11 116.450433 39.971126 950 448 505 30

12 116.408206 39.973734 125 652 721 10

13 116.339988 39.978354 150 30 90 10

14 116.468832 40.006183 150 567 620 10

15 116.584485 40.007985 550 384 429 20

16 116.601421 40.054617 150 475 528 10

17 116.439297 40.057803 100 99 148 10

18 116.670363 40.140651 150 179 254 10

19 116.226626 40.228101 400 278 345 20

20 116.653284 40.332406 300 10 73 20
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As Figure 2 shows, the distance and the transit time
between the two points are shown by the navigation func-
tion of the E-map platform.

In our study, tij represents transit time between cus-
tomer i and customer j, and dij is the distance between cus-
tomer i and customer j. As abovementioned, tij and dij are
both achieved from the navigation result based on E-map
API.

3.2. Loss Cost Target Construction

3.2.1. Soft Time Window Penalty Cost. Each customer has
different numbers of good needs and a soft time window.
Penalty cost will be incurred if the vehicle arrives beyond
the time window boundary. The service time of each cus-
tomer point is uiði = 1, 2,⋯,NÞ, ½Eti, Lti� is the range of
the time window of customer point i, C11 is the penalty coef-
ficient when vehicle ki arrives at customer i earlier than Eti,
and C12 is the penalty coefficient when vehicle ki leaves from

customer i later than Lti. The arrival time of vehicle k at cus-
tomer i is Tki. According to the analysis above, the penalty
cost of cold chain can be defined as the following:

C1 = C11 〠
K

k=1
〠
N

i=1
xki max Eti − Tki, 0ð Þ

" #

+ C12 〠
K

k=1
〠
N

i=1
xki max Tki + ui − Lti, 0ð Þ

" #
,

s:t: Tki ≥ Tk0 + t0i,
Tk i+1ð Þ ≥ Tki + ti i+1ð Þ + ui:

ð1Þ

3.2.2. Fuel Cost. The fuel consumption of the distribution
vehicle is inevitable for completing the distribution task.
We assume that the fuel cost is proportional to the load of
the vehicle pert unit distance. Let Qk be the load of the k
vehicle and Pk be the load rate of the kth vehicle.

Qk = 〠
n

i=1
xki qi,

Pk =
Qk

Q
:

ð2Þ

Sets C21 and C22 represent no load and full load fuel con-
sumption costs per unit distance of the distribution vehicle.
Ck
2 means the fuel consumption cost per unit distance of

the kth vehicle.

Ck
2 = C21 + pk C22 − C21ð Þ: ð3Þ

The total cost of fuel consumption C2 can be expressed
as

C2 = 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkijdij C21 + Pk C22 − C21ð Þð Þ: ð4Þ

Initialize the coefficient variables and pheromone;
for iteration 1,…,M{
Initialize a taboo table and a start position for each ant.
for ant, 1,…,N{
Select the next node according to rules
The selected node is stored in the taboo table
If all nodes are stored in taboo tables, the iteration is completed, break;
The total cost is calculated
The local pheromone is updated
}
The global pheromone is updated
All ants’ total costs are compared
The current optimal solution is stored
}
The process is stopped and the current path with the shortest cost is output.

Algorithm 1
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Figure 3: Distribution of warehouse and customers in the XY
system.
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3.2.3. Refrigeration Cost. The temperature of the cold-chain
logistic must be maintained at a certain low level to keep
the freshness of goods. The refrigeration function of vehicles
must be operated to achieve the required temperature, which
causes the refrigeration cost immediately.

(1) Refrigeration cost in transit

The refrigeration cost generated by maintaining the
required low temperature per unit time in transit is C31;
the total cooling cost C1

3 in transit can be expressed as

C1
3 = 〠

K

k=1
〠
N

i=1
〠
N

j=1
xkijtijC31: ð5Þ

(2) Refrigeration cost during unloading

Opening the door of the compartment will cause the cool
air inside to flow out and the hot air from outside to flow in.
To maintain the temperature inside, more energy will be
consumed. C32 is set to be the cooling cost per unit time dur-
ing opening the door, and the total refrigeration cost of
unloading C2

3 is

C2
3 = 〠

K

k=1
〠
N

i=1
xki uiC32: ð6Þ

C3 represents the total cooling cost, which consists of the
total cooling cost in transit, and the total cooling cost of
unloading can be expressed as

C3 = 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkijtijC31 + xki uiC32

 !
: ð7Þ

3.2.4. Cargo Damage Cost. The most cargo of the cold chain
is fresh goods; with the increase of transit time even in low
temperature, the growth of microorganisms will happen.
When opening the door of compartment during unloading
process, the temperature inside will be unstable which
results in the damage of fresh goods more significantly. As
mentioned above, p is the unit price of goods, and Qki is
the load of the kth vehicle when it leaves from point i.

Figure 4: Geographic locations of warehouse and customers in E-
map.

......
var output_t = “The transit time:”;
var output_d = “The traveling distance:”;
var distance_time_search = function (customerPoints){.
if (vehicle_transit.getStatus() != BMAP_STATUS_SUCCESS){.
return ;
}
var t_d_result = customerPoints.getPlan(0);
travel_time += t_d_result.getDuration(true) + “\n”; //get transit time of two points.
trave_distance+= t_d_result.getDistance(true)+”\n”; //get travel distance of two points.
}
var vehicle_transit = new BMapGL.DrivingRoute(map, {renderOptions: {map: map},
onSearchComplete: distance_time_search;
}});
for(var i=0;i<=NumberOfCustomers;i++)
for( var j=i+1;j<= NumberOfCustomers;j++)
{
var start=new BMapGL.Point(vertex[i][0], vertex[i][1]);
var end=new BMapGL.Point(vertex[j][0], vertex[j][1]);
vehicle_transit.search(start, end);
}
......

Algorithm 2
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Table 3: Transit time matrix under actual traffic conditions (minutes).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 22 25 25 26 35 13 16 24 43 25 13 18 23 25 21 24 15 43 46 40

1 22 0 17 19 28 27 21 26 38 17 28 34 51 34 37 32 43 40 59 58 55

2 25 17 0 25 20 26 32 30 18 43 33 28 35 34 38 37 45 63 42 61 61

3 25 19 25 0 16 24 24 14 26 36 34 28 43 57 34 27 51 55 53 41 32

4 26 28 20 16 0 9 23 24 21 22 28 38 52 35 29 39 36 29 57 51 53

5 35 27 26 24 9 0 26 28 35 27 50 42 33 51 36 50 65 49 54 49 71

6 13 21 32 24 23 26 0 13 27 20 26 25 33 31 38 41 19 59 53 35 50

7 16 26 30 14 24 28 13 0 9 23 17 14 24 25 20 27 28 48 47 42 49

8 24 38 18 26 21 35 27 9 0 24 27 32 42 35 24 63 32 37 41 58 57

9 43 17 43 36 22 27 20 23 24 0 39 40 46 46 51 60 63 42 48 69 78

10 25 28 33 34 28 50 26 17 27 39 0 18 29 23 25 34 26 33 51 48 49

11 13 34 28 28 38 42 25 14 32 40 18 0 8 16 10 23 40 20 26 34 38

12 18 51 35 43 52 33 33 24 42 46 29 8 0 16 13 22 34 26 43 24 40

13 23 34 34 57 35 51 31 25 35 46 23 16 16 0 22 34 36 36 32 52 50

14 25 37 38 34 29 36 38 20 24 51 25 10 13 22 0 18 24 35 39 26 37

15 21 32 37 27 39 50 41 27 63 60 34 23 22 34 18 0 19 32 49 36 49

16 24 43 45 51 36 65 19 28 32 63 26 40 34 36 24 19 0 25 31 45 46

17 15 40 63 55 29 49 59 48 37 42 33 20 26 36 35 32 25 0 43 38 41

18 43 59 42 53 57 54 53 47 41 48 51 26 43 32 39 49 31 43 0 33 45

19 46 58 61 41 51 49 35 42 58 69 48 34 24 52 26 36 45 38 33 0 42

20 40 55 61 32 53 71 50 49 57 78 49 38 40 50 37 49 46 41 45 42 0

Table 4: The distance matrix derived from the E-map navigation function (KM).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 22 13.6 20.7 17.6 6.5 19.2 5.6 11.3 21.2 31.6 16.8 11.4 7.2 17.4 41.6 22 14.2 53.4 41.6 35.1

1 22 0 9.1 12.7 11.3 21 19.5 26.6 13.1 29.5 45.4 23.5 27.8 32.7 37.9 27.3 39.5 35.4 62.2 86.4 64.7

2 13.6 9.1 0 12.3 19.1 11.7 22.4 22.9 6.5 29.3 16.2 40 36.3 27 27 15.4 37.2 55.6 67.3 34 69.1

3 20.7 12.7 12.3 0 9.8 8.8 15.2 18.2 10.3 24.6 39.6 27.4 21.5 24.6 29.8 31.5 55.6 34.1 52.5 74.2 59.1

4 17.6 11.3 19.1 9.8 0 3.8 16.9 10.5 17.9 19 28.9 18.7 33.6 26.1 49.6 21.9 25.7 28.3 53.1 79.8 55.3

5 6.5 21 11.7 8.8 3.8 0 22.6 24.1 26.8 32.2 17.8 37.5 33.9 19 29.8 45 57.8 33 74.8 44.6 60.5

6 19.2 19.5 22.4 15.2 16.9 22.6 0 6 17.1 11.5 21.9 32.3 24.4 20.6 12.3 17.6 64.4 55.6 30.4 31.3 64.1

7 5.6 26.6 22.9 18.2 10.5 24.1 6 0 18.3 8.2 11.9 16.9 6 13.5 21 21.4 57.2 40.9 18.5 44 38

8 11.3 13.1 6.5 10.3 17.9 26.8 17.1 18.3 0 21.4 26.2 28.7 14.9 36.6 26.5 18.7 25.4 59.8 34.4 52.4 65.2

9 21.2 29.5 29.3 24.6 19 32.2 11.5 8.2 21.4 0 29.4 32.6 55.4 42.1 36.9 40.2 85.5 44.6 41.9 86.9 75

10 31.6 45.4 16.2 39.6 28.9 17.8 21.9 11.9 26.2 29.4 0 17.7 12.5 27.8 26.9 17 24.6 81.2 27.2 52 59.4

11 16.8 23.5 40 27.4 18.7 37.5 32.3 16.9 28.7 32.6 17.7 0 5.8 6.1 11.6 24.2 13.2 26.7 36.8 51.1 38

12 11.4 27.8 36.3 21.5 33.6 33.9 24.4 6 14.9 55.4 12.5 5.8 0 11.7 22.1 9.3 7.7 26.6 38.4 35.7 52.7

13 7.2 32.7 27 24.6 26.1 19 20.6 13.5 36.6 42.1 27.8 6.1 11.7 0 14 28.4 37.1 59 44.7 21 32.9

14 17.4 37.9 27 29.8 49.6 29.8 12.3 21 26.5 36.9 26.9 11.6 22.1 14 0 8.7 21.2 16.6 37.6 48 33.7

15 41.6 27.3 15.4 31.5 21.9 45 17.6 21.4 18.7 40.2 17 24.2 9.3 28.4 8.7 0 8.5 16.4 23.3 57.3 50.5

16 22 39.5 37.2 55.6 25.7 57.8 64.4 57.2 25.4 85.5 24.6 13.2 7.7 37.1 21.2 8.5 0 18.8 51.9 17.6 50.3

17 14.2 35.4 55.6 34.1 28.3 33 55.6 40.9 59.8 44.6 81.2 26.7 26.6 59 16.6 16.4 18.8 0 36 44.1 29.7

18 53.4 62.2 67.3 52.5 53.1 74.8 30.4 18.5 34.4 41.9 27.2 36.8 38.4 44.7 37.6 23.3 51.9 36 0 25 47.5

19 41.6 86.4 34 74.2 79.8 44.6 31.3 44 52.4 86.9 52 51.1 35.7 21 48 57.3 17.6 44.1 25 0 56.3

20 35.1 64.7 69.1 59.1 55.3 60.5 64.1 38 65.2 75 59.4 38 52.7 32.9 33.7 50.5 50.3 29.7 47.5 56.3 0
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(1) Cost of cargo damage in transit

C41 is given as the loss coefficient of goods per unit
weight per unit time in transit; the total cost of cargo damage
in transit is as follows:

C1
4 = 〠

K

k=1
〠
N

i=1
〠
N

j=1
xkijtijpQkiC41: ð8Þ

(2) Cost of cargo damage during unloading

During unloading at a customer point, the door of the
compartment is open and the cost of cargo damage will
increase obviously. Let the cargo damage coefficient of goods
per unit weight per unit time when unloading be C42; the
cost of cargo damage during unloading can be expressed as

C2
4 = 〠

K

k=1
〠
N

i=1
xki uipQkiC42: ð9Þ

The total cost of damage is

C4 = pQki 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkijtijC41 + xki uiC42

 !
: ð10Þ

In conclusion, the mathematical model of minimum loss
target can be expressed as

min Z = C1 + C2 + C3 + C4: ð11Þ

3.3. Mathematical Model of Minimum Loss Analysis.
According to the above analysis, the minimum loss model

of the cold-chain distribution problem is as follows:

min Z = C11 〠
K

k=1
〠
N

i=1
xki max Eti − Tki, 0ð Þ

" #

+ C12 〠
K

k=1
〠
N

i=1
xki max Tki + ui − Lti, 0ð Þ

" #

+ 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkij C21 + Pk C22 − C21ð Þð Þ

+ 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkijtijC31 + xki uiC32

 !

� pQki 〠
K

k=1
〠
N

i=1
〠
N

j=1
xkijtijC41 + xki uiC42

 !

ð12Þ

s:t: xki =
1, point i is serviced by carK ,
0, other,

(
ð13Þ

xkij =
1, vehicleK travels frompoint i to point j,
0, other,

(
ð14Þ

〠
K

k=1
xki = 1, ∀i ∈N , ð15Þ

〠
N

i=1
xki qi ≤Q, ∀k ∈ K , ð16Þ

〠
N

j=1
xk0j = 〠

N

i=1
xki0 ≤ 1, ∀k ∈ K: ð17Þ

Equation (12) is the objective optimization function
which is aimed at finding the minimum total cost during
the whole distribution process. Equation (13)–Equation
(17) are the constraint conditions, where Equation (13) is a
0-1 variable; the value 1 means the given customer is
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Figure 5: The optimal path plan based on the traditional method.
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serviced by the given vehicle. Equation (14) is a 0-1 variable
too; the value 1 means the given route is travelled by the
given vehicle. Equation (15) means each customer point is
serviced by one and only one vehicle for distribution. Equa-
tion (16) means that the total demand served by the vehicle
cannot exceed its maximum load. Equation (17) means that
the vehicle can only start or end once.

4. Ant Colony Optimization Algorithm

4.1. Ant Colony Optimization Algorithm. The ant colony
optimization (ACO) algorithm with parallelism, positive
feedback, and strong robustness is used to solve the NP-
hard and highly constrained problem. In the 1990s, Italian
scholars Dorigo and Maniezzo found that ants will release
a certain amount of substance called pheromone in the path
when they are searching for food. When they need to choose
a path, they prefer to choose the path with high concentra-
tion of pheromone. At last, the route with the highest con-
centration will be selected as an optimist route between
their home and the food source.

The ACO algorithm is defined as follows:

pkij

ταij tð Þ ⋅ ηβij tð Þ
∑s∈allowedkτ

α
is tð Þ ⋅ ηβis tð Þ

, if j ∈ allowedk,

0, otherwise,

8>><
>>:

τij t + nð Þ = ρ ⋅ τij tð Þ + Δτij,

Δτij = 〠
m

k=1
Δτij,

ð18Þ

where pkij is probability of ant k transferring from point i to
point j at time t; ηijðtÞ is the heuristic function, and β is
the heuristic function important factor; τijðtÞ means the
pheromone concentration on the path at time t, and α is
the pheromone important factor. allowedk represents points
that ant k is allowed to select in the next step; τijðt + nÞ is the
pheromone update over time; ρ is the pheromone factor;
and Δτkij represents the pheromone enhancer.

The rough process of the algorithm is as follows:

4.2. Combining ACO Algorithm with PLS. We applied Pareto
local search (PLS) in our paper. After finding a path, PLS is
used to further optimize the path. PLS proposed by Paquete
et al. is a heuristic algorithm for tackling NP-hard multiobjec-
tive combinatorial optimization problems in the Pareto sense
[22]. Pareto dominance defines a partial order on the set of
feasible solutions. The goal when tackling the multiobjective
problems in the Pareto sense is to find the set of Pareto-
optimal solutions. The weak component-wise ordering is used
as a mutually nondominated criterion in PLS. Let a solution
s ∈ A and its neighborhood s′ ∈NðsÞ. If each s′ in NðsÞ is

Table 5: Distribution paths of 4 vehicles based on the traditional method.

Vehicles The route of each vehicle The realistic delivery on E-map (minutes)

Fist vehicle 0 − >20 − >3−>7−>18−>8−>19−>10−>4−>0 334

Second vehicle 0 − >6 − >12−>2−>1−>0 120

Third vehicle 0 − >15 − >16−>11−>9−>0 163

Fourth vehicle 0 − >5 − >13−>17−>14−>0 182

The total time 799

The total cost 4504.5
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Figure 7: The optimal path plan based on the proposed method.
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not dominated by any solution in A, s is marked visited and is
added into A. When A contains only solutions that have been
visited, a Pareto local optimum is achieved [23].

An improved ACO with PLS is proposed in our research
to deal with the mode. In our approach, ants are used to
optimize solutions and generate new Pareto solutions, and
the new pheromone updating strategy is used to control
the path selection. The procedure is described as follows:

Step 1. Compute pkij of n customers and update the trail level
τij new for each k.

Step 2. Run PLS, and update the current solution according
to calculating results.

Step 3. Compare (Cost, CostBest), and record the costBest
and BestSolution.

Step 4. For each move (i, j) in BestSolution to update the trail
level τij new.

Step 5. Repeat step 1 until the maximum computation time
reaches.

The proportion of the pheromone update model of the
ACO algorithm with PLS is as follows:

ω = 1 − k1
Smax − S tð Þ

Smax
, ð19Þ

S tð Þ = −K〠
j∈D

pij tð Þ log pij tð Þ, ð20Þ

where SðtÞ means information entropy value and pijðtÞ is
transition probability. Equation (19) means that the propor-
tion of the pheromone update will decreases with the
increase of the pheromone value. k1 is the positive constant,
and its value range is [0,1]. The value 1 means the propor-
tion of the pheromone update is high influenced by the
information entropy value, and 0.75 is usually used as the
value of k1. This definition combined a sequence of arith-
metic with information entropy to adjust the pheromone
adaptively.

5. Experimental Results and Discussion

5.1. Data Set Description. In our experiments, the distribu-
tion situation of JingKeLong in Beijing City with one distri-
bution center and 20 customer points is selected to verify
our proposed mathematical model and algorithm. The dis-
tribution center has 4 vehicles of the same type with an aver-
age speed of 60 km/h, a maximum driving time of 1200
minutes, and a maximum load of 2000 kg. Table 1 shows
the settings of parameters in our given minimum loss model
and ACO+PLS algorithm.

The data of the distribution center and customers are
shown in Table 2. The distribution center is defined as 0,
and customer points are defined as 1 to 20. Figure 3 shows
the latitude and longitude of each point in the XY system,
and Figure 4 shows the actual locations of them in E-map.

Our proposed method needs an actual transit time
matrix and distance matrix both derived from E-map API.
We supposed that the coordinates of points are stored into
vertex [N] [2]; the core codes with E-map API to achieve
the transit time matrix and distance matrix are described
as follows.

Table 3 shows the transit time matrix among customer
points and distribution center obtained by E-map API.

Table 4 shows the distance matrix among customer
points and distribution center obtained by E-map API.

