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Mobile edge computing (MEC) has the ability of pattern recognition and intelligent processing of real-time data.
Electroencephalogram (EEG) is a very important tool in the study of epilepsy. It provides rich information that can not be
provided by other physiological methods. In the automatic classification of EEG signals by intelligent algorithms, feature
extraction and the establishment of classifiers are both very important steps. Different feature extraction methods, such as time
domain, frequency domain, and nonlinear dynamic feature methods, contain independent and diverse specific information.
Using multiple forms of features at the same time can improve the accuracy of epilepsy recognition. In this paper, we apply
metric learning to epileptic EEG signal recognition. Inspired by the equidistance constrained metric learning algorithm, we
propose multifeature metric learning based on enhanced equidistance embedding (MMLE3) for EEG recognition of epilepsy.
The MMLE3 algorithm makes use of various forms of EEG features, and the feature weights are adaptively weighted. It is a big
advantage that the feature weight vector can be adjusted adaptively, without manual adjustment. The MMLE3 algorithm
maximizes the distance between the samples constrained by the cannot-link, and the samples of different classes are
transformed into equidistant; meanwhile, MMLE3 minimizes the distance between the data constrained by the must-link, and
the samples of the same class are compressed to one point. Under the premise that the various feature classification tasks are
consistent, MMLE3 can fully extract the associated and complementary information hidden between the features. The
experimental results on the CHB-MIT dataset verify that the MMLE3 algorithm has good generalization performance.

1. Introduction

Mobile edge computing (MEC) converges cloud computing
capabilities and Internet service environment to the edge of
the network, which can provide services to users nearby,
and effectively makes up for the deficiencies of cloud com-
puting [1]. The combination of MEC and artificial intelli-
gence technology is a research hotspot in recent years. MEC
has rich application scenarios in the field of intelligent med-
icine. Electroencephalogram (EEG) analysis is widely used in
neuroscience, especially in the diagnosis and seizure of epi-
lepsy [2, 3]. In clinical practice, the diagnosis of epilepsy is
mainly based on the patient’s history of seizures, and further

examination and diagnosis are made concerning the EEG
signals. EEG-based epilepsy detection mainly relies on the
personal experience of the doctor. With the gradual develop-
ment of intelligent medical treatment, the automatic recogni-
tion and detection of epileptic EEG signals have become an
important auxiliary detection means. How to extract effective
features from EEG and design appropriate classification algo-
rithms is the key task to epilepsy detection.

At present, the most commonly used feature extraction
methods include the following: time domain analysis, fre-
quency domain analysis, time-frequency analysis, nonlinear
dynamics, and model-based methods [4]. The time domain
feature method regards EEG as a time series, calculates the
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correlation statistics of the sequence, and extracts the corre-
sponding epileptic EEG features. For example, Kaya et al. [5]
used the histogram features based on local binary patterns
(LBP) together with Bayesian networks to classify epileptic
seizures. Another widely used strategy is to extract frequency
domain features from a given EEG signal. Fourier transform
is one of the most commonly used algorithms to extract fre-
quency domain features from time series data. Frassineti
et al. [6] proposed a preprocessing step method. The signal
is filtered by a fixed wavelet transform to reduce possible
artifacts. Then, the support vector machine fine Gaussian
method is used to detect epilepsy. Chandel et al. [7] pro-
posed a combination of features based on ternary wavelet
decomposition to predict the onset and termination of epi-
lepsy. This method extracted standard deviation, variance,
and high-order moments to represent the characteristics of

different EEG activities and used linear discriminant analysis
and K-nearest neighbor (KNN) classifiers to classify EEG
between seizure and interictal periods. In the extraction of
nonlinear dynamic features, the method based on complex-
ity analysis is widely used in epilepsy detection, and the most
commonly used is the feature extraction method using
entropy strategy. For example, Xiang et al. [8] developed a
feature extraction algorithm using fuzzy entropy. This
method first calculated the fuzzy entropy of EEG signals
from different epileptic states, then performed feature selec-
tion, and finally used a support vector machine for predic-
tion. Hussein et al. [9] identified EEG seizures by
modifying the fuzzy entropy with minimum variance.
Firstly, appropriate filtering and independent quantity anal-
ysis were carried out to remove noise and artifacts, and then,
the proportional operation was carried out to obtain the

Input: Multi-feature matrix Xl , its cannot-link and must-link sets;
Output: The metric matrix Q and Δ.
Initialization:Δ = ½1/L, 1/L,⋯, 1/L�, Q = I,
Repeat
t = t+1
Step 1: fixed Q(t),compute ΔðtÞ using Eq.(13);
Step 2: fixed ΔðtÞ, compute Q(t) using Eqs.(9)-(11);
Step 3: compute the value of objective function J(t);
Until J(t) is convergence or t ≥ tmax
Step 4: obtain the optimal Q and Δ.

Algorithm 1: MMLE3.

Figure 1: The example EEG signals in CHB-MIT dataset.

2 Wireless Communications and Mobile Computing



optimal features. Empirical mode decomposition is an anal-
ysis method based on the Fourier transform. Recently, it is
also widely used in epilepsy detection. Bajaj and Pachori
[10] regarded the intrinsic mode function (IMF) as a group
of amplitude frequency modulation signals and gave the
analytical expression of IMF by using the Hilbert transform

form of IMF. IMF transform calculated two kinds of band-
width, namely, a bandwidth and FM bandwidth. Kaleem
et al. [11] used a new variant of empirical mode decomposi-
tion. This model allowed the detrending of the signal based
on the time scale, which decomposed the signal into
detrended components and nondetrended components
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Figure 2: The international standard 10-20 system used in the CHB-MIT dataset.
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according to the frequency separation standard, and then
extracted features from the decomposed components.
Usman et al. [12] converted the EEG data into a proxy chan-
nel and then used the empirical mode decomposition to
improve the prediction results.

Supervised learning in machine learning is widely used
in epilepsy detection. Some famous supervised learning algo-
rithms, such as KNN, decision trees, and metric learning,
have been successfully used for epilepsy detection. Metric

learning is aimed at learning a more suitable distance mea-
surement criterion in the feature space, in order to more
accurately represent the similarity between samples. Metric
learning is widely used in face recognition, object detection,
image recognition, and so on. Weinberger and Saul [13]
developed a large margin nearest neighbor analysis algo-
rithm based on a support vector machine. The obtained
Mahalanobis distance had the advantages of maximum mar-
ginal and internal consistency. Liu et al. [14] developed a
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Figure 5: The classification accuracy of MMLE3 with different parameters: (a)λ; (b) m; (c) k.
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global metric learning algorithm, which made the separation
of different categories of samples greater in EEG signal rec-
ognition. Phan et al. [15] developed a global metric learning
framework using supervised information. The algorithm can
directly process EEG data without preprocessing such as
artifact removal. Alwasiti et al. [16] developed a depth met-
ric learning algorithm. Different from the traditional deep
learning model, a large amount of training data was
required; this algorithm only required very little training
data.

Many classification algorithms largely rely on the dis-
tance measurement of the input data. In EEG classification,
the key problem is to find a good distance measurement,
to classify the test EEG into the class of the nearest EEG
samples. Many researches have shown that an appropriate
distance measure can significantly improve classification
accuracy. In metric learning, EEG recognition depends on
the similarity measurement between the input EEG data
samples, and the similarity measurement between EEG data
samples is realized by the distance measurement of the input
feature vector of EEG data samples [17, 18]. Therefore, it is
crucial to find a good distance metric in the sample feature
space.

Due to the rhythm of EEG signals and the collection of
EEG signals of multiple channels, EEG data samples have
rich feature information. The contribution of different forms
of features to EEG recognition is different, some play a deci-
sive role, some play an auxiliary role, and some play a small

or no role. Metric learning measures the similarity of EEG
data samples and treats all features equally. Obviously, this
strategy cannot accurately measure the similarity between
EEG data samples, which will affect EEG signal recognition.
In addition, various types of EEG signal features can be
obtained from different feature extraction algorithms. Based
on the principle of consistency and complementarity, the
features of each type will contain specific information, and
the use of multiple forms of features at the same time will
improve the accuracy of epilepsy recognition.

In this paper, we apply metric learning to the recognition
of epilepsy EEG signals. We make full use of various forms
of EEG features and assign their different weights automati-
cally. We try to find an appropriate distance measure for
EEG data samples, so as to measure the similarity between
EEG data samples more accurately, and finally achieve the
purpose of improving the accuracy of epilepsy recognition.
To achieve this goal, we propose multifeature metric learn-
ing based on enhanced equidistance embedding (MMLE3)
for EEG recognition of epilepsy. We learn from the tech-
niques of the EquiDML algorithm [19] to maximize the dis-
tance between the samples constrained by the cannot-link,
so that the samples belonging to different classes are trans-
formed into equidistant. At the same time, the distance
between the data constrained by the must-link is minimized,
so that the samples belonging to the same class are com-
pressed to one point. In the process of metric matrix learn-
ing, feature weight vectors are introduced, and various

Table 1: Results of specificity rates (%) of MMLE3 and the comparison algorithms.

Patient ID LMNN ITML RDML-CCPVL EquiDML MV-TSK-FS CMML MvCVM MMLE3

1 93.68 94.12 95.07 95.41 96.09 96.17 96.08 98.09

2 93.97 94.03 94.65 95.23 96.10 96.28 95.30 97.60

3 91.20 91.16 92.05 93.18 93.18 94.14 93.18 95.59

4 94.37 93.70 95.15 95.61 96.21 96.63 95.49 98.14

5 93.41 93.24 94.35 94.64 95.75 95.49 94.91 97.29

7 93.07 92.45 93.00 94.66 94.86 95.05 94.29 96.59

8 94.32 94.35 94.99 95.83 96.85 96.86 95.75 98.35

9 93.32 94.27 94.48 95.25 96.27 96.20 95.52 97.71

10 92.73 93.31 94.00 94.49 94.97 95.43 94.94 96.73

11 93.14 93.18 93.76 94.64 95.31 95.24 94.78 96.97

13 93.02 93.30 93.74 95.03 95.67 95.89 95.17 97.33

14 92.91 92.84 93.12 94.53 95.23 95.33 94.37 96.85

15 93.38 93.10 93.90 94.84 95.66 95.29 95.26 97.40

17 93.30 94.16 94.10 95.37 95.73 96.16 95.07 97.78

18 93.29 93.94 94.13 95.59 96.02 96.07 94.99 97.75

19 93.88 94.37 95.05 95.86 96.20 96.93 95.71 98.25

20 93.61 93.61 94.14 95.25 95.83 95.71 95.16 97.75

21 93.63 93.63 94.69 95.21 96.09 95.81 95.89 97.83

22 93.67 93.68 93.72 94.43 95.88 95.61 95.56 97.23

23 93.25 93.72 94.49 95.34 96.23 96.28 94.84 97.62

24 93.08 93.67 94.49 94.85 95.68 95.54 95.17 97.31

Mean 93.34 93.52 94.15 95.01 95.71 95.81 95.12 97.44

The bold values mean that they are the best classification results in the experiments.
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features are adaptively weighted to effectively adjust the
weight relationship between various features. Under the pre-
mise of the consistency of various feature classification tasks,
the MMLE3 algorithm can effectively mine the hidden and
complementary information between the features and high-
light the role of the optimal feature, and it has a stronger dis-
criminative ability. We conduct experiments on the CHB-
MIT dataset, and the experimental results validate the effec-
tiveness of MMLE3.

2. Related Work

Metric learning uses a given pair of samples to calculate the
similarity between pairs of feature vectors. Metric learning
generally uses distance metrics. Taking the commonly used
Mahalanobis distance as an example, the distance metric
between the two samples zi and zj can be written as

zi − zj
�� ��2

Q = zi − zj
� �TQ zi − zj

� �
, ð1Þ

where Q is a positive semidefinite matrix. Q can be decom-
posed as Q =HHT , where the matrix Hd×mðm ≤ dÞ is metric
matrix (or projection matrix). Therefore, Equation (1) can
be expressed as

zi − zj
�� ��2

Q = Hzi −Hzj
� �T Hzi −Hzj

� �
: ð2Þ

Therefore, the essence of metric learning is to learn a
mapping space. In classification tasks, the commonly used
strategy for metric learning is to output a positive value close
to zero for pairs of samples of the same class and output
larger values for pairs of samples of different classes.

Given a labeled dataset Z = ½z1,⋯, zn� with dimensional-
ity d and n number samples, the label matrix Y is composed
of all class labels of X. The sets of must-link M and cannot-
link C are defined as

M = zi, z j
� ���yi = yj
n o

,

C = zi, zj
� ���yi ≠ yj
n o

:

ð3Þ

According to the classification principle of minimum
intraclass distance and maximum interclass distance, a
supervised metric learning framework can be represented as

zi − zj
�� ��2

Q < δ1  zi, zj
� �

∈M,

zi − zj
�� ��2

Q > δ2  zi, zj
� �

∈ C,
ð4Þ

where δ1 and δ2 are thresholds for sets of must-link and can-
not-link, respectively, and δ1 < δ2.

In the EquiDML algorithm [19], the sample pairs in set
M are gathered directly to a signal point. The distances of

Table 2: Results of sensitivity rates (%) of MMLE3 and the comparison algorithms.

Patient ID LMNN ITML RDML-CCPVL EquiDML MV-TSK-FS CMML MvCVM MMLE3

1 92.72 93.46 93.64 94.52 95.89 95.32 95.20 97.28

2 92.40 93.04 93.73 94.71 94.58 95.46 95.03 97.13

3 90.76 90.98 91.12 92.67 92.94 92.61 92.87 94.64

4 93.05 93.91 93.98 95.03 95.66 96.18 95.02 97.28

5 92.69 92.84 92.82 93.98 94.99 94.72 93.90 96.49

7 91.32 91.77 92.80 92.89 94.55 94.20 93.85 95.95

8 93.57 94.11 94.01 94.82 95.91 95.50 94.67 97.47

9 92.44 92.65 93.66 94.54 95.35 95.49 94.75 96.81

10 92.18 91.68 92.70 93.77 94.35 94.20 93.35 95.94

11 92.10 91.83 92.98 93.56 95.01 94.27 94.50 96.23

13 92.41 92.36 92.87 93.95 94.53 94.66 94.60 96.43

14 91.76 92.45 92.36 93.63 94.23 94.66 93.38 96.00

15 92.95 92.19 93.35 94.24 95.22 94.87 93.90 96.51

17 93.34 92.83 93.27 94.54 95.50 95.47 94.91 96.95

18 92.78 93.31 93.88 94.07 95.49 95.16 95.08 97.01

19 93.07 93.55 94.54 95.37 95.50 96.20 94.73 97.44

20 93.00 93.44 93.70 94.09 95.12 94.95 94.31 96.99

21 93.02 93.14 93.57 94.94 95.66 95.09 94.99 96.96

22 92.09 92.91 92.85 93.61 94.68 94.58 94.16 96.52

23 93.01 92.48 93.10 94.06 94.82 94.78 94.18 96.85

24 92.65 92.98 92.76 93.48 94.38 94.96 94.16 96.56

Mean 92.54 92.76 93.22 94.12 94.97 94.92 94.36 96.64

The bold values mean that they are the best classification results in the experiments.
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sample pairs in set C are forced to have the same constant
value. The constraints in the EquiDML algorithm are
expressed as

zi − zj
�� ��2

Q = 0  zi, zj
� �

∈M,

zi − zj
�� ��2

Q = μ  zi, zj
� �

∈ C,
ð5Þ

where μ is a positive value. The equidistance constraint indi-
cates that the distance between classes must be greater than
the distance within classes. In the metric space, the samples
in the C set correspond to different classes of samples, and
the distances of any different pairs will have the same con-
stant value.

