
Research Article
PrivCrowd: A Secure Blockchain-Based Crowdsourcing
Framework with Fine-Grained Worker Selection

Qiliang Yang , Tao Wang , Wenbo Zhang , Bo Yang , Yong Yu , Haiyu Li ,
Jingyi Wang , and Zirui Qiao

School of Computer Science, Shaanxi Normal University, Xi’an 710119, China

Correspondence should be addressed to Tao Wang; water@snnu.edu.cn and Yong Yu; 18300794@qq.com

Received 29 April 2021; Accepted 13 June 2021; Published 1 August 2021

Academic Editor: Ximeng Liu

Copyright © 2021 Qiliang Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Blockchain-based crowdsourcing systems can mitigate some known limitations of the centralized crowdsourcing platform, such as
single point of failure and Sybil attacks. However, blockchain-based crowdsourcing systems still endure the issues of privacy and
security. Participants’ sensitive information (e.g., identity, address, and expertise) have the risk of privacy disclosure. Sensitive
crowdsourcing tasks such as location-based data collection and labeling images including faces also need privacy-preserving.
Moreover, current work fails to balance the anonymity and public auditing of workers. In this paper, we present a secure
blockchain-based crowdsourcing framework with fine-grained worker selection, named PrivCrowd which exploits a functional
encryption scheme to protect the data privacy of tasks and to select workers by matching the attributes. In PrivCrowd,
requesters and workers can achieve both exchange and evaluation fairness by calling smart contracts. Solutions collection also
can be done in a secure, sound, and noninteractive way. Experiment results show the feasibility, usability, and efficiency of
PrivCrowd.

1. Introduction

JeffHowe first used the notion of “crowdsourcing” in 2006 [1],
as time goes on, crowdsourcing becomes a very promising
industry. Crowdsourcing provides a distributed problem-
solving paradigmwhich is not the same as traditional outsour-
cing computation [2, 3]. In a crowdsourcing platform, a
requester can post an open call for solutions submitted by
workers for her crowdsourcing task, such as creating writing
and image labeling. Some popular crowdsourcing businesses
include MTurk (https://www.mturk.com/mturk/), Upwork
(https://www.upwork.com), and Freelancer (https://www
.freelancer.com). These systems are generally centralized
platforms where match the requesters’ and workers’ task pair
with fair exchange of rewards. A centralized crowdsourcing
framework at least includes the following drawbacks: (1) the
platform must be trusted, (2) the platform usually charges
transaction fee from both requesters and workers, (3) sensitive
information is stored in the platform, (4) single point of fail-
ure, and (5) manipulation to the participants’ attributes.

Many works try to solve the above-mentioned problems
from different perspectives. Some try to design distributed
crowdsourcing systems [4, 5]. Some try to leverage the block-
chain to build a decentralized crowdsourcing platform to
alleviate these known issues [6–8]. Some try to protect the
data privacy of tasks [9, 10]. Blockchain-based crowdsour-
cing platforms have some core advantages which include to
maintain participants’ attributes publicly and manipula-
tion-resiliently, to build a fair trading platform between
requesters and workers by exploiting the smart contracts,
and to avoid the single point of failure. However, there is a
dilemma in blockchain-based crowdsourcing schemes, that
is, tamper-proofing of public ledger make the workers’ and
requesters’ profiles be trusty in a decentralized way. On the
other hand, plaintext profiles recorded by blockchain will
leak massive sensitive data about participants’ identity,
expertise, etc. Some works tackle the privacy leak by using
expensive tools. [7] uses the group signature to provide ano-
nymity with accountability. [8] proposed a common-prefix-
linkable anonymous authentication scheme which also

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 3758782, 17 pages
https://doi.org/10.1155/2021/3758782

https://orcid.org/0000-0002-3059-1900
https://orcid.org/0000-0001-8099-9704
https://orcid.org/0000-0002-8465-5332
https://orcid.org/0000-0002-0419-1209
https://orcid.org/0000-0003-0667-077X
https://orcid.org/0000-0002-1815-0328
https://orcid.org/0000-0002-0538-5988
https://www.mturk.com/mturk/
https://www.upwork.com
https://www.freelancer.com
https://www.freelancer.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3758782

provides anonymity with accountability. But these works
hinder the platform to take advantage of the transparency
of blockchain, that is, identity anonymity makes the public
auditing of worker’s attributes impossible. Especially in the
reputation-based crowdsourcing scheme, anonymity and
accountability need to be a tradeoff. On the other hand, some
proposals fail to protect the data privacy of the tasks and the
solutions [6, 8]. For some sensitive crowdsourcing tasks, such
as geographic location collection and images labeling con-
taining faces, the risk of privacy information leakage is still
serious.

Thus, this work is motivated by designing a blockchain-
based crowdsourcing framework which meets the following
requirements:

(i) Using blockchain to provide trustworthiness of
workers in a decentralized way

(ii) Protecting the data privacy of both tasks and
solutions

(iii) Providing protection of identity anonymity

Next, we will briefly review the related literature about
blockchain-based crowdsourcing systems.

1.1. Related Work

1.1.1. Blockchain-Based Crowdsourcing Systems. CrowdBC is
a fancy blockchain-based crowdsourcing framework which
can effectively thwart many attacks such as DDoS, Sybil,
and “false-reporting” attacks. However, CrowdBC provides
no privacy protection for the task’s data, neither for the solu-
tion [6]. Tanas et al. used blockchain to decentralize data
crowdsourcing, but they did not consider privacy and
anonymity which are fundamentally arguable for basic utility
[11]. Zhang et al. using secure hash, commitment, and
homomorphic encryption, proposes a blockchain-based
crowdsourcing scheme named BFC [12]. Zhu et al. proposed
a hybrid blockchain-based named zkCrowd. In this platform,
they integrated with a hybrid blockchain structure, smart
contract, dual ledgers, and dual consensus protocols, but
their work mainly focuses on the consensus protocol [13].
Feng et al. proposed a blockchain-based MCS system, named
MCS-Chain, to realize fully distributed and decentralized
trust management in MCS, but they did not consider the
privacy concerns [14].

1.1.2. Anonymous and Security. Li et al. also adopted a pseu-
donym method to achieve anonymous crowdsourcing, but
their proposal cannot detect malicious workers who pretend
pseudo IDs for rewards [15]. Rahaman et al. used a group
signature with sublinear revocation and backward unlink-
ability and exculpability to construct an anonymous-yet-
accountable crowdsourcing system [16]. Gisdakis et al.
focused on privacy issues during the data crowdsourcing
and introduced more authorities to deal with different func-
tionalities [17]. The distributed authority could reduce the
excessive trust; however, the instantiation of these authorities
in practice is still intractable. ZebraLancer is one of the priori
works that tempts to present some privacy-preserved

schemes. They proposed a common-prefix-linkable anony-
mous authentication scheme which also provides anonymity
with accountability [8]. SecBCS exploits the group signature,
CPABE to provide anonymity and privacy protection [7].

1.2. Organization. The remainder of the paper is organized as
follows. In Section 2, we present the overview of our proposed
framework. In Section 3, we review the preliminaries. The
building blocks, posting protocol, and submission protocol
are given in Section 4. In Section 5, the description and secu-
rity analysis of our proposed framework is given. Next, we
present a series of security analysis in Section 6 and efficiency
analysis for our framework in Section 7, and finally, we con-
clude and discuss the future work of the paper in Section 8.

2. Overview of our Proposed Framework

2.1. System Model. We propose a novel secure and privacy-
preserved blockchain-based crowdsourcing framework with
fine-grained worker selection, called PrivCrowd. In Priv-
Crowd, the participants, i.e., the requesters and workers can
do crowdsourcing tasks in a secure way, which means the
requester’s posting task’s data are encrypted by a functional
encryption (FE) scheme specifically carved for PrivCrowd.
Moreover, the solution data are submitted also in the cipher-
text. Our framework can run atop a public blockchain, e.g.,
Ethereum [18], which uses pseudonyms to protect the user’s
privacy. Therefore, the privacy of outsourcing tasks can be
guaranteed because the task data and solution data are proc-
essed and transferred in the ciphertext. There are five roles in
our PrivCrowd. As shown in Figure 1, these roles are
requester, worker, crowdsourcing authority (CA), smart con-
tract (blockchain), and storage. They logically operate in
three layers which are top-down named task layer, block-
chain layer, and storage layer.

2.1.1. Task Layer. Almost every practical crowdsourcing plat-
form involves a role named registration authority (RA) to pre-
vent malicious participants [8], and RA also acts to identity
authentication to avoid complicated mutual authentication
[19–22]. So in our framework, we need a crowdsourcing
authority (CA) that acts as a RA at the user registration phase
and also acts as a key generation center (KGC) to generate
keys for the functional encryption scheme. The requester in
task layer posts his tasks by sending to the smart contract Post-
Task a message including task requirements, and metadata
which usually is a pointer addressing the encrypted task’s data,
stored at the storage. The worker who wants to participate in
the task requests CA (who acts as KGC right now) a predicate
key for further decryption, submits the solution to the smart
contract CollectSol, and gets a reward if the solution is
qualified.

2.1.2. Blockchain Layer. In blockchain layer, there are three
smart contracts PostTask, CollectSol, and UpdateProf. Post-
Task waits for requesters’ contact, receives the posted task,
and notifies the CollectSol to begin collecting solutions.
CollectSol then collects worker’s submissions and evaluates
them by checking the zk-SNARK proof. If a worker finishes
the job, he gets the rewards. Besides the above two smart

2 Wireless Communications and Mobile Computing

contracts, there is another contract UpdateProf for updating
the public profile of the workers who have accomplished
the task. The workers’ profiles, such as expertise, reputation,
and location, are publicly recorded on the blockchain which
obviously are unforgeable by any party. Moreover, there are
miners in the blockchain layer, just like in a public block-
chain system, who will persistently receive newly proposed
blocks, and faithfully execute “programs” defined by current
states with taking messages in new blocks as inputs.

2.1.3. Storage Layer. Considering that the task data and solu-
tion data usually should be too large to be stored directly in
the smart contract, a storage layer is necessary. The entity
in the storage layer is third-party storage, such as the public
cloud or IPFS [23]. We do not need the storage to be trusted,
because both task data and solution data are stored after
encryption. It should be noted that our scheme adopts the
hybrid encryption paradigm for task data encryption, that
is, a symmetric encryption scheme (such as AES) is used to
encrypt the task data, and the symmetric key is encrypted
with the FE scheme. Qualified workers will get a predicate
key that can decrypt the FE ciphertext and, then, decrypt
the FE ciphertext to get the symmetric key to decrypt task
data. Our scheme uses the public key encryption scheme
for the encryption of the solution, that is, encrypts the solu-
tion data directly with the public key of the requester. Clearly,
the hybrid encryption paradigm can also be used here to pro-
cess the solution data.

2.2. Intuition. In this section, we will overview the key ideas for
designing the PrivCrowd. Blockchain-based crowdsourcing
systems still endure the issues of privacy and security.
CrowdBC is a fancy blockchain-based crowdsourcing frame-
work which can effectively thwart many attacks such as DDoS,
Sybil, and “false-reporting” attacks. However, CrowdBC pro-
vides no privacy protection for the task’s data, neither for the
solution [6]. Tanas et al. used blockchain to decentralize data
crowdsourcing, but they did not consider privacy and anonym-
ity which are fundamentally arguable for basic utility [11]. Zeb-
raLancer is one of the priori works that tempts to present some
privacy-preserved schemes. They proposed a common-prefix-
linkable anonymous authentication scheme which also pro-
vides anonymity with accountability, but the solutions evalua-
tion procedure needs the requester to be only and interactive
with the smart contract [8]. SecBCS exploits the group signa-
ture, CPABE to provide anonymity and privacy protection,
but this platform needs a trusted hardware [7].

Based on our motivation, different from the zebraLancer
[8] and SecBCS [7], our strategies are

(1) To provide a blockchain-based, public, and tamper-
proof attribute maintaining scheme for workers in
the first move

(2) To provide a fair trading platform for crowdsourcing
task between requesters and workers by exploiting
the smart contracts

Layer 1:
Task layer

Layer 2:
Blockchain layer

Layer 2:
Storage layer

Requester

Crowdsourcing
authority

Task
requirements

Meta
data

Register
authority

Key
generation

center

Worker

Predicate
key

Smart contracts

Worker’s public profile

Posttask Collectsol Updateprof

Experitse Reputation Location

Miner MinerBlockchain

Task’s data Solution’s data

Storage: Cloud/IPFS

Figure 1: The architecture of PrivCrowd.

3Wireless Communications and Mobile Computing

(3) To protect task’s privacy by using an elaborated func-
tional encryption scheme to encrypt the sensitive
data of the task, such as images containing human
privacy information and sensitive map data. This
move provides a noninteractive and fine-grained
worker selection mechanism

(4) To protect solution’s privacy also by using public-key
encryption, but with the encrypted solution, to let the
worker to submit a zk-SNARK proof to convince the
verifier, the smart contract, to believe that solution is
qualified

(5) To use pseudonyms protecting participants’ identity
anonymity

Therefore, with these designs, our overall goal of the Priv-
Crowd can be achieved. We think that although it just
provides weak privacy protection for the identity of partici-
pants, i.e., pseudonym, due to protections by encrypting the
sensitive data of the tasks and the solutions, even if the adver-
sary succeeds to attack the identity anonymous, he will get no
more information of the participants for crowdsourcing
tasks.

2.3. Our Contributions. In a nutshell, the contributions of this
work are presented as follows:

(i) We propose a blockchain-based, privacy-preserved,
and secure crowdsourcing framework named Priv-
Crowd which does not depend on any centralized
crowdsourcing platform to accomplish crowdsour-
cing process. Moreover, users do not need to pay
the costly service fees to traditional crowdsourcing
platform anymore, only required to pay a small
amount of transaction fees

(ii) Requester can post a task by publishing task’s
encrypted data then goes offline by using our func-
tional encryption scheme for the inner product. This
design provides a fine-grained access control mech-
anism for crowdsourcing data which can select the
qualified workers through the attributes in a public
way. This means only those workers who satisfy
the requirements specified by the requester in
advance can decrypt the task’s data and participate
in this task

(iii) A worker can submit a solution also in a noninterac-
tive way by submitting a proof as well to the smart
contract. The smart contract then verifies that proof
meets the requirements of the requester, if yes, pay-
ment will be made automatically, and the profile of
the worker will be updated as well

(iv) We introduce three standard smart contracts in the
framework: PostTask, CollectSol, and UpdateProf,
by which crowdsourcing functionalities can be
achieved such as posting, receiving a task, and sub-
mitting a solution without interaction between the
requester and the worker

(v) We implement the building blocks of the PrivCrowd
to verify the feasibility. For fine-grained workers
selection protocol with task’s data privacy-preserv-
ing, we present the core component, the FEforIP,
which is efficient. For noninteractive solution sub-
mission and evaluation protocol, we also evaluate
the core component, zk-SNARK, in the scenario of
range proof for an integer, which also proves that
our submission protocol is efficient

(vi) We also implement the smart contracts on the
Ethereum public test network and evaluate the
deployment cost and running cost. Experiment
results show the usability and scalability of our pro-
posed crowdsourcing system. Furthermore, we illus-
trate a discussion of future improvements to this
scheme

3. Preliminaries

3.1. Blockchain and Smart Contract. A blockchain is a distrib-
uted public and append-only ledger, typically managed by a
peer-to-peer network collectively adhering to a protocol for
inter-node communication and validating new blocks.
Blockchain-based smart contracts are proposed contracts that
can be partially or fully executed or enforced without human
interaction [24]. One of the main objectives of a smart con-
tract is automated escrow. The blockchain network executes
the contract on its own. Some properties (We remark here that
we only present partial properties of blockchain which are use-
ful to our framework. For other properties, e.g., consensus, we
refer interested readers to literature.) of the blockchain and
smart contract can be informally abstracted as follows [8]:

(i) Transparency. All internal states of the blockchain
will be visible to the whole blockchain. Therefore,
all message deliveries and computations via the
blockchain are in the clear

(ii) Tamper-Proof. A blockchain is a permanent record
of transactions. Once a block is added, it cannot be
altered. This creates trust in the transaction record

(iii) Decentralized. A key feature of smart contracts is
that they do not need a trusted third party to act as
an intermediary between contracting entities

3.2. Digital Signature System. A digital signature system
consists of a tuple of three algorithms (Sig.Setup, Sig.Sign,
and Sig.Verify) working as follows:

(i) Sig.Setup ð1λÞ⟶ ðvk, skÞ. On input a security
parameter λ, this algorithm generates a key pair ðv
k, skÞ

(ii) Sig.Sign ðsk,mÞ⟶ σ. On input a sign key sk and a
message m, this algorithm outputs a signature σ

(iii) Sig.Verify ðvk, σÞ⟶ ð0, 1Þ. On input a verification
key vk and a signature σ, this algorithm outputs 1
if σ is valid. Otherwise, it outputs 0

4 Wireless Communications and Mobile Computing

3.3. Functional Encryption for Inner Product Predicates

3.3.1. Notations. Given two vectors U
!
= ðu1, u2,⋯, udÞ and

V
!
= ðv1, v2,⋯, vdÞ, we use the notation hU!, V

!i to denote

dot product U
!T

V
!
. For a group element g, we use gU

!
to

denote a vector ðgu1 , gu2 ,⋯, gudÞ.
3.3.2. Wang’s Scheme [25]. For an inner product predicate P,
a functional encryption scheme for P is defined as follows:

(i) FE.Setup ð1λÞ. This algorithm takes the security
parameter λ as input. First, it runs Gð1nÞ and gets ðp
, q, r,G,GT , êÞ, where G =Gp ×Gq ×GrðN = p × q × r
Þ. Then, it computes gp, gq, gr as generators of Gp,
Gq,Gr , respectively. In addition, it chooses random

α, x∈Rℤ∗
N and X

!
∈Rℤ

d
N . Finally, it outputs public

parameters PP ≔ ðG, gp, grÞ along with the public
key:

MPK≔ gxp, g
X
!

p , ê gp, gp
� �α

� �
: ð1Þ

It keeps MSK≔ ðgα
p , x, X

!Þ private as the master secret
key.

(ii) FE.Enc ðMPK, ðA!,MÞÞ. Let A! = ða1,⋯, adÞ ∈ Σd , this

algorithm takes the public key MPK and a pair ðA!,
MÞ as inputs and chooses random exponent s∈Rℤ

∗
N ,

then it outputs C as the ciphertext, where

C≔ C0 ≔ ê gp, gp

� �αs
·M, C1 ≔ g

s xA
!
+X
!
,1

� �
p

()
: ð2Þ

(iii) FE.KeyGen ðMSK, PFE
K
! Þ. Let K! = ðk1,⋯, kdÞ ∈ Σ, this

algorithm takes as inputs master secret keyMSK and

a predicate PFE
K
! , and chooses random y∈Rℤ

∗
N ,W

!
∈R

ℤd+1
N . Finally, it outputs a predicate key:

SKP ≔ g
yK
!
,α−y X

!
,K
!� 	� �

p gW
!

r : ð3Þ

(iv) FE.Dec ðSKP, CÞ. This algorithm takes a token SK
K
!

for a predicate PFE
K
! and ciphertext C as inputs, it

outputs:

F K
!
,M

� �
≔

M ≔
C0

ê C1, SKK
!

