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Detection of abnormal network traffic is an important issue when builds intrusion detection systems. An effective way to address
this issue is time series mining, in which the network traffic is naturally represented as a set of time series. In this paper, we
propose a novel efficient algorithm, called RSFID (Random Shapelet Forest for Intrusion Detection), to detect abnormal traffic
flow patterns in periodic network packets. Firstly, the Fast Correlation-based Filter (FCBF) algorithm is employed to remove
irrelevant features to decrease the overfitting as well as the time complexity. Then, a random forest which is built upon a set of
shapelet candidates is used to classify the normal and abnormal traffic flow patterns. Specifically, the Symbolic Aggregate
approXimation (SAX) and random sampling technique are adopted to mitigate the high time complexity caused by
enumerating shapelet candidates. Experimental results show the effectiveness and efficiency of the proposed algorithm.

1. Introduction

Intrusion detection system (IDS) is an important part of
modern network security protection infrastructure. It is
aimed at analyzing the traffic packages online or offline to
identify the intrusion behaviors from networks. However,
some attacks are very difficult to be detected. For example,
distributed denial of service (DDos) attack creates tens of
thousands of zombie computers and orders them attack a
target server at the same time. It not only fabricates source
IP address to avoid detection, but also increases the traffic
exponentially. Therefore, an efficient technique for detection
of intrusion behaviors is required.

The basic principle of intrusion detection technology is
to build a normal or abnormal behavior model through the
analysis of relevant data which may be stored in security
log or audit database and compare the model with the user
behavior to identify the potentially harmful behavior [1]. It
is obvious that the key to victory is the discovery of the effec-
tive behavior characteristics (or patterns) from relevant data.

As an effective technology to search and mine hidden infor-
mation from massive data, data mining is very suitable for
intrusion detection. So far, a variety of data mining technol-
ogies, including classification, clustering, and anomaly
detection, have been successfully applied in intrusion
detection.

Classification is a popular technology in intrusion detec-
tion. Given a set of labeled instances, it learns a function
which can assign a label to a new unlabeled instance. Lee
and Stolfo [2] firstly extracted rules from audit data and used
the rules for detection of abnormal behavior in network traf-
fic. Gao et al. [3] employed the Apriori algorithm to extract
traffic flow patterns from network data and subsequently
used the K-means cluster algorithm to generate a detection
model. Besides that, many popular techniques of classifica-
tion were adopted in intrusion detection, such as K-nearest
neighbor [4, 5], decision tree [6, 7], and support vector
machine [8]. Recently, deep learning, which attracts lots of
attentions from community, is employed in intrusion detec-
tion and achieves state-of-art performance [9, 10]. However,
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the intrinsic defect of deep learning, a.k.a. lack of interpret-
ability, prevents it to be a ready-made panacea.

In this paper, we employ time series classification (TSC)
technique to detect abnormal behaviors based on the offline
traffic flow data. Specifically, the adopted technique is called
shapelet, which is a new primitive in the field of TSC. The
contributions of this work include the following:

(1) We propose a novel TSC framework for intrusion
detection which is composed of a feature selection
algorithm (FCBF) and a shapelet-based random for-
est classifier

(2) The traffic flow data is represented by SAX and the
shapelet candidates, which are used to train the clas-
sifier and are sampled randomly. By this way, the
running time is greatly mitigated

(3) The proposed algorithm, called RSFID, is validated
on several data sets of intrusion detection. The
results prove that RSFID is effective to detect abnor-
mal behavior in traffic flow. Since the intrinsic
advantage of the shapelet-based method, i.e., good
interpretability, our work provides a different solu-
tion to solve the problem of intrusion detection

The rest of the paper is organized as follows. Section 2
briefly introduces the development of IDS and recalls the
basic knowledge of shapelet-based TSC. Section 3 explains
the details of the RSFID algorithm, and the theoretical anal-
ysis of complexity is also given. Next, the experimental
details are introduced, and the results are analyzed in deep
in Section 4. Finally, Section 5 gives conclusions.

2. Background

2.1. Intrusion Detection and Time Series Classification. Intru-
sion detection is aimed at extracting patterