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In order to improve the accuracy of automatic obstacle recognition algorithm for driverless vehicles, an automatic obstacle
recognition algorithm for driverless vehicles based on binocular vision is constructed. Firstly, the relevant parameters of the
camera are calibrated around the new car coordinate system to determine the corresponding obstacle position of the vehicle.
At the same time, the three-dimensional coordinates of obstacle points are obtained by binocular matching method. Then, the
left and right cameras are used to capture the feature points of obstacles in the image to realize the recognition of obstacles.
Finally, the experimental results show that for obstacle 1, the recognition error of the algorithm is 0.03m; for obstacle 2, the
recognition error is 0.02m; for obstacle 3, the recognition error is 0.01m. The algorithm has small recognition error. The
vehicle coordinate system is added in the camera calibration process, which can accurately measure the relative position
information between the vehicle and the obstacle.

1. Introduction

With the wide popularity of automobiles, driverless vehicles
have become a hot research topic. UAV is a complex mechan-
ical product integrating a variety of technologies, and its key
technologies include environment perception technology, posi-
tioning and navigation technology, path planning technology,
and motion control technology [1–4]. In order to ensure the
safe driving of unmanned vehicles, it is necessary to use
environmental sensing technology to enable unmanned vehi-
cles to automatically avoid obstacles on the road [5–9]. There-
fore, as an important means of environmental perception,
vision has been studied more andmore [10]. Research on visual
perception mainly includes vision-based positioning, vision-
based road and traffic sign detection and recognition, and
vision-based collision avoidance technology [11, 12]. The com-
puter vision system usually requires two or more cameras for
the same scene from two or more angles, in order to obtain a
set of images in the same scene under different angles of view,

and then, through different images of the same scene, the paral-
lax, calculation of the target space geometry, and position of the
object are determined; this method is called stereo vision [13,
14]. The binocular stereo vision system uses two cameras to
obtain two images of the same scene from two different per-
spectives, namely, the binocular stereo image pair. The gray-
scale, shape, distance, and other information of the surface of
the target object can be recovered by calculating the parallax
of the target object in stereo image alignment. The binocular
stereo vision system directly simulates the human eye to process
the scene, which has important practical value and broad appli-
cation prospect.

Compared with the binocular vision ranging system, the
monocular vision ranging system cannot accurately obtain
target distance because of less information acquired by mon-
ocular vision. Therefore, there are more and more researches
on binocular ranging at home and abroad. However, although
researchers have done a great deal of research on the measure-
ment of vehicle distance ahead, reference [15] proposes a
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monocular vision-based understanding of street view curves,
and the use of autonomous vehicles to deliver medical and
emergency supplies is a potential way to avoid unsafe and
unpredictable factors. However, its implementation has been
hampered by several key issues. A major difficulty was under-
standing the crooked alleys of the street scene. These can be
seen as combinations of non-Manhattan structures that help
us estimate their original posture in a three-dimensional scene.
A new approach is proposed to understand curving alleys and
bridge the gap between 2d scene understanding and monocu-
lar 3d environment reconstruction. The angular projection is
assigned to the cluster. The curving alley scene approximates
the Manhattan and non-Manhattan fold structures approxi-
mated in the alley scene reconstruction. This algorithm has
geometric characteristics and does not require prior training
or understanding of the internal parameters of the camera.
The results show that the algorithm can successfully under-
stand alley scenarios including Manhattan and curved non-
Manhattan structures. Reference [16] proposed a monocular
vision-based distance estimation method for a 3d detection
workshop. In order to improve the accuracy and robustness
of ranging results, the actual area of the vehicle rare visual field
and the corresponding projection area in the image were
obtained by 3d detection method. Then, an area-distance
geometric model is established to restore the distance accord-
ing to the camera projection principle. Our method shows its
potential in complex traffic scenarios by testing test set data
provided on KITTI, a real-world computer vision benchmark.
The experimental results show better performance than the
existingmethods. In addition, the accuracy of shielding vehicle
ranging results can reach about 98%, while the accuracy devi-
ation between vehicles from different perspectives is less than
2%. However, the current distance measurement system is still
based on monocular vision, and the accuracy of monocular
vision image distance perception is low. Therefore, we should
focus on the research of the binocular stereo ranging system,
which can well simulate the function of human eyes and
perceive the three-dimensional world. The binocular stereo
ranging system mainly includes this method, which can
effectively improve the accuracy of obstacle detection and
accurately measure the relative position information with the
object in front and has certain practical value [17]. On this
basis, a road block automatic recognition algorithm based on
binocular vision is proposed. Binocular vision is an important
form of machine vision. It is a method to obtain the three-
dimensional geometric information of the object by calculat-
ing the position deviation between the corresponding points
of the image based on the parallax principle and using the
imaging equipment to obtain two images of the measured
object from different positions. Binocular vision fuses the
images obtained by two eyes and observes the differences
between them, so that we can obtain an obvious sense of
depth, establish the corresponding relationship between fea-
tures, and correspond the image points of the same spatial
physical point in different images. The binocular vision
method has the advantages of high efficiency, appropriate pre-
cision, simple system structure, and low cost. Binocular vision
is one of the key technologies of computer vision. Obtaining
the distance information of spatial 3D scene is also the most