5.2. Experimental Result and Discussion. In the traditional
method, the distance matrix is achieved by the Euclidean
distance formula. The Euclidean distance formula of two
points on earth is defined as the following:

DAB = R ∗ arccos cos lonAð Þ ∗ cos lonBð Þð
∗ cos latA − latBð Þ + sin lonAð Þ ∗ sin lonBð ÞÞ ∗ π

180 ,

ð21Þ

where A and B are two points on the surface of earth and R is
the radius of the earth. LatA and lonA represent the longi-
tude and latitude of point A.

First, the traditional method ACO with the Euclidean
distance matrix is performed to solve the VRP with mini-
mum cost. Figures 5 and 6 are the optimal distribution
routes and the trend of cost during iteration processed.
The optimal distribution routing scheme, the total transit
time, and the total cost based on the traditional method
are shown in Table 5.

Table 6: Distribution paths of 3 vehicles based on the proposed method.

Vehicles The route of each vehicle The realistic delivery on E-map (minutes)

Fist vehicle 0 − >20 − >17−>18−>19−>10−>15−>16−>14−>4−>0 331

Second vehicle 0 − >5 − >3−>7−>8−>11−>12−>0 113

Third vehicle 0 − >13 − >9−>6−>2−>1−>0 160

The total time 593

The total cost 3673
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Second, our proposed method ACO+PLS with the actual
transit time matrix and travel distance matrix is performed
to solve the VRP with minimum cost. Figures 7 and 8 are
the calculated distribution routes on map and the trend of
cost during iteration processed. The optimal distribution
routing scheme, the total transit time, and the total cost
based on the proposed method are shown in Table 6.

From the above compare experimental results, we can
see that ACO+PLS with actual traffic conditions can get
smaller total cost and save more transit time. Our proposed
method can be used to get the optimal solution effectively for
VRP of cold-chain logistics.

6. Conclusion

This paper studies the model of VPR with minimum cost of
cold-chain distribution. Minimizing the total cost of distri-
bution can maximize the economic benefit of distribution
enterprises. To consider the dynamic change of transit speed
under actual traffic conditions, the transit time matrix and
distance matrix are both derived from the navigation func-
tion based on E-map API. We proposed a heuristic approach
ACO+PLS to solve the minimum loss model of cold-chain
logistics. The experiments show that our proposed method
has strong applicability and potential advantages in cold-
chain distribution. In future studies, a combination of multi-
ple spatial information technologies such as geographic
information technology and remote sensing technology can
be realized to make the problem more practical.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no competing interest.

Acknowledgments

This work was supported by Scientific Research Project of Bei-
jing Municipal Education Commission (KM201911417006).

References

[1] G. B. Dantzig and J. H. Ramser, “The truck dispatching prob-
lem,” Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[2] Z. Rao, “Common distribution path of cold chain logistics of
fresh agricultural products,” Agronomia, vol. 36, no. 5, 2019.

[3] L. Li, Y. Yang, and G. Qin, “Optimization of integrated inven-
tory routing problem for cold chain logistics considering car-
bon footprint and carbon regulations,” Sustainability, vol. 11,
no. 17, p. 4628, 2019.

[4] E. Yao, Z. Lang, Y. Yang, and Y. Zhang, “Vehicle routing prob-
lem solution considering minimising fuel consumption,” IET
Intelligent Transport Systems, vol. 9, no. 5, pp. 523–529, 2015.

[5] G. Kim, Y. S. Ong, T. Cheong, and P. S. Tan, “Solving the
dynamic vehicle routing problem under traffic congestion,”

IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 8, pp. 2367–2380, 2016.

[6] S. Chen, R. Chen, and J. Gao, “A modified harmony search
algorithm for solving the dynamic vehicle routing problem
with time windows,” Scientific Programming, vol. 2017, Article
ID 1021432, 13 pages, 2017.

[7] H. Abidi, K. Hassine, and F. Mguis, “Genetic algorithm for solv-
ing a dynamic vehicle routing problem with time windows,” in
2018 International Conference on High Performance Computing
& Simulation (HPCS), pp. 782–788, Orleans, France, 2018.