� � PFE
K
! A

!� �
= 1

⊥ PFE
K
! A

!� �
= 0

8>>><
>>>:

, ð4Þ

where

PFE
K
! A

!� �
≔

1 if K
!
, A
!D E

= 0

0 otherwise

8<
: : ð5Þ

3.3.3. Correctness of the FEforIP. Let C and SKP be as above.
Then,

M =
C0

ê C1, SKPð Þ =
ê gp, gp
� �αs

·M

ê C1, SKPð Þ

=
ê gp, gp
� �αs

·M

ê gs xA+X,1ð Þ
p , g yK,α−y X,Kh ið Þ

p gWr
� �

=
ê gp, gp
� �αs

·M

ê gs xA+X,1ð Þ
p , g yK,α−y X,Kh ið Þ

p

� �
· ê gs xA+X,1ð Þ

p , gW
r

� �

=
ê gp, gp
� �αs

·M

ê gs xA+X,1ð Þ
p , g yK,α−y X,Kh ið Þ

p

� � =
ê gp, gp
� �αs

·M

ê gs
p, gp

� � xA+X,1ð ÞT · yK,α−y X,Kh ið Þ
,

ð6Þ

where ðxA +X, 1ÞT · ðyK, α − yhX,KiÞ = ðxA +XÞT · yK + α
− yhX,Ki = xyhA,Ki + yhX,Ki + α − yhX,Ki = xyhA,Ki +
α:

For all ðA,KÞ ∈A ×K such that PFE
K
! ðA!Þ = 1 which

means hK,Ai = 0 mod N , then the dataM will be recovered
correctly.

3.4. Hidden-Vector Encryption from FEforIP. Let Σ be a finite
set, a Hidden Vector System (HVE) over Σℓ is a selectively
secure HVE searchable encryption system [26]. Define Σ∗
= Σ ∪ f∗g. A symbol “∗” means a wildcard or “do not care”
value.

For σ = ðσ1,⋯, σℓÞ, x = ðx1,⋯, xℓÞ ∈ Σℓ
∗ define a predi-

cate PHVE
σ over Σℓ as follows:

PHVE
σ xð Þ≔

1 if σi = xi orσi = ∗,for i = 1 to ℓ

0 otherwise

(
: ð7Þ

In other words, the vector x match σ in all the coordi-
nates where σ is not ∗.

With our functional encryption system for inner product
predicates [25], we can easily build an HVE system following
the method from [27]. For Σ =ℤN , a HVE system can be
realized as follows:

(i) The setup algorithm is the same as FE.Setup

5Wireless Communications and Mobile Computing

(ii) To generate a secret key corresponding to the pred-

icate PHVE
σ , construct a vector K

!
= ðk1,⋯, k2ℓÞ,

where k2i−1 ≔ 0, k2i ≔ 0 when σi = ∗, and k2i−1 ≔ 1,
k2i ≔ xi otherwise. Then, the secret key can be
obtained by running FE.KeyGen for predicate PHVE

σ

(iii) To encrypt a message M for the attribute A′
!

= ða1′ ,
⋯, a2ℓ′ Þ, choose random r1,⋯, rℓ ∈ℤN and con-

struct a vector A
!
= ða1,⋯, a2ℓÞ, where a2i−1 ≔ −ri ·

ai, a2i ≔ ri. Then, output the ciphertext C by running

FE.EncðMPK , ðA!,MÞÞ

We can easily find that for ðσ1,⋯, σℓÞ, K
!
, ða1′ ,⋯, aℓ′Þ, r!,

and A
!
be as above. It is clear that

PHVE
σ xð Þ = 1⇐ ∀ r! : K

!
, A
!D E

= 0⇐ ∀ r! : PFE
K
! A

!� �
= 1: ð8Þ

Then, correctness and security of this HVE system hold.

3.5. Zero-Knowledge Proof System and Zk-SNARK. For a NP-
complete language L = fx∣∃w, s:t:,Cðx,wÞ = 1g, a zero-
knowledge proof system is composed of triple algorithms ðG ,
P ,V Þ that work as follows. The generator G , on input the
security parameter k, outputs a public parameter pp. The
honest prover P produces a proof π to prove the trueness of
a statement x ∈L with witness w; then, the verifier V can
verify π deterministically. The security properties of a zero-
knowledge proof system include

(i) Completeness. For every proof π produced by legal
instance-witness pair ðx,wÞ, P ½V ðπ, xÞ� = 1 always
holds

(ii) Soundness. The proof is computationally sound (i.e.,
it is infeasible to fake a proof of a false NP state-
ment). Such a proof system is also called an
argument

(iii) Zero-Knowledge. The verifier learns nothing from
the proof besides the truth of the statement (i.e.,
the witness w).

Based on the definition in [28], for the arithmetic circuit
satisfiability problem of an F-arithmetic circuit C : Fn × Fh

⟶ Fℓ is captured by the relation RC = fðx,wÞ ∈ Fn × Fh

: Cðx,wÞ = 0ℓg, its language is LC = fx ∈ Fn : ∃w ∈ Fh s:t:Cð
x,wÞ = 0ℓg. Then, given a field F, a publicly verifiable prepro-
cessing zero-knowledge succinct noninteractive argument of
knowledge (zk-SNARK) for F-arithmetic circuit satisfiability
is a triple of polynomial-time algorithms (SNARK.Setup,
SNARK.Prove, SNARK.Verify):

(i) SNARK.Setup ð1λ, CÞ⟶ ðpk, vkÞ. It takes as input a
security parameter λ and an F-arithmetic circuit C,
and probabilistically samples a proving key pk and
a verification key vk. Both keys are published as pub-

lic parameters and can be used, any number of times,
to prove/verify membership in LC

(ii) SNARK.Prove ðpk, x,wÞ⟶ π. It takes as input a
proving key pk and a tuple ðx,wÞ ∈RC , and outputs
a noninteractive proof π for the statement x ∈LC

(iii) SNARK.Verify ðvk, x, πÞ⟶ ð0, 1Þ. It takes as input
a verification key vk, a statement x, and a proof π,
outputs b = 1 if the verifier is convinced that x ∈
LC

For a zk-SNARK, there are two more necessary
properties:

(i) Succinctness. The proof is short and easy to verify

(ii) Noninteractivity. The proof is a string (i.e., it does not
require back-and-forth interaction between the
prover and the verifier)

We remark that there is a rigorous formal definition of
succinctness [29], we omit that for the sake of simplicity.

4. Building Blocks

4.1. Fine-Grained Workers Selection Protocol with task’s Data
Privacy-Preserving: Posting Protocol. In this section, we show
how to build a fine-grained data access control scheme by
exploiting Wang’s scheme. Different from some related
works, such as using CP-ABE with a fixed LSSS access struc-
ture [7], our design goal is to let qualified workers can
decrypt the task’s data which are priori uploaded and stored
in blockchain in the posting task phase, enabling a more
powerful worker’s profile expression, such as arbitrary
CNF/DNF formulas.

For example, a requester posts a crowdsourcing task
which restricts those workers can involve in whose reputa-
tion ≥15 or location in fL1, L2, L5g and expertise =Writing
. We formalize this example using vectors representing the
attributes required by the requester and profiles of workers.
Let R = ðr1, r!2, r3Þ denote the requiring attributes; in this
case, r1 is the reputation value, r!2 the location set, and r3
the expertise. Let W = ðw1,w2,w3Þ denote the profiles that
a worker has, that is, w1 is his/her exact reputation value,
w2 current location, and w3 his/her expertise. Formally,
workers can participate in this job who satisfy the following
predicate:

Pri
wið Þ≔

1 if w1 ≥ r1ð Þ∨ w2 ∈ r!2

� �� �
∧ w3 = r3ð Þ

0 otherwise
:

8<
:

ð9Þ

Now, the core problem here is how to encode predicates
into vectors that we can leverage the FEforIP directly. We
did not describe this in [25] which is important for our
scheme, so we will show the specific encoding method step
by step.

6 Wireless Communications and Mobile Computing

4.1.1. Conjunctive Equality. Let Σ be some finite set. For W
!

∈ Σ define an equality test predicate PEq

W
! ðR!Þ as

PEq

W
! R

!� �
≔

1 if wi = ri, for all i = 1 to d

0 otherwise

(
, ð10Þ

where R
!
≔ ðr1, r2,⋯, rdÞ ∈ Σd , and W

!
≔ ðw1,w2,⋯,wdÞ ∈

Σd . Let ΦEq = fPEq

W
! , for all W

!
∈ Σg. Then, implementing this

equality test with our PEforIP is fairly easy.

For the ciphertext attribute R
!
, set R′

!
≔ ð−R!, 1Þ and encrypt

amessage pair ðR′
!
,MÞ using algorithm FE.Enc(MPK,ðR′

!
,MÞ).

To generate secret key SK
W
! for the key attribute W

!
, set W′

!

≔ ð1,W!Þ. Observe that hW ′

!

,R′
!
i = 0 if and only if for all i =

1 to d, wi = ri holds, which means, for any predicate PEq

W
! ∈

ΦEq, and an attribute R
!
, we have that PEq

W
! ðR!Þ = 1 if and only

if PFE

W ′

!ðR′

!
Þ = 1. Therefore, correctness and security follow

from the properties of the FEforIP. We also remark that if
we set d = 1, then the scheme degenerates to the singleton
equality test.