basic content in computer vision research. By adding the vehi-
cle coordinate system, the relative position information of the
vehicle and obstacle can be obtained, and the accuracy of
obstacle identification can be improved.

2. Design of Automatic Roadblock
Identification Algorithm for Unmanned
Vehicle Based on Binocular Vision

2.1. Camera Calibration. Through camera calibration, the
mapping relationship between coordinates is generated, and
the mapping relationship between world coordinates and
image coordinates is expressed by projection matrix. The
mapping relationship between the left camera image and the
right camera image is represented by a homography matrix,
in which the coordinate system of the whole vision system
needs to be constructed, including the camera image coordi-
nate system, the camera coordinate system, and the world
coordinate system. The concrete content of coordinate system
establishment is described as follows. The Cartesian coordi-
nate system QOP is set as the image coordinate system, where
the Q axis represents the number of columns of image pixels,
the P axis represents the number of rows of image pixels, and
the pixel point ðq, pÞ represents the q row and the p column of
this pixel on the image. Because it determines the position of
pixel points according to the number of rows and columns,
but does not reflect its position in the image through physical
units, it is necessary to create an image coordinate system. The
physical image coordinate system is set as XO1Y , where the
origin O1 is the intersection point of the camera optical axis
and the plane where the image is located. The X axis and Y
axis are parallel to the Q axis and P axis, respectively. The
physical size of each pixel in the XO1Y coordinate system is
set as dx and dy, and the following relation can be obtained:

q = x
dx

+ q0, p =
y
dy

+ p0: ð1Þ

Formula (1) is expressed in homogeneous coordinates and
matrix form:
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The transformation from the image plane coordinate sys-
tem to the image pixel coordinate system is completed by For-
mula (2). The coordinate systemOcXcYcZc is set as the camera
coordinate system, which is the coordinate system of a single
vision system in binocular vision. The origin Oc is the optical
center of the camera; the Xc and Yc axes are parallel to the X
and Y axes in the image coordinate systemXO1Y , respectively;
and the Zc axes coincide with the optical axis of the camera. A
reference coordinate system OwXwYwZw, selected from the
space environment, is set as the world coordinate system to
represent the position of the camera and the car in the space
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in the environment. The relation of any pointA in the space in
the camera coordinate system and the world coordinate
system is shown in the following formula:
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In Formula (3), R represents an orthogonal rotation trans-
formation matrix, T represents a three-dimensional transla-
tion vector, ðxc, yc, zcÞ represents the coordinates of point A
in the camera coordinate system, and ðxw, yw, zwÞ represents
the coordinates of point A in the world coordinate system.
Through Formula (3), the space point A realizes the transfor-
mation from the world coordinate system to the camera coor-
dinate system. According to the pinhole imaging model, the
transformation from the camera coordinate system to the
image plane coordinate system can be obtained by using geo-
metric relations, as shown in the following formula:

f
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In Formula (4), f represents the focal length of the camera,
which is expressed in homogeneous coordinate matrix form as
follows:
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Using the above formula, the establishment and conver-
sion of different coordinate systems (left and right camera cal-
ibration) are realized. After the calibration of the left and right
cameras is completed, the binocular calibration also needs to
know the relative positions between the left and right cameras.
Therefore, two matrices are introduced, namely, the rotation
matrix Rs and the translation matrix Ts of the left camera rel-
ative to the right camera. Then, the relationship between the
two cameras is shown in the following formula:
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In Formula (6),
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After considering camera calibration and once internal
and external parameters are established, the world coordi-
nate system and the location of the relationship between cars
are relatively static. If the car is in motion, the world coordi-
nate system is also doing the same movement, considering
the factors, and in this system, only considering the relative
position of car and obstacles. Therefore, a new coordinate
system is selected, which is called the automobile coordinate
system ðX, Y , ZÞ, and its origin position is selected at the
midpoint of the two cameras. Then, the homogeneous coor-
dinated relationship is shown in the following formula:
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In Formula (8), Xcl, Ycl, and Zcl, respectively, represent the
obstacle distance on the camera image corresponding to the X
axis, Y axis, and Z axis, and Xcr , Ycr, and Zcr , respectively, rep-
resent the relative position of the obstacle on the camera image
corresponding to X axis, Y axis, and Z axis. Since the world
coordinate system has changed, Formula (2) and Formula
(5) are used to directly convert to the camera coordinate
system. By calculating the coordinate of the obstacle on the left
and right camera images, the relative position between the
obstacle and the car is further calculated. Then, image match-
ing is performed based on binocular vision.

2.2. Binocular Matching. The region matching algorithm is
used to create a window centered on the point to be matched
in the base graph, and the adjacent pixels in the window are
used to represent the point to be matched. A sliding window
of the same size is created as the center at a point on the polar
line corresponding to the alignment diagram. The sliding win-
dow moved on the outer polar line and the window matching
measure at each displacement point is calculated. The best
matching point is obtained by searching the maximum or min-
imum value of the matching measure. For binocular image
pairs, for a point in the left image, create a window centered
on that point. A sliding window of the same size is created as
the center at a point on the corresponding polar line in the
alignment diagram. The sliding window moved on the outer
polar line, and the windowmatching measure at each displace-
ment point is calculated. The point with the maximum similar-
ity or minimum difference is selected as the matching point of
this point. The specific process is described below. First of all,
when determining appropriate matching primitives, the obsta-
cle target is uncertain. The obstacles could be pedestrians or
other objects such as cars. Cars can also be divided into trucks,
ordinary sedan, and so on; from the point of view of form, the
difference is bigger and the relative characteristics of a single
image are more complex, which is therefore difficult for feature
matching [18]. By image segmentation, the target image is
segmented from the background. The discussion is carried
out if there is only one target in the image, and the target gray
block in the left image is used as the base element to search in
the right image. In the process of driving, the position of the
obstacle on the horizontal plane directly determines the driving