[8] H. E. Dongdong and L. I. Yinzhen, “Optimization model of
green multi-type vehicles routing problem,” Journal of Com-
puter Applications, vol. 38, no. 12, pp. 3618–3624, 2018.

[9] S. Q. Fan, D. Lou, and Y. Sun, “Research on vehicle distribution
path optimization of fresh agricultural products cold-chain
logistics,” Storage Process, vol. 17, no. 6, pp. 106–111, 2017.

[10] W. T. Fang and S. Z. Ai, “Research on cold chain logistics dis-
tribution path optimization based on hybrid ant colony algo-
rithm,” Chinese Journal of Management Science, vol. 27,
no. 11, pp. 108–115, 2020.

[11] R. G. Thippa, M. P. K. Reddy, K. Lakshmanna et al., “Analysis
of dimensionality reduction techniques on big data,” IEEE
Access, vol. 99, 2020.

[12] T. R. Gadekallu, D. S. Rajput, M. P. K. Reddy et al., “A novel
PCA–whale optimization-based deep neural network model for
classification of tomato plant diseases using GPU,” Journal of
Real-Time Image Processing, vol. 18, no. 4, pp. 1383–1396, 2021.

[13] A. Guha, D. Samanta, A. Banerjee, and D. Agarwal, “A deep
learning model for information loss prevention from multi-
page digital documents,” IEEE Access, vol. 9, pp. 80451–
80465, 2021.

[14] A. Colorni, M. Dorigo, and V. Mariiezzo, “Distributed optimi-
zation by ant colonies,” in Proceedings of the first European con-
ference on artificial life, pp. 134–142, Cambridge, MA, 1991.

[15] B. Chandra Mohan and R. Baskaran, “A survey: ant colony
optimization based recent research and implementation on
several engineering domain,” Expert Systems with Applica-
tions, vol. 39, no. 4, pp. 4618–4627, 2012.

[16] D. Angus and C. Woodward, “Multiple objective ant colony
optimisation,” Swarm Intelligence, vol. 3, no. 1, pp. 69–85,
2009.

[17] M. López-Ibáñez and T. Stützle, The impact of design choices of
multiobjective antcolony optimization algorithms on perfor-
mance: an experimental study on the biobjective TSP, ACM,
2010.

[18] D. M. Chitty, “Applying ACO to large scale TSP instances,”
2017, https://arxiv.org/abs/1709.03187.

[19] J. Li, P. Fu, X. Li, J. Zhang, and D. Zhu, “Study on vehicle rout-
ing problem and tabu search algorithm under low-carbon
environment,” Chinese Journal of Management Science,
vol. 23, pp. 98–106, 2015.

[20] N. Labadie, C. Prins, and C. Prodhon,Metaheuristics for Vehi-
cle Routing Problems, John Wiley & Sons, 2016.

[21] http://lbsyun.baidu.com/.
[22] L. L. Paquete, Pareto Local Optimum Sets in the Biobjective

Traveling Salesman Problem: An Experimental Study, Springer,
Berlin Heidelberg, 2004.

[23] A. Jaszkiewicz and T. Lust, “ND-tree: a fast online algorithm
for updating a Pareto archive and its application in many-
objective Pareto local search,” 2016, https://arxiv.org/abs/
1603.04798.

10 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1709.03187
http://lbsyun.baidu.com/
https://arxiv.org/abs/1603.04798
https://arxiv.org/abs/1603.04798

	Optimization of VRR for Cold Chain with Minimum Loss Based on Actual Traffic Conditions
	1. Introduction
	2. Problem Description
	3. Model
	3.1. Distance and Transit Time Analysis
	3.2. Loss Cost Target Construction
	3.2.1. Soft Time Window Penalty Cost
	3.2.2. Fuel Cost
	3.2.3. Refrigeration Cost
	3.2.4. Cargo Damage Cost

	3.3. Mathematical Model of Minimum Loss Analysis

	4. Ant Colony Optimization Algorithm
	4.1. Ant Colony Optimization Algorithm
	4.2. Combining ACO Algorithm with PLS

	5. Experimental Results and Discussion
	5.1. Data Set Description
	5.2. Experimental Result and Discussion

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