3. Multifeature Metric Learning Based on
Enhanced Equidistance Embedding

3.1. The Objective Function of MMLE3. We try to learn a
metric space with distinguishing ability. In this metric space,
the samples belonging to the same class with different fea-
ture forms are as close as possible, and the samples belong-
ing to different classes with different feature forms are as
far away as possible. That is, there are more compact intra-
class distances and more separable interclass distances in
the metric space. The Mahalanobis distance of the l-th fea-
ture of samples zi and zj can be written in the following form

as

zli − zlj
��� ���2

Q
: ð6Þ

Based on the EquiDML algorithm [19], the proposed
MMLE3 algorithm makes use of the correlation and differ-
ence between multiple forms of features and makes the pro-
posed algorithm more distinguishable by learning the
complementary information of different types of features.
Then, the MMLE3 algorithm can be represented by

L Q, Δð Þ =min 〠
L

l=1
Δl

λ

2 Ml
�� �� 〠

zli ,zljð Þ∈Ml

zli − zlj
��� ���2

Q
+ 1

� �2
0
@

+ 1 − λ

2 Cl
�� �� 〠

zli ,zljð Þ∈Cl

zli − zlj
��� ���2

Q
− μ

� �2
+ 1
2 Q − Ik k2F

1
A,

s:t: 〠
L

l=1
Δl = 1, Δl ≥ 0, ð7Þ

where Ml and Cl are the sample sets of must-link and
cannot-link with the l-th feature expression, respectively. j
Mlj and jClj are the size of Ml and Cl, respectively. λ is the
trade-off parameter, and Δ is the feature weight vector, and

Table 3: Results of accuracy rates (%) of MMLE3 and the comparison algorithms.

Patient ID LMNN ITML RDML-CCPVL EquiDML MV-TSK-FS CMML MvCVM MMLE3

1 93.50 93.77 94.56 95.49 95.98 96.52 95.34 97.74

2 93.15 93.95 93.62 95.15 95.94 95.37 94.90 97.35

3 91.30 91.73 91.39 93.11 93.26 93.65 93.26 95.19

4 93.87 94.08 94.51 95.71 96.48 95.84 95.47 97.84

5 92.90 93.40 93.31 94.35 95.03 94.89 94.86 97.05

7 91.87 92.46 93.28 93.86 94.69 94.50 94.00 96.38

8 93.84 93.90 94.75 95.25 96.36 96.35 95.86 97.98

9 93.46 93.04 94.20 94.45 95.24 95.62 95.44 97.33

10 92.11 92.54 92.72 94.18 94.27 94.75 93.70 96.47

11 92.85 92.99 93.14 94.54 94.58 94.74 94.26 96.75

13 92.78 93.62 94.03 94.06 95.15 95.79 94.56 97.03

14 92.08 92.94 93.48 93.78 94.19 95.10 94.34 96.48

15 93.38 93.10 93.50 94.50 95.63 95.70 94.61 97.09

17 93.59 93.44 94.28 95.10 95.87 95.81 95.42 97.53

18 93.47 93.22 94.16 95.37 95.27 95.27 95.58 97.39

19 93.77 94.36 95.08 95.85 96.06 96.17 96.00 97.98

20 93.18 93.83 94.24 95.39 95.47 96.01 95.29 97.46

21 93.08 93.67 94.03 94.87 95.34 96.20 95.19 97.54

22 92.92 92.93 93.91 94.49 94.78 95.75 95.06 97.01

23 92.71 92.98 93.52 94.29 94.95 95.26 95.34 97.23

24 92.68 92.72 93.37 94.65 95.45 95.16 94.79 96.97

Mean 92.98 93.27 93.77 94.69 95.24 95.45 94.92 97.13

The bold values mean that they are the best classification results in the experiments.
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Δl is the feature weight of the l-th sample features. It is worth
emphasizing that

(1) in order to reduce the convergence time, MMLE3

uses the shifted squared loss ðz + 1Þ2 − 1 for the set
Ml

(2) Δl is not a parameter that needs to be adjusted man-
ually. It can be obtained in a closed-form solution

3.2. The Optimization Procedure. According to the Lagrange
multiplier method, the Lagrangian function of Equation (7)
can be represented as

L = 〠
L

l=1
Δl

λ

2 Ml
�� �� 〠

zli ,zljð Þ∈Ml

zli − zlj
��� ���2

Q
+ 1

� �2
0
@

+ 1 − λ

2 Cl
�� �� 〠

zli ,zljð Þ∈Cl

zli − zlj
��� ���2

Q
− μ

� �2
+ 1
2 Q − Ik k2F

1
A

−Λ 〠
L

l=1
Δl − 1

 !
; ;

ð8Þ

where Λ is the Lagrange parameter.
There are two tune parameters Q and Δ in the MMLE3.