3Wireless Communications and Mobile Computing



result, while the vertical height of the obstacle has little influ-
ence on the driving decision. When the target is a pedestrian,
the pedestrian’s position on the horizontal plane will determine
whether to stop or detour, and the pedestrian’s height has no
effect on this. Grayscale blocks in the two images are compared
horizontally. The car is formed into a continuous gray block in
the binary image, and the gray area registration in the horizon-
tal direction can identify it as a matching target. Firstly, the
background information is filtered out of the image by using
threshold segmentation, and the target is highlighted. In the
processed image, there are two obvious targets that can be
matched: the car on the left of the center of the image and a
narrow street line on the left of the car. Next, the gray block
of the car target in the middle of the image is projected, and
the projection line on the abscissa is used as the primitive for
matching. Due to the existence of more than one target gray
block in the image, due to the image illumination angle,
shadow, overlay, and other adverse factors directly projected
on the image, multiple targets will be fused together. Therefore,
multiple targets should be extracted into a single target to facil-
itate matching. In order to reduce the amount of data to be
processed, the whole image is cut into several banded regions,
and the target of the gray block in each banded region is
projected. After the projection processing, the target is trans-
formed into several line segments in the image, the length of
the line segments at the same height is calculated, and the
similarity matching of the length of the line segments is carried
out. If there are two line segments whose lengths are the closest,
it can be considered as a target with the same name, and the
two endpoints of the line segment are points with the same
name. The smaller the interval is, the richer the information
is and the more computation is needed. The larger the interval
is, the less information is needed and the less computation is
needed. The appropriate interval is selected according to the
characteristics of the target. If the relative speed of the target
is faster, the interval should be reduced; otherwise, it can be
amplified to improve the real-time performance. If the height
feature of the target is small, the interval should be reduced;
otherwise, it can be enlarged. The length of the projected line
segment is analyzed to get the length of the line segment. We
list the matrix of the line segment length in both images and
match the line segment with the closest length according to
the rule from left to right to obtain three line segments with
the same name. The two endpoints of the line segment are
points with the same name. Through triangulation, the depth
information of the points with the same name is calculated
and obtained. The length of the line segment represents the
width index of the target in the real world. Through the above
process, the matching based on the region gray area is trans-
formed into the feature matching based on the width of the
projected line segment of the ribbon region. Three line seg-
ments and six points with the same name are obtained by
matching the above pictures. Next, the six points are triangu-
lated to calculate the three-dimensional coordinates of the
points with the same name.

2.3. Obstacle Identification. After acquiring the characteristic
points of the obstacles in the images captured by the left and
right cameras, the position coordinates of the points in the

binocular vision system are calculated by using the method
of depth information calculation of the points. Among them,
in the calculation of the depth information of the point with
the same name, the first step is to get the coordinates of the
point with the same name in the image. The two images are
taken by the left and right CCD cameras at the same
moment by camera, and the position parameters ðx1, y1Þ
and ðx2, y2Þ of the point with the same name in the two
images are obtained by image processing. After the image
coordinates of pixels to the coordinates into space coordi-
nates of pixels corresponding to the physical, through the
two image points with triangle to locate the implementation
of physical points, since one side of the triangle (the connec-
tion between the two cameras) is known, so the second step
to calculate as points to the physical connection with the
angle of optical axis in the relative coordinates. Constants
obtained from calibration measurement include the height
from the origin to the ground, the distance between the
two cameras, and the image width and height; parameters
obtained from calibration include the focal length; and ðx1
, y1Þ and ðx2, y2Þ of the same name point position parame-
ters are detected in real time from the collected images.
The coordinates of the target point in the relative coordinate
system are calculated according to the determined geometric
relation. After getting the coordinate information, through
the analysis of the coordinate of the point with the same
name, the type, color, and other details of the obstacle can
be identified. For example, the width of the car in the origi-
nal image can be calculated by comparing the abscissa of the
left and right points with the same name. The left side of the
car has a white door of the word line. The system can mea-
sure the width and vertical height information of the line.
Use a series of points for complete matching as the most
important target in the image information. The flow chart
of driverless vehicle obstacle automatic recognition algo-
rithm is shown in Figure 1.

Through further analysis of the information, the contour
information of the target can be obtained, such as whether
the target is the car, the pedestrian, or just the railing [19,
20]. Through the above process, the recognition of the target
obstacle is realized.

3. Experiment

The proposed algorithm based on binocular vision is used to
make a comparative experiment with two traditional identi-
fication algorithms. The specific content is as follows.

3.1. Experimental Environment. In the simulation experiment,
the simulation platform of Pentium 42.8GHz and 4Gmemory
is used. The operating system model is XP SP2. The binocular
vision hardware platform is composed of two identical USB3.0
industrial cameras, Jetson TX-1, camera support, and display.
Binocular camera is used to collect images, and Jetson TX-1 is
used to process the collected images. Specific parameters are
shown in Table 1.