4.1.2. Conjunctive Compare/Range. Different from equality,
compare/range and subset are pretty complicated but subtle.

For a predicate PCom
W
! ðR!Þ, we show how to realize a compare

predicate by leveraging a FEforIP. Given a finite set Σ′ = f0
, 1g, set Σ′∗ = f0, 1,∗g. Let (HVE.Setup, HVE.Enc, HVE.Key-
Gen, HVE.Dec) be a secure HVE system over Σ′∗ defined as

in Section 3.4. Then, forW
!

∈ Σ, define a conjunctive compare

test predicate PCom
W
! ðR!Þ as

PCom
W
! R

!� �
≔

1 if wi ≥ ri, for all i = 1 to d

0 otherwise

(
, ð11Þ

where R
!
≔ ðr1, r2,⋯, rdÞ ∈ℤd

N , and W
!

≔ ðw1,w2,⋯,wdÞ ∈
ℤd

N . Let Φ
Com = fPCom

W
! , for allW

!
∈ Σg.

Then, build a vector σðR!Þ = ðσi,jÞ ∈ Σ′d as follows:

σi,j ≔
1 if j ≥ ri,

0 otherwise

(
, ð12Þ

output HVE.Enc ðPK , σðR!Þ,MÞ as ciphertext.

For generating a secret key for predicate PCom
W
! , define σ∗

ðW!Þ = ðσi,jÞ ∈ Σ∗′d as follows:

σi,j ≔
1 if j = ri,

0 otherwise
,

(
ð13Þ

then output HVE.KeyGen ðSK, σ∗ðW
!ÞÞ as secret key SK

W
! .

To argue correctness and security, observe that PCom
W
! ðR!Þ

= 1⇐ PHVE
σ∗ðW

!Þ
ðσðR!ÞÞ = 1⇐ hW! , R

!i = 0⇐ PFE
W
! ðR!Þ = 1.

Therefore, correctness and security follow from the proper-
ties of the FEforIP. We also note that a system that supports
comparison tests can also support range tests. For example,
to select workers for some property x ∈ ½a, b�, the requester
encrypts the vector ða, bÞ with task’s data. The predicate then
tests x ≥ a⋀x ≤ b. However, how to realize “∧” or “∨” still not
be resolved; we leave this problem later in this section.

4.1.3. Conjunctive Subset. Let Σ be a set of size n, for some

subsets Ri ⊆ Σ and R
!
≔ ðR1, R2,⋯, RdÞ define a conjunctive

subset test predicate PSub
W
! ðR!Þ as

PSub
W
! R

!� �
≔

1 if wi ∈ Ri, for all i = 1 to d

0 otherwise

(
, ð14Þ

where W
!

≔ ðw1,w2,⋯,wdÞ ∈ Σd .

Then, build a vector σ∗ðR
!Þ = ðσi,jÞ ∈ Σ′d as follows:

σi,j ≔
1 if j ∉ Ri,

0 otherwise

(
, ð15Þ

output HVE.EncðPK , σ∗ðR
!Þ,MÞ as ciphertext.

For generating a secret key for predicate PSub
W
! , define

σðW!Þ = ðσi,jÞ ∈ Σ′d as follows:

σi,j ≔
1 if j =wi,

0 otherwise

(
, ð16Þ

then output HVE.KeyGen ðSK , σðW!ÞÞ as secret key SK
W
! .

To argue correctness and security, observe that: PSub
W
! ðR!Þ

= 1⇐ PHVE
σðW!Þ

ðσ∗ðR
!ÞÞ = 1⇐ hW! , R

!i = 0⇐ PFE
W
! ðR!Þ = 1.

Therefore, correctness and security follow from the proper-
ties of the FEforIP.

4.1.4. Polynomial and CNF/DNF. Similar to [25], we can also
encode a polynomial predicate to vectors by defining the
classes of predicates accordingly. For polynomials of degree

≤d, define the predicate set ΦPoly
≤d ≔ fPPoly

W
! ðR!Þ ∣ p ∈ℤN ½x�,

7Wireless Communications and Mobile Computing

deg ðpÞ ≤ dg, where

PPoly
W
! R

!� �
≔

1 if p xð Þ = 0 mod N

0 otherwise

(
, ð17Þ

for x ∈ℤN . We map the polynomial pðxÞ =w0 +w1x
1 +⋯+

wdx
d to W

!
≔ ðw0,w1,⋯,wdÞ. For ciphertext attribute, R

!
is

mapped onto a key attribute vector R
!
≔ ðr0 mod N , r1

mod N ,⋯, rd mod NÞ. Then, for predicate PPoly
W
! ðR!Þ ∈

ΦPoly
≤d , correctness and security follows from the properties

of the FEforIP, since pðxÞ = 0 whenever hW! , R
!i = 0.

Based on FEforIP for PPoly
W
! ðR!Þ ∈ΦPoly

≤d , we can easily sup-

port the conjunctions, disjunctions, and their extensions
CNF/DNF. We show this ability using an example of con-

junctions of equality tests. To do this, for some W
!

≔ ðw1,
w2Þ and R

!
≔ ðr1, r2Þ, we define the conjunction predicate as

PAND
w1,w2

ðr1, r2Þ, where PAND
w1,w2

ðr1, r2Þ = 1 iff both w1 = r1 and
w2 = r2. This predicate can be a polynomial as

p′ x1, x2ð Þ = r · x1 −w1ð Þ + x2 −w2ð Þ, ð18Þ

where r⟵$ℤN . If PAND
w1,w2

ðr1, r2Þ = 1, then p′ðr1, r2Þ = 0;
otherwise, with all but negligible probability over choice of
r, it will hold that p′ðr1, r2Þ ≠ 0.

In a similar fashion, we can define the predicate for the

disjunction of equality tests. For some W
!

≔ ðw1,w2Þ and R
!

≔ ðr1, r2Þ, we define the disjunction predicate as POR
w1,w2

ðr1,
r2Þ, where POR

w1,w2
ðr1, r2Þ = 1 iff either w1 = r1 or w2 = r2. This

predicate also can be a polynomial as

p″ x1, x2ð Þ = x1 −w1ð Þ · x2 −w2ð Þ: ð19Þ

If POR
w1,w2

ðr1, r2Þ = 1, then p′′ðr1, r2Þ = 0; otherwise, p′′
ðr1, r2Þ ≠ 0.

We can combine disjunctions, conjunctions, and boolean
variables to handle arbitrary CNF or DNF formulas.

4.1.5. Putting All in Together. Now, we know how to handle
the equality, compare/range, subset, polynomial, and
CNF/DNF. All these properties enable our FEforIP scheme
to support testing on the ciphertext task’s data encrypted by
the requester associated with an attribute vector which con-
strains the qualified workers who hold the predicate which
is associated with another vector and will be true. As shown
in Figure 2, our fine-grained workers' selection protocol
works as follows:

(i) A requester would describe her task’s requirements

which are encoded as a vector R
!
, and input it to

the Ciphertext compiler which will output a

requirements vector R′
!

(ii) The ciphertext compiler encodes various require-

ments R
!

as different vectors, e.g., equality test
requirement and subset test requirement. These

vectors then are combined as one vector R′
!

(iii) Then, the requester invokes FE.Enc ðMPK, ðR′
!
, KTÞÞ

to encrypt a secret key KT which is used by a sym-
metric encryption algorithm to encrypt task’s data
which is stored at the storage in ciphertext

(iv) On the other hand, interested workers would sub-
mit their credentials to the KGC to generate their
predicate keys. We emphasize that the worker does
not submit their profile attributes to the KGC. Their
profile attributes are stored and maintained publicly
in blockchain which means the KGC can direct read
these attributes

(v) Worker’s attribute would be as the input of the
predicate compiler. According to the type of the
requirements vector, the predicate compiler will for-
malize the predicates, e.g., equality test predicate
and subset test predicate. Then, different predicates
are encoded in a single form predicate, i.e., polyno-

mial predicate PPoly

W′

!ðR′

!
Þ by the combiner

(vi) The KGC then invokes FE.KeyGenðMSK, PPoly

W ′

!ðR′

!
ÞÞ

to generate the predicate keys SKP accordingly

(vii) Finally, only those qualified workers who hold the

predicate keys SKP such that PPoly

W ′

!ðR′

!
Þ = 1 get the

secret key KT which in turn enable them to decrypt
the task’s data

Therefore, our protocol provides a scheme for requesters
to select workers in a noninteractive and fine-grained way.

4.2. Noninteractive Solution Submission and Evaluation
Protocol: Submission Protocol

4.2.1. Concrete Protocol. According to our designing goal, the
proposed scheme PrivCrowd protects the task’s privacy two-
fold. That is to encrypt the task’s data by exploiting the
FEforIP, as well as to encrypt the solution using the
requester’s public key before submitting it. Then, the chal-
lenge here is how to evaluate solutions at blockchain publicly,
considering the worker submits solutions are encrypted.