We use the alternating updating strategy to obtain their opti-
mal parameters. When Δ is fixed in Equation (8), the opti-

mization of Q is equal to solve the following problem:

∂L Qð Þ
∂Q = 〠

L

l=1
Δl

λ

Ml
�� �� 〠

zli ,zljð Þ∈Ml

zli − zlj
��� ���2

Q
+ 1

� �
zli − zlj
� 	

zli − zlj
� 	T0

@

+ 1 − λ

Cl
�� �� 〠

zli ,zljð Þ∈Cl

zli − zlj
��� ���2

Q
− μ

� �
zli − zlj
� 	

zli − zlj
� 	T

+ Q − Ið Þ
1
A:

ð9Þ

Using the simplest projected gradient method, Q can be
updated by

Qh+1 =Qh + ηh Q∗
h −Qhð Þ, ð10Þ

where Q∗
h = ½Qh − εh∇LðQhÞ�+. ½⋅�+ denotes projection on Ω

= fQ ∣Q≻ = 0g. ηh ∈ ð0, 1� and εh are the step and regulation
parameters, respectively.

At the h -th iteration, denote Q∗
h = ½Γh�+ = arg min

Q∗∈Ω
½Q∗ − Γh�2F , where Γh =Qh − εh∇LðQhÞ. Using the positive
semidefinite matrix approximation method [19], we can
obtain Q∗

h as

Q∗
h = PhΣ+

hPh, ð11Þ

where PhPh
T = I. Σ+

h =max f0, Σhg is a positive diagonal
matrix.

When Q is fixed in Equation (8), the optimization of Δ is
equal to solve ∂L/∂Δl = 0. We can obtain

Then, the solution of Δl is

Obviously, different from the manual parameter adjustment
strategy, the weight parameter in theMMLE3 algorithm is adap-
tive and it can converge to the extreme value at any initial value.

Based on the above analysis, we give the MMLE3 algo-
rithm as follows.

4. Experiments

4.1. Dataset and Feature Extraction. The used dataset called
CHB-MIT is from Boston Children’s Hospital [20]. The sig-
nal data is recorded by the international standard 10-20

Δl
λ

2 Ml
�� �� 〠

zli ,zljð Þ∈Ml

zli − zlj
��� ���2

Q
+ 1

� �2
+ 1 − λ

2 Cl
�� �� 〠

zli ,zljð Þ∈Cl

zli − zlj
��� ���2

Q
− μ

� �2
+ 1
2 Q − Ik k2F

0
@

1
A −Λ = 0,

〠
L

l=1
Δl − 1 = 0:

8>>>>>><
>>>>>>:

ð12Þ

Δl =
1/ λ/ Ml

�� ��� �
∑ zli ,zljð Þ∈Ml zli − zlj

��� ���2
Q
+ 1

� �2
+ 1 − λ/ Cl

�� ��� �
∑ zli ,zljð Þ∈Cl zli − zlj

��� ���2
Q
− μ

� �2
+ Q − Ik k2F

 !
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system, and the sampling frequency is 256Hz. The example
EEG signals and the used international standard 10-20 sys-
tem are shown in Figures 1 and 2, respectively. The dataset
includes the cortical EEG data of 23 patients with epilepsy.
Among the 23 patients, 5 are males, aged between 3 and
22 years, and 17 females, aged 1.5-19 years. The data No.
21 is collected again by patient No. 1, one and a half years
later. The gender of patient No. 24 is unknown. In our
experiment, 21 out of 24 patients are selected, excluding
Nos. 6, 12, and 16, since some channel data of these patients
can not be read.

We use two forms of EEG features in the experiment.
The first form of features is the time domain features of
EEG signals. We extract the correlation coefficient matrix
and its eigenvalues of the original EEG signal and fuse them.
The detailed time domain feature extraction process is
shown in Figure 3. The “Date” is the original EEG signals.
The “Sta” is the standardized matrix of EEG signals. The
“CorrM” is the correlation coefficient matrix of “Sta,” and
the “Eigen” is the eigenvalue corresponding to the “CorrM”
matrix. The “Corr” is the expansion of “CorrM.” The
“Feat1” is the experimental time domain feature by feature
fusion of “Corr” and “Eigen.”

The second form of features is the frequency domain fea-
tures of EEG signals. The detailed frequency domain feature
extraction process is shown in Figure 4. The amplitude spec-
trum and phase spectrum in the frequency domain are two
important features related to the time domain information.
After being extracted the amplitude and phase features
(called “AS” and “PS” in Figure 4), the correlation coeffi-
cients (called “CorrM1” and “CorrM2” in Figure 4) and
eigenvalues of the spectrum (called “Eigen1” and “Eigen2”
in Figure 4) are further extracted. The Feat2 is the experi-
mental frequency domain feature by feature fusion of
“Eigen1,” “Eigen2,” “Corr1,” and “Corr2”. The third form
of features is the nonlinear features of EEG signals. In the
experiment, the Shannon entropy, spectral entropy, and dif-
ferential entropy of each delta (1-4Hz), theta (4-7Hz), alpha
(7-13Hz), and beta (13-30Hz) band of EEG signals are cal-
culated. Then, the nonlinear feature Feat3 is obtained by
three entropies.

We compare MMLE3 with seven algorithms. The com-
parison algorithms include LMNN [13], ITML [21],
RDML-CCPVL [22], EquiDML [19], CMML [23], MV-
TSK-FS [4], and MvCVM [24]. The slack variable in ITML
is selected in {0.01, 0.1, 1, 10}. In CMML, the tradeoff
parameter, learning rate, and parameter p are set to 1, 10-6,
and 5, respectively. The number of fuzzy rules in MV-
TSK-FS is selected in f5, 10,⋯, 30g, and three regulation
parameters are set in f10−2, 10−1,⋯, 102g. In MV-TSK-FS
and MvCVM, the penalty parameter for each view is selected
in {1, 10, 102, 103}, and the Gaussian kernel parameter is
selected in {10-2, 10-1, …, 102}. In MMLE3, the parameter
λ is selected in {0.1, 0.2, …, 0.9}, and the parameter μis set
to be 2. The KNN is used as the classifier in MMLE3. We
use the grid search and 5-fold cross strategy to select the best
variables. The running environment of all algorithms is CPU
i7-8700k, 3.2GHZ, and 32GB RAM, and software is Matlab
2016. The evaluation index adopts the specificity, sensitivity,

and classification accuracy rate. The experiment is executed
10 times.

4.2. MMLE3 Performance Verification. The classification
accuracy of MMLE3 with different parameters is shown in
Figure 5. The first parameter is the balance parameter λ.
The parameter λ is between [0,1] to balance the proportion
of minimizing the distance term of the same class samples
and maximizing the distance term of different class samples
in the objective function. The accuracy of MMLE3 with dif-
ferent λ is shown in Figure 5(a). When the balance parame-
ter is 1, the MMLE3 algorithm only optimizes the must-link
constraint and ignores the cannot-link constraint, so its clas-
sification accuracy is low. When the balance parameter is
close to 0, the objective function of MMLE3 ignores the opti-
mization of the must-link constraint, so the classification
accuracy of MMLE3 is also unsatisfactory. From
Figure 5(a), when the balance parameter is between 0.4
and 0.6, the two optimization terms can be balanced, so that
the EEG data samples in the metric space have the highest
discriminative ability, and the classification accuracy of
MMLE3 is the highest.