In the above experimental environment, the binocular
calibration toolbox provided by MATLAB 2017b is used to
calibrate the binocular camera.
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3.2. Experimental Process. First of all, in order to ensure the
smooth progress of the experiment, the binocular camera is
used to carry out calibration work. Step 1, take the image. Dur-
ing shooting, the camera position should be fixed to shoot a
group of images, and the direction and angle of the calibration
plate should be changed at the same time, and all the corner
points on the calibration plate should be included in the
image, so as to facilitate the subsequent corner detection. Step
2, extract the corners. Input each checkerboard size 25mm,
then use MATLAB to extract checkerboard corner points.
The third step is the calibration of the monocular camera.
The camera calibration module of MATLAB 2017b is used
to calibrate the left and right cameras, to obtain the internal
parameters, rotation matrix, distortion coefficient, and trans-
lation vector of the left and right cameras. The fourth step is
calibration error analysis. After the calibration of the monoc-

ular camera is completed, the calibration results are analyzed
based on the error pixel distribution. The fifth step is binocular
camera calibration. The stereo camera is calibrated using the
MATLAB 2017b camera calibration module to obtain the
rotationmatrix and translation vector of the binocular camera.
Finally, the calibration results are outputted, as shown in
Figure 2.

As can be seen from Figure 1, the average calibration
errors of both monocular camera and binocular camera are
within the range of 0.1 pixel, indicating high calibration
accuracy and good calibration effect. After that, the obstacle
identification is carried out automatically. The car went
straight ahead at a speed of 30km/h. Select the vehicle forward
person as obstacle 1, the bicycle as obstacle 2, and the fork port
as obstacle 3. The obstacles 1, 2, and 3 are set at 5m, 10m, and
20m in front of the vehicle, respectively. Lighting conditions
are natural light during the day. The simulation diagram of
the experimental obstacles is shown in Figure 3, and the iden-
tification results are compared.

3.3. Experimental Results. The verification standard for effec-
tive obstacle avoidance is the verification standard that has
no collision and can drive normally. With regard to failure
to complete the avoidance or a collision with the obstacle,
the verification standard of false avoidance is the behavior
of avoiding obstacles on a road that is free of obstacles.
The recognition results of the proposed binocular vision-
based automatic recognition algorithm for UAV driving
vehicle roadblocks, traditional algorithm 1, and traditional
algorithm 2 are shown in Table 2.

As shown in Table 2, for obstacle 1, the recognition error of
the proposed algorithm is 0.03m; for obstacle 2, the recognition
error of the proposed algorithm is 0.02m; and for obstacle 3,
the recognition error of the proposed algorithm is 0.01m. In
conclusion, the proposed algorithm has a smaller recognition
error (higher recognition accuracy). Through analysis, it is
found that the proposed obstacle recognition algorithm based
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Figure 1: Flow chart of automatic obstacle recognition algorithm
for driverless vehicle.

Table 1: Binocular camera and TX-1 parameters.

Instrument Parameter Parameter value

Binocular camera

Baseline 20.5 cm

Focal length 3.1mm

Pixel 180 pixels

Resolution ratio 2560 ∗ 20

Jetson TX-1

System Ubuntu14.04

Memory 4GB

CPU 64-bit
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Figure 2: Calibration results of binocular camera.
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on binocular vision can accuratelymeasure the relative position
information of the vehicle and the obstacle by adding the car
coordinate system in the camera calibration.

4. Conclusions

Computer vision has a broad application prospect; intelligent
robot, medical image processing, and graphics search technol-
ogy in all walks of life have their place; because the image con-
tains abundant information, relative to other types of sensors,
computer vision has obvious superiority, which will be applied
to more and more engineering. Binocular stereo vision, as an
important research branch of computer vision, has always
been one of the focuses and hotspots of computer vision
research. It simulates the process of human perception with
both eyes and can measure the depth of a target using the
parallax generated by multiple viewing angles. In this paper,
binocular vision is applied for automatic identification of
roadblocks of unmanned vehicles. By adding a car coordinate
system, the relative position information of vehicles and obsta-
cles can be obtained easily and the identification accuracy can
be improved. It is hoped that the proposed algorithm can pro-
vide some reference value for the research in this field. Binoc-

ular vision processing system needs to be aimed at different
applications because of its large information capacity and high
complexity. Real time is the bottleneck of its engineering
application. More in-depth research about how to solve the
bottleneck of its engineering application is the key future
research direction.
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