(i) Setup ðλÞ. This algorithm initializes the public
parameter Params for the zk-SNARK system and
generates a key pair ðmpk,mskÞ for a digital signa-
ture scheme (We remark this algorithm can be
invoked by RA as other setups which need a trusted
party)

(ii) GenCert ðmsk, pkiÞ. This algorithm is run by the RA
in the user registration phase. On input a worker’s

8 Wireless Communications and Mobile Computing

public key pki, it outputs a signature Ci which is
signed pki by msk as worker’s certificate

(iii) Submit ðsi, ski, pki, Ci, ParamsÞ. This algorithm is
run by the worker who wants to submit a solution
for task TIDi. It invokes the Sig.Sign() algorithm to
sign the task’s ID TIDi using ski and receives
signature SigskiðTIDiÞ. It also invokes the
SNARK.Prove(si, LTIDi

) to generate a proof πi,
where si is solution data, and LTIDi

≔ fx = ðTIDi,
ParamsÞ∣∃w, s:t:SolEvalðsiÞ = 1g

(iv) Evaluate ðΠÞ. Use π1 to verify the worker’s certifi-
cate, π2 to verify whether pki and ski are consistent,
and π3 to verify whether solution si is satisfied
SolEvalð·Þ

4.2.2. Instantiate zk-SNARK for the Protocol. For the submis-
sion protocol of our PrivCrowd, the role of the zk-SNARK is
pretty simple. We just need to prove that a worker’s submis-
sion meets the requirements when he submits the solution.
Meanwhile, the privacy of the solution needs to be protected
when the worker’s submission is verified by the smart
contract publicly. That is, for a solution si of a worker, the
zk-SNARK checks that SolEvalðsiÞ = 1 holds.

We must emphasize that we are not going further to
instantiate the function SolEvalð·Þ in our PrivCrowd, which
results in that we neither going further to instantiate the zk-
SNARK by presenting the specific circuit for it. The reason
is that different solution evaluation functions will lead to
different implementations of the zk-SNARK. We leave the
SolEvalð·Þ as an open interface to compatible with any kind
of evaluation scheme. For example, one can easily implement
an evaluation scheme for checking the numeric solution data

in a range by instantiating a zk-SNARK for this specific NP
statement. We first translate these mathematical statements
into their corresponding boolean circuit satisfiability repre-
sentations. Furthermore, we establish zk-SNARK for each
boolean circuit, such that all required public parameters are
generated. All the above steps are done offline, as they are
executed only once when the system is launched.

5. PrivCrowd: Concrete Scheme

5.1. Security Challenges. In this section, we specify the basic
security requirements for our blockchain-based crowdsour-
cing platform. For blockchain-based crowdsourcing, with
the majority honest security assumption, fully fraud resilient
property is inherent [6]. So, we mainly focus on the security
and privacy of tasks and solutions.

5.1.1. Data Privacy of Task. In a crowdsourcing system, the
posed tasks may include highly sensitive data such as map
data, location information, and sensitive images. Due to the
publicity of blockchain, sensitive data cannot be stored
directly in the blockchain. Otherwise, this would result in
leakage of information and compromise the requester’s pri-
vacy. Although some related proposals did not provide pri-
vacy protection [6, 8], we treat the protection for sensitive
data as our first concern.

5.1.2. Data Privacy of Solution. Sensitive tasks are most likely
to collect sensitive solutions. The data privacy protection of
solutions is also very important, which is also the design goal
of our scheme. Using encryption can provide privacy protec-
tion and can also prevent a “free-riding” attack which refers
to malicious workers who get solutions submitted by other

Requester
Task’s

requirements
Requirements

vector
Functional
encryption

Workers
selection

Requirements
description

R

W

R′Ciphertext
compiler

Predicate
compiler

Combiner

C
Dec

SKP

KT

Qualified
workers get

W
PEq

W
PCom

W
PSub

(R)

(R)

(R)

R′Enc (, KT)

R′
W′

PPoly ()

Worker’s
attribute

Predicate
logic

Polynomial
predicate

Decryption

Worker

Figure 2: Overview of our fine-grained workers’ selection scheme.

9Wireless Communications and Mobile Computing

workers and directly use them as their own submission. Our
design goals also include resistance to this kind of attack.

5.1.3. Soundness of Solution. In our scheme, we want to build
a fair and noninteractive platform for requesters and
workers. Those workers who submit right and good solutions
must get payment, but those who free-ride must get nothing.
One of the big challenges is how to ensure that the submitted
solutions are qualified. We name this property the soundness
of the solution. Moreover, using encryption to protect the
solution makes this challenge more complicated. That is,
how to evaluate the encrypted solution at the smart contracts
in a noninteractive way. Lu et al. adopt an interactive solution
evaluation procedure between the requester and the smart
contract [8]. We want to avoid this kind of interaction.

5.1.4. Trustworthy ofWorkers.We think in a blockchain-based
crowdsourcing platform, using the tamper-proof property of
blockchain to enforce the trustworthy of workers and make
the attributes of workers’manipulation resistance is a key idea,
especially in reputation-based incentive mechanism.

5.2. The Outsourcing Process. Now, we are ready to present a
specific procedure for the crowdsourcing tasks. As the
FEforIP and zk-SNARK require a setup phase, we consider
that a setup algorithm generated the public parameters PP
= ðPPFE, PPZKÞ for this purpose and published it as common
knowledge.

We treat blockchain as an infrastructure in which many
miners, for the sake of their interests, participate to confirm
transactions and to execute smart contracts. Any type of user
can initiate a transaction, that is, broadcast the transaction
message signed by him to the blockchain and wait for the
blockchain to confirm.We omit the process of miner selection
by the consensus protocol after the requester publishes the
task. In our scheme, when we say that the requester or worker
sends a message to the blockchain, it means that themessage is
sent to a smart contract associated with an address.

In our PrivCrowd, the outsourcing process consists of five
sequential procedures including User registering, Requester
posting task, Attribute keys generation, Solutions submitting
and evaluation, and Workers profile updating. Moreover,
the first three procedures are used to implement the fine-
grained workers’ selection protocol detailed described in Sec-
tion 4.1, and the last two procedures are used to implement
the noninteractive solution submission and evaluation proto-
col described in Section 4.2. As shown in Figure 3, these pro-
cedures work as follows.

(1) User Registering. In this procedure, any type of
users, i.e., requesters and workers, generate the key
pair ðpk, skÞ and register at CA who act as the reg-
istration authority (RA) to get a certificate Cert
binding pk. For a requester R, we denote by ðp
kR, skRÞ his key pair and CertR his certificate. Sim-
ilarly, we denote by ðpkW , skW Þ a key pair of a
worker W and CertW his certificate. We need to
emphasize that PrivCrowd just likes the other appli-
cations atop on a public blockchain, e.g., Bitcoin,

allows participants to generate a fresh address for
a task as a simple solution to avoid deanonymiza-
tion in the underlying blockchain. We omit the
detailed address generating process

(2) Requester Posting Task. Once a requester R has an
outsourcing task, R encrypts the task’s data by run-

ning FE.Enc(MPK,ðR′
!
, KTÞ) to get a ciphertext CTτ,

where MPK is the master public key included in P

PFE, R′
!

is requirements vector, τ is a unique session
identifier of the task, and KT is a secret key used by
a symmetric encryption algorithm to encrypt task’s
data stored at the storage in ciphertext. Then, R
sends a signed tuple (To simplify the presentation,
we assume implicitly that signed messages can be
extracted from their signatures.) SigskRðτkCTτkDesτ
kTτkTotRewkRPSÞ to the smart contract PostTask,
where Tτ is a deadline to collect solutions, TotRew
is total reword for this task τ, RPS is the reword per
solution, and Desτ is a description of the require-
ments for the workers who are willing to participate
in the task, so that interested workers can judge
whether they are qualified. Furthermore, this descrip-
tion Desτ also determines the combination order of
different type requirements vectors and attributes
vectors as well. We will argue that this combination
order does not compromise the security of our
workers’ selection protocol described in Section 4.1.
On the other hand, R also sends a solution evalua-
tion function SolEvalð·Þ to the smart contract Post-
Task to be a criterion for evaluating the solutions. It
is worth noting that interested workers can get the
task’s information (ciphertext stored on the storage
or just encrypted metadata) from the smart contract
PostTask right now; either they can do it after they
get the predicate key in the next phase. This order
has a no different effect on the scheme

(3) Attribute Keys Generation. If an interested workerW
wants to participate in the task τ, he will request CA
for a decryption key by submitting his certificate
CertW . Upon receiving the CertW , the CA, who acts
as the KGC right now, will first identifyW by verify-
ing the certificate CertW , and then consult the block-
chain for profile ofW which is publicly recorded and
maintained on the blockchain. The profile of W will

then be encoded in an attributes vector W′

!

whose
formula is constrained by the descriptionDesτ posted
by the requester R. Finally, the CA runs

FE.KeyGenðMSK, PPoly

W ′

!ðR′

!
ÞÞ to generate the predi-

cate keys SKP accordingly for the worker W , where
MSK is the master secret key for FEforIP scheme,

PPoly

W ′

!ðR′

!
Þ is the predicate exactly detailed in Section

4.2. The CA sends the predicate key SKP to W . We

10 Wireless Communications and Mobile Computing

remark that whetherW has the ability to decrypt the
task data completely depends on the attributes main-
tained by the public blockchain. If his profile meets

the requirement of W , that is, hW ′

!