Second, we evaluate the dimension m in matrix Q. The
dimension of each form of features is 200. The MMLE3

algorithm obtains the Mahalanobis matrix by metric learn-
ing on the multiple forms of EEG features and projects the
features into the projection space. The dimension m takes
an important role in MMLE3. The classification accuracy
of MMLE3 with different m is shown in Figure 5(b). When
m is very small, MMLE3 will ignore most of the discrimi-
native feature information, which leads to low classifica-
tion accuracy. With the increase of m value, the
discriminative feature information increases, and this
improves the classification accuracy. When m increases
to a certain value, all the discriminative feature informa-
tion has been obtained, and the remaining small or inef-
fective feature information has little contribution to the
EEG signals recognition. Therefore, the classification accu-
racy of MMLE3 keeps stable.

Thirdly, we evaluate the KNN classifier parameter in
MMLE3. The k parameter is selected in {3, 6, …, 30}. The
accuracy of MMLE3 with different k is shown in
Figure 5(c). The value of k has little effect on classification
accuracy. Regardless of the value of k, the fluctuation of clas-
sification accuracy is very small.

4.3. Algorithm Performance Comparison. The proposed algo-
rithm MMLE3 is compared with several algorithms on
4CHB-MIT dataset. During the experiment, every algorithm
runs 10 times and the specificity, sensitivity, and accuracy of
all algorithms are recorded in Tables 1–3. CMML, MV-TSK-
FS, MvCVM, and MMLE3 can make use of various forms of
EEG features. In the experiment, three forms of EEG fea-
tures: time domain, frequency domain, and nonlinear fea-
tures, are used. When analyzing the time domain
characteristics, the mode of the eigenvalue of the correlation
coefficient matrix of EEG signal will change before and after
the seizure, which shows that the time domain correlation
coefficient matrix and its eigenvalue can predict the seizure
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and termination of epilepsy to a certain extent. The ampli-
tude and phase in the frequency domain are effective fea-
tures, which can directly reflect the difference between the
seizure period and seizure interval. Entropy can describe
the uncertainty of information source and plays an impor-
tant role in nonstationary EEG signals. MMLE3 obtains the
best classification performance and has the highest generali-
zation ability, which is 2.43%, 2.52%, and 2.44% higher than
baseline algorithm EquiDML in specificity, sensitivity, and
accuracy. It can be seen that the comprehensive use of multi-
feature information can promote the accuracy of epilepsy
recognition.

In addition, the MMLE3 algorithm uses the constraint
forms of must link and cannot link to project the samples
into a low-dimensional space, in which the distance between
the samples constrained by cannot link is maximized, and
the samples of different classes are transformed into equidis-
tant; meanwhile, the distance between the samples con-
strained by must link is minimized, and the samples of
different classes are compressed to a point. We introduce
the feature weight vector to adaptively weigh various fea-
tures and effectively adjust the weight relationship between
various features in the process of metric matrix learning.
On the premise that all kinds of feature classification tasks
are consistent, the MMLE3 algorithm can effectively mine
the association and complementary information hidden
among features and highlight the role of optimal features.
The MMLE3 algorithm has stronger discrimination ability.
Therefore, the results in Tables 1–3 indicate that various
forms of EEG features can be treated differently in the
MMLE3 algorithm and the similarity between EEG data
samples can be measured more accurately. The MMLE3

algorithm shows superiority and effectiveness for EEG rec-
ognition of epilepsy.

5. Conclusion

In clinical research, EEG is a basic tool for diagnosing and
studying brain diseases, especially in the field of epilepsy
diagnosis. This study explores how to improve the classifica-
tion accuracy of epileptic EEG based on various feature
extraction methods and metric learning algorithm. We pro-
pose the MMLE3 algorithm for EEG recognition of epilepsy.
In the process of metric matrix learning, MMLE3 uses vari-
ous forms of EEG features to effectively adjust the weight
relationship between various features. Experiments show
that the classification performance of comprehensive utiliza-
tion of multiple features is significantly better than single
feature, and multifeature metric learning has better stability
and generalization ability. In the future, we will embed the
proposed algorithm into the deep network for new latent
representations. We will apply the proposed algorithm to
clinical diagnosis in the next stage. In addition, with the
development of computer-aided technology, visualized oper-
ating systems are one of the development trends of future
medical care. We will also try to design the MMLE3 algo-
rithm into a visual operating system to facilitate the applica-
tion of clinical diagnosis.
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