,R′
!
i = 0 techni-

cally, W can get the key Kτ then decrypt the task
data. Otherwise, the security of the FEforIP ensures
that W cannot get any information about the
encrypted task’s data. R selects qualified workers in
this noninteractive and oblivious manner. Moreover,
the worker’s profile, maintained by blockchain, is
tamper-proof, which against the malicious manipula-
tion to the profile of workers which is potential in a
centralized crowdsourcing platform

(4) Solutions Submitting and Evaluation. At this phase,
before the deadline, once a worker W i finishes the
job, he can submit a solution si encrypted under R’

s public key pkW and a zk-SNARK proof Πi to the
smart contract CollectSol (If the solution data is big,
it will be stored at the storage in ciphertext just like
treatment to the task’s data. In this case, the worker’s
submission si is an encrypted symmetric key, say KS,
which will be further forwarded to the requester.). He
also needs to make a deposit to the smart contract in
order to initiate this evaluation. We remark that the
worker also sends a signature σsi for this submission,
and we denote encrypted solution by ½si�. CollectSol
then collects and evaluates this solution ½si�. Accord-

ing to the noninteractive solution submission and
evaluation protocol, CollectSol first verifies the W i

’s
identity and then verifies the zk-snark proof Πi. If
any of these verifications fail, the solution collection
process for this worker is terminated. Otherwise, it
forwards the encrypted solution ½si� to R, pays the
worker W i reward (the reward comes from R’s
deposit), and notifies the smart contract UpdateProf
to update W i

’s public profile

(5) Workers Profile Updating. Upon receiving the notifi-
cation from the smart contract CollectSol, the Upda-
teProf contract will update the profile of this worker
W i

’ by creating a transaction. Our priority in this
paper is to protect the data privacy of tasks and solu-
tion as well. We do not discuss here which attributes
of workers need to and how to update. Because these
issues involve reputation evaluation and incentive
mechanisms in crowdsourcing platforms, which is
orthogonal to the focus of this paper. We refer inter-
ested readers to read the relevant literature

After a lift cycle of outsourcing process, if the protocols
are not terminated, a requester gets his solutions and a
worker gets his reward accordingly.

5.3. Smart Contracts. In this section, we will show in our Priv-
Crowd the details of the three smart contracts, i.e., PostTask,
CollectSol, and UpdateProf. These smart contracts can be
seen as a logical party who is interactive with the requesters,

Requester

CA

3a. Attribute key request

3d. Key generation

1b. Register ID1a. Register ID

CertR
CertW

2a. Post task
and deposit 3b

. R
eq

ue
st

re
qu

ire
m

en
ts

an
d

pr
ofi

le
3c. Return w

orker’s profile

5. Workers profile
updating

Refund
deposit

Reward

Notification
Refund

Posttask

Updateprof

Collectsol

Blockchain

4b. Receive
reward

4a. Submit
solution 2b. Read

task’s data

Worker

Figure 3: The outsourcing process in the PrivCrowd.

11Wireless Communications and Mobile Computing

workers, and the CA. In Table 1, we show some notations for
the smart contracts.

(i) PostTask. This contract gets the posted task informa-
tion from requesters. For each pair of requester and
task, it takes requester’s public key pkRi

and
requester’s certificate CertRi

as input and verifies the
certificate of the requester first, then verifies the signa-
ture of the task’s message and checks if the request
transfers sufficient deposit to the contract’s address
by invoking function getBalanceðÞ (For the public
blockchain infrastructure, checking an account
address’s balance is an essential function. We do not
care how to implement it in specific, we refer interested
readers to related literature.). If all these verification
results are negative, this contract terminates immedi-
ately and task’s posting fails. Otherwise, before the
deadline Tτ, it broadcasts a new task recruiting
workers and transfers the deposit to the smart contract
CollectSol. The algorithm 1 illustrates the implementa-
tion of this contract

(ii) CollectSol. This contract takes as input worker’s pub-
lic key pkW i

, workers’ certificate CertW i
, and task

posting message including task identifier τ, solution
evaluation function SolEvalð·Þ, deadline of submis-
sion Tτ, total reword TotRew, and reward per solu-
tion RPS. Whenever gets the transfer from the
contract PostTask, it begins to accept worker’s sub-
mission. On receiving a signed submission from
W i, parses the submission as (σsik½si�kΠi). Then,
verifies the certificate of W i and the signature of
the task’s message in turn. If all these verification
results are negative, it terminates this submission.
Otherwise, it invokes the SNARK.verify ðΠiÞ to ver-
ify that this submission si pass the evaluation, i.e.,
SolEvalðsiÞ = 1. If yes, it forwards the encrypted solu-
tion to the requester, pays the reward to W i, and
notifies the contract UpdateProf to update the
worker’s public profile. In case of the time is up,
solutions collection needs to be terminated, and it
refunds the money left to the requester. Once the
balance of &CollectSol less than RPS, this contract
terminates. Otherwise, W i gets nothing. The algo-

rithm 2 illustrates the implementation of this
contract

(iii) UpdateProf. This contract takes as input worker’s
public key pkW i

, task identifier τ, and description of
the task Desτ. Upon receiving a notification from
the contract UpdateProf, it consults the description
of the task Desτ for the updating policy. As the algo-
rithm 3 shown, we do not instantiate the updatePro-
file, but present it as an API for one reason, that is,
our scheme is not limited to the incentive mechanism
of specific crowdsourcing platforms, but to a general-
purpose design. Therefore, whether it is reputation-
based or other types of incentive mechanisms can
be compatible with our scheme. e.g., for the
reputation-based incentive mechanism [30], it may
be just update the reputation of the worker W i only

6. Security Analysis

In this section, we explain how the proposed scheme can sat-
isfy the aforementioned security and privacy requirements.

6.1. Privacy Preserved and Fine-Grained Worker Selection. In
our scheme, a requester posts a task using the posing protocol
which integrates a specially designed functional encryption
scheme, i.e., the FEforIP. We do not present the tedious secu-
rity proof but refer the reader to [25]. The FEforIP is a func-
tional encryption scheme that supports inner product
evaluations on encrypted data which adaptive security has
to be proven under general subgroup decision assumptions.
The task’s data is encrypted by the FEforIP then uploaded
to blockchain. With the security of the FEforIP, workers
whose attributes vector do not suffice for the task’s require-
ments can get nothing about the task’s data, which means
the inadequate workers cannot decrypt and participate in.
Powerful computing ability on encrypted data of the FEforIP
makes a requester select workers in a fine-grained and nonin-
teractive way with perfect data privacy protection.

6.2. Solution’s Privacy Protection and Soundness. In the sub-
mission protocol, a worker submits a solution encrypted by
a public key encryption scheme which is not a specific
scheme for the sake of generality of the PrivCrowd. With
the security of underlying PKE scheme, the data privacy of
the solution should be perfectly protected. We note that if
the worker adds the identification information with the solu-
tion and encrypts, the malicious workers cannot launch a
free-riding attack. Because this design is trivial for our
scheme, we do not present details in the proposed protocol.
On the other hand, a submitted solution needs to attach a
zk-SNARK proof for the further solution evaluation. With
the soundness assumption of underlying zk-SNARK, the
probability of a not qualified solution is accepted by the ver-
ifier, that is the smart contract ColletSol, is negligible. So our
submission protocol is sound and noninteractive.

6.3. Trustworthy of Workers. Trustworthy of workers is also
easy to be implemented, because the smart contract Update-
Prof cannot be created by workers themselves and can only

Table 1: Notations for the smart contracts.

&Ri Blockchain address of the requester Ri.

&W i Blockchain address of the worker W i.

&PostTask Contract address of PostTask.

&CollectSol Contract address of CollectSol.

&UpdateProf Contract address of UpdateProf.

getBalance ·ð Þ Read balance of blockchain address.

transf er src, dst, vð Þ Transfer v from address src to dst.

broadcast ·ð Þ Broadcast message to blockchain.

updateProf ile ·ð Þ Function to update workers’ profile.

12 Wireless Communications and Mobile Computing

Input: This contract’s address&PostTask; requester’s public key pkRi
; requester’s certificate CertRi

; task identifier τ; description of the
taskDesτ; deadline of submission Tτ; total reword TotRew; reward per solution RPS; encrypted task’s data(metadata) CTτ; signature of
posting task στ.
1: for each Ri and τ do
2: if AuthðCertRi

, pkRi
Þ == ⊥

3: goto final; ⊳ Certificate invalid or requester unregister
4: end if
5: VerifyðστÞ == ⊥ then
6: goto final; ⊳ Posting task's signature invalid
7: end if
8: if getBalance(&PostTask) <TotRew then
9: goto final; ⊳ Deposit Insufficient
10: end if
11: while Tτ is not expired do
12: broadcast(τ, Desτ, RPS, CTτ, SolEvalð·Þ) as a new task identified by τ;
13: transfer(&PostTask, &CollectSol, TotRew);
14: end while
15: end for
16: final;
17: return;

Algorithm 1: The smart contract: PostTask.

Input: This contract’s address &CollectSol; worker’s public key pkW i
; workers’s certificate CertW i

; workers’s depositDepW i
; task iden-

tifier τ; solution evaluation function SolEvalð·Þ; deadline of submission Tτ; total reword TotRew; reward per solution RPS.
1: while (getBalance(&CollectSol) >RPS) and Tτ is not expired do
2: Upon receiving a signed submission from W i, parses the submission as (σsik½si�kΠi);
3: if AuthðCertW i

, pkW i
Þ ==⊥ then

4: continue; ⊳ Certificate invalid or worker unregister
5: end if
6: if Verif yðσsi

Þ == ⊥ then
7: continue; ⊳ Submission's signature invalid
8: end if
9: if DepW i

is not sufficient then

10: continue; ⊳ Worker's deposit is not sufficient
11: end if
12: if SNARK.VerifyðΠiÞ == acc then
13: Send ½si� to the request Ri; ⊳ Forward the solution to the requester
14: transfer(&PostTask, &W i, PRS +DepW i

); ⊳ Pay the reward and refund the deposit
15: UpdateProf(pkW i

, τ);Invoke the smart contract UpdateProf
16: end if
17: end while
18: if getBalance(&CollectSol) >0 then ⊳ Refund residue money to the request
19: transfer(&CollectSol, &Ri,
20: getBalanceð&CollectSolÞ);
21: end if
22: return;

Algorithm 2: The smart contract: CollectSol.

Input: This contract’s address &UpdateProf ; worker’s public key pkW i
; task identifier τ; description of the task Desτ.

1: Upon receiving a notification from the contract UpdateProf, consult the description of the task Desτ for the updating policy;
2: updateProfile(pkW i

, ·);
3: return;

Algorithm 3: The smart contract: UpdateProf.

13Wireless Communications and Mobile Computing

be invoked by the smart contract CollectSol, which means the
modification of worker’s attributes must be done by the
smart contract, and also means only the worker who submits
a good solution is qualified to get his attributes updated.
Therefore, for reputation-based incentive mechanism, the
reputation and the reliability of workers are unforgeable.

6.4. Pseudonymity. In our scheme, we use pseudonym to pro-
vide identity privacy protection for participants. Considering
we protect not only the task’s data but also the solution privacy,
as we argued before, we think the pseudonymity is enough. In
our framework, similar to the CrowdBC [6], we also utilize the
pseudonymous Bitcoin-like addresses to identify requesters
and workers, which enables privacy-preserving without sub-
mitting true identity to finish a crowdsourcing task.

In our design, in addition to the above security proper-
ties, the PrivCrowd also fulfills several security properties
and we discuss them here.

(i) Security against False-Reporting. In PrivCrowd, solu-
tions are evaluated automatically by predefined
function SolEval(·) within the smart contract. Mali-
cious requesters launching false-reporting attacks
by creating a forked chain to tamper with the results
of the smart contract are infeasible under the
assumption that the majority of miners are honest

(ii) Security against Free-riding Attacks.Workers cannot
get original solutions submitted by other workers
due to encryption. So malicious workers cannot
launch free-riding attacks

(iii) DDoS and Sybil Attack Resistant. PrivCrowd requires
deposits from requesters and workers to thwart DDoS
and Sybil attacks. Therefore, malicious attackers may
pay a huge cost to launch these attacks under the
deposit-based mechanism. Workers are required to
make deposits in the smart contract CollectSol before
submission. They are automatically assigned rewards
according to the results of the evaluation function.
Thus, if they contribute low-quality solutions, they will
not only get rewards but also lose deposits

(iv) No Single Point of Failure. Similar to [6], in Priv-
Crowd, no single point of failure is obvious with
the blockchain-based decentralized architecture
under the majority honest security assumption.
According to the peer-to-peer architecture, even
though there remains only one miner, requesters
and workers can access the crowdsourcing service
normally

7. Efficiency Analysis

In the PrivCrowd, we present the two core protocols which
are the posting protocol and the submission protocol. In
the posting protocol, the requester, the worker, the CA, and
the smart contract interact in a loose way, which means they
are not necessary to keep online for posting or receiving an
outsourcing task. Therefore, the communication costs of

the posting protocol are not our concern. We focus on the
computation costs incurred by the core component, that is,
the FEforIP. Similarly, in the submission protocol, we focus
on the core component, i.e., the zk-SNARK. Table 2
illustrates the executors and locations of the algorithms of
the two cryptographic components. For the FEforIP and
zk-SNARK, the Setup algorithm will be run once and off-
chain. The CA runs the Keygen algorithm of the FEforIP
for the worker to generate keys. The requester runs the
Encrypt algorithm off-chain when he wants to post a task.
The interested workers run the decrypt algorithm off-chain
when they get the encrypted task’s data. For the zk-SNARK,
the worker who wants to submit a solution runs the SNARK.-
Prove off-chain to generate the proof, and the SNARK.Verify
needs to be done on-chain, i.e., the smart contract.

7.1. The Efficiency of the Posting Protocol. Here, we analyze
the efficiency of the posing protocol. As mentioned above,
the communication overhead is not the issue because the par-
ticipants act in a noninteractive and loose way. We mainly
analyze the computational overhead. In the protocol, the
requester runs the algorithm FE.Enc to encrypt the task’s
data then uploads the smart contract PostTask as a posing
task. Interested workers request a functional key to the CA
who acts as a KGC right now by running the algorithm
FE.KeyGen for the further decrypt the data to receive the
task, and when getting a functional key, they run the FE.Dec

Table 2: Computation executors and locations.

CA Requester Worker Blockchain

FEforIP

Setup × × × Off-chain

Keygen √ × × Off-chain

Encrypt × √ × Off-chain

Decrypt × × Off-chain

zk-SNARK

Setup × × × Off-chain

Prove × × √ Off-chain

Verify × × × On-chain

Table 3: Time costs (in seconds) of algorithms of the FEforIP.

d FE.Setup FE.Enc FE.KeyGen FE.Dec

1 0.435 0.138 0.161 0.187

2 0.496 0.191 0.246 0.261

3 0.534 0.235 0.35 0.336

4 0.589 0.288 0.442 0.396

5 0.664 0.339 0.437 0.467

6 0.743 0.394 0.537 0.529

7 0.736 0.446 0.635 0.616

8 0.77 0.477 0.675 0.621

9 0.884 0.493 0.736 0.745

10 0.922 0.551 0.87 0.827

100 5.312 4.897 7.367 7.283

500 24.658 24.358 40.891 39.912

1000 48.64 47.797 72.211 69.047

14 Wireless Communications and Mobile Computing

to decrypt. Table 3 shows that the time cost in seconds of
algorithms in the FEforIP, where d is the length of attributes
vectors. We get these evaluation results by implementing the
algorithms using pairing-based cryptography library pbc-
0.5.14 [31] on a PC with 3.3GHz Intel, i5-6600 CPU, and 8
GB memory. As shown in Table 3, when d ≤ 10, the time cost
of the FE.Enc is roughly around 0.5 s and the FE.KeyGen and
FE.Dec less than 0.75 s. In the setting of d = 10, our protocol

works for most workers selection scenarios, which means the
requester can use 10-dimension attributes to pick the
workers in a fine-grained way and in an efficient way. The
illustration results for d from 1 to 10 are shown in
Figure 4(a). We also present the illustration results for the
case of d = 10 to 100 in Figure 4(b) and d = 100 to 1000 in
Figure 4(c), although there are rare cases for the requester
to select worker using so many attributes like 1000.

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55

Ti
m

e (
s)

0.50
0.45
0.40
0.30
0.35
0.25
0.20
0.15
0.10

1 2 3 4 5

Number of attributes

6 7 8 9 10

(a)

7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0Ti

m
e (

s)

2.5
2.0
1.5
1.0
0.5

10 15 20 25 30 35 40 45 50 55

Number of attributes

60 65 70 75 80 85 90 95 100

(b)

75
70
65
60
55
50
45
40
35
30Ti

m
e (

s)

25
20
15
10

5

100 200 300 400 500 600 700 800 900 1000

Number of attributes

FE.Setup
FE.Keygen

FE.Dec
FE.Enc

(c)

Figure 4: The time cost (in seconds) for running the algorithms of the FEforIP for the posting protocol in the PrivCrowd.

15Wireless Communications and Mobile Computing

7.2. The Efficiency of the Submission Protocol. For the submis-
sion protocol, we are not going further to instantiate the
function SolEvalð·Þ in our PrivCrowd as mentioned in
4.2.24.2.2. Therefore, we cannot evaluate a concrete zk-
SNARK implementation. But as an example, we evaluate a
range proof which is a very useful proof for several scenarios,
such as to prove an integer solution exactly in a range and to
prove a position coordinates exactly in a specific area. To do
this, we exploit a well-known zk-SNARK library libSnark
[29] to implement a range proof. On a PC with 3.3GHz Intel,
i5-6600 CPU, and 8GB memory, for a range proof which is a
proof of an integer in ½30, 60�, we find that it costs 0.047139 s
to run SNARK.Setup, 0.013065 s to run SNARK.Prove and
0.00813 s to run SNARK.Verify. These results have shown
our submission protocol should be practical.

7.3. The Cost of the Smart Contracts. For the smart contracts,
we have discussed that in the PrivCrowd, we do not instanti-
ate the function updateProfile in the smart contact Update-
Prof. Leave that as an interface to make the PrivCrowd be
compatible with various incentive mechanisms. Therefore,
we just evaluate the other two smart contracts here. We use
Remix IDE (Remix IDE allows developing, deploying, and
administering smart contracts for Ethereum-like block-
chains. http://remix.ethereum.org) and Rinkeby (Rinkeby is
an open test network for smart contracts. https://rinkeby
.etherscan.io) as a testing environment for the smart con-
tracts. As shown in Table 4, the gas usage for deploy a Post-
Task transaction is 7.08248. Currently, at the exchange rate
on April 21, 2021, each deployment of PostTask costs about
14.16496 ETH (or 1.6821 USD). Each call of PostTask costs
about 5.16214 ETH (or 0.6130 USD). Each deployment of
CollectSol costs about 25.04604 ETH (or 2.9742 USD). Each
call of CollectSol costs about 2.87166 ETH (or 0.3410 USD).
Considering these two smart contracts are one deployment
multiple calls, our scheme is fairly efficient.

8. Conclusion

In this paper, we propose a secure blockchain-based crowd-
sourcing framework, PirvCrowd, where requesters and
workers’ data privacy has been protected by using a carved
functional encryption scheme which makes the requester
can select workers in a fine-grained and noninteractive way.
In PirvCrowd, solutions collection also can be done in a
secure, noninteractive, and sound way. Finally, intensive
experiments are performed to validate the effectiveness of
PirvCrowd via showing the efficiency of the building blocks

and costs of the smart contracts. We believe our proposed
framework, PirvCrowd, has achieved our design goals.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Acknowledgments

This work is supported by the National Key R&D Program of
China (No. 2017YFB0802000), the National Natural Science
Foundation of China (U2001205, 61772326, 61802241,
61802242), the National Cryptography Development Fund
during the 13th Five-year Plan Period (MMJJ20180217),
and the Fundamental Research Funds for the Central Uni-
versities (GK202007031).

References

[1] J. Howe, The Rise of Crowdsourcing, Wired Magazine, 2006.
[2] X. Liu, R. H. Deng, K.-K. R. Choo, and Y. Yang, “Privacy-pre-

serving outsourced support vector machine design for secure
drug discovery,” IEEE Transactions on Cloud Computing,
vol. 8, no. 2, pp. 610–622, 2020.

[3] X. Liu, R. Deng, K.-K. R. Choo, and Y. Yang, “Privacy-preserv-
ing outsourced clinical decision support system in the cloud,”
IEEE Transactions on Services Computing, vol. 14, no. 1,
pp. 222–234, 2019.

[4] S. Zhang, J. Wu, and L. Sanglu, “Minimum makespan work-
load dissemination in dtns: making full utilization of computa-
tional surplus around,” in proceedings of the fourteenth ACM
international symposium on Mobile ad hoc networking and
computing, MobiHoc’13, pp. 293–296, New York, NY, USA,
2013.

[5] P. Yang, Q. Li, Y. Yan et al., ““Friend is treasure”: exploring
and exploiting mobile social contacts for efficient task offload-
ing,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 7, pp. 5485–5496, 2016.

[6] M. Li, J. Weng, A. Yang et al., “CrowdBC: a blockchain-based
decentralized framework for crowdsourcing,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 30, no. 6,
pp. 1251–1266, 2019.

[7] C. Lin, D. He, S. Zeadally, N. Kumar, and K.-K. R. Choo,
“SecBCS: a secure and privacy-preserving blockchain-based
crowdsourcing system,” SCIENCE CHINA Information Sci-
ences, vol. 63, no. 3, article 130102, 2020.

[8] Y. Lu, Q. Tang, and G.Wang, “ZebraLancer: private and anon-
ymous crowdsourcing system atop open blockchain,” in 2018
IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pp. 853–865, Vienna, Austria, July 2018.

[9] G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li, “Privacy-preserving
verifiable set operation in big data for cloud-assisted mobile
crowdsourcing,” IEEE Internet of Things Journal, vol. 4,
no. 2, pp. 572–582, 2017.

Table 4: Costs of the smart contracts with exchange rate: 1Gas =
2 × 10−9 ETH, 1 ETH = 2:375 × 10−6 USD (date: 4/21/2021).

Operation Gas (× 105) ETH (× 10−4) USD

PostTask deployment 7.08248 14.16496 1.6821

PostTask call 2.58107 5.16214 0.6130

CollectSol deployment 12.52302 25.04604 2.9742

CollectSol call 1.43583 2.87166 0.3410

16 Wireless Communications and Mobile Computing

http://remix.ethereum.org
https://rinkeby.etherscan.io
https://rinkeby.etherscan.io

[10] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially pri-
vate location protection for worker datasets in spatial crowd-
sourcing,” IEEE Transactions on Mobile Computing, vol. 16,
no. 4, pp. 1–949, 2017.

[11] C. Tanas, S. Delgado-Segura, and J. Herrera-Joancomartí, “An
integrated reward and reputation mechanism for mcs preserv-
ing users’ privacy,” in data privacy management, and security
assurance, J. Garcia-Alfaro, G. Navarro-Arribas, A. Aldini, F.
Martinelli, and N. Suri, Eds., pp. 83–99, Springer International
Publishing, Cham, 2016.

[12] J. Zhang, W. Cui, J. Ma, and C. Yang, “Blockchain-based
secure and fair crowdsourcing scheme,” International Journal
of Distributed Sensor Networks, vol. 15, no. 7, 2019.

[13] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, “zkCrowd: a hybrid
blockchain-based crowdsourcing platform,” IEEE Transac-
tions on Industrial Informatics, vol. 16, no. 6, pp. 4196–4205,
2020.

[14] W. Feng and Z. Yan, “MCS-Chain: decentralized and trust-
worthy mobile crowdsourcing based on blockchain,” Future
Generation Computer Systems, vol. 95, pp. 649–666, 2019.

[15] Q. Li and G. Cao, “Providing efficient privacyaware incentives
for mobile sensing,” in 2014 IEEE 34th International Confer-
ence on Distributed Computing Systems, pp. 208–217, Madrid,
Spain, June 2014.

[16] S. Rahaman, L. Cheng, D. D. Yao, H. Li, and J.-M. J. Park,
“Provably secure anonymous-yet-accountable crowdsensing
with scalable sublinear revocation,” Proceedings on Privacy
Enhancing Technologies, vol. 2017, no. 4, pp. 384–403, 2017.

[17] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “Security,
privacy, and incentive provision for mobile crowd sensing sys-
tems,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 839–
853, 2016.

[18] G. Wood, “Ethereum: a secure decentralised generalised trans-
action ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–
32, 2014.

[19] Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, and K. K. R. Choo,
“Unified biometric privacy preserving three-factor authentica-
tion and key agreement for cloud-assisted autonomous vehi-
cles,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 9, pp. 9390–9401, 2020.

[20] Q. Jiang, X. Zhang, N. Zhang, Y. Tian, X. Ma, and J. Ma,
“Three-factor authentication protocol using physical unclon-
able function for IoV,” Computer Communications, vol. 173,
pp. 45–55, 2021.

[21] N. Zhang, Q. Jiang, L. Li, X. Ma, and J. Ma, “An efficient three-
factor remote user authentication protocol based on BPV-
FourQ for internet of drones,” Peer-to-Peer Networking and
Applications, 2021.

[22] Y. Zhang, J. Zou, and R. Guo, “Efficient privacy-preserving
authentication for V2G networks,” Peer-to-Peer Networking
and Applications, vol. 14, no. 3, pp. 1366–1378, 2021.

[23] J. Benet, “IPFS-content addressed, versioned, P2P file system,”
Draft 3, 2014http://arxiv.org/abs/1407.3561.

[24] H. Li, T. Wang, Z. Qiao et al., “Blockchain-based searchable
encryption with efficient result verification and fair payment,”
Journal of Information Security and Applications, vol. 58,
p. 102791, 2021.

[25] T. Wang, B. Yang, G. Qiu et al., “An approach enabling various
queries on encrypted industrial data stream,” Security and
Communication Networks, vol. 2019, Article ID 6293970, 12
pages, 2019.

[26] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” Proceedings of the 4th Conference
on Theory of Cryptography, TCC’07, , pp. 535–554, Springer-
Verlag, Berlin, Heidelberg, 2007.

[27] J. Katz, A. Sahai, and B. Waters, “Predicate encryption sup-
porting disjunctions, polynomial equations, and inner prod-
ucts,” Journal of Cryptology, vol. 26, no. 2, pp. 191–224, 2013.

[28] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky,
“Succinct non-interactive arguments via linear interactive
proofs,” in Theory of Cryptography. TCC 2013, vol. 7785 of
Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics), , pp. 315–333, Springer, 2013.

[29] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: verifying program executions succinctly and
in zero knowledge,” in Advances in Cryptology – CRYPTO
2013, vol. 8043, pp. 90–108, Springer, 2013.

[30] Z. Yu andM. van der Schaar, “Reputation-based incentive pro-
tocols in crowdsourcing applications,” in 2012 Proceedings
IEEE INFOCOM, pp. 2140–2148, Orlando, FL, USA, March
2012.

[31] B. Lynn, “The pairing-based cryptography library (0.5.14),”
2013, https://crypto.stanford.edu/pbc/.

17Wireless Communications and Mobile Computing

http://arxiv.org/abs/1407.3561
https://crypto.stanford.edu/pbc/

	PrivCrowd: A Secure Blockchain-Based Crowdsourcing Framework with Fine-Grained Worker Selection
	1. Introduction
	1.1. Related Work
	1.1.1. Blockchain-Based Crowdsourcing Systems
	1.1.2. Anonymous and Security

	1.2. Organization

	2. Overview of our Proposed Framework
	2.1. System Model
	2.1.1. Task Layer
	2.1.2. Blockchain Layer
	2.1.3. Storage Layer

	2.2. Intuition
	2.3. Our Contributions

	3. Preliminaries
	3.1. Blockchain and Smart Contract
	3.2. Digital Signature System
	3.3. Functional Encryption for Inner Product Predicates
	3.3.1. Notations
	3.3.2. Wang’s Scheme [25]
	3.3.3. Correctness of the FEforIP

	3.4. Hidden-Vector Encryption from FEforIP
	3.5. Zero-Knowledge Proof System and Zk-SNARK

	4. Building Blocks
	4.1. Fine-Grained Workers Selection Protocol with task’s Data Privacy-Preserving: Posting Protocol
	4.1.1. Conjunctive Equality
	4.1.2. Conjunctive Compare/Range
	4.1.3. Conjunctive Subset
	4.1.4. Polynomial and CNF/DNF
	4.1.5. Putting All in Together

	4.2. Noninteractive Solution Submission and Evaluation Protocol: Submission Protocol
	4.2.1. Concrete Protocol
	4.2.2. Instantiate zk-SNARK for the Protocol

	5. PrivCrowd: Concrete Scheme
	5.1. Security Challenges
	5.1.1. Data Privacy of Task
	5.1.2. Data Privacy of Solution
	5.1.3. Soundness of Solution
	5.1.4. Trustworthy of Workers

	5.2. The Outsourcing Process
	5.3. Smart Contracts

	6. Security Analysis
	6.1. Privacy Preserved and Fine-Grained Worker Selection
	6.2. Solution’s Privacy Protection and Soundness
	6.3. Trustworthy of Workers
	6.4. Pseudonymity

	7. Efficiency Analysis
	7.1. The Efficiency of the Posting Protocol
	7.2. The Efficiency of the Submission Protocol
	7.3. The Cost of the Smart Contracts

	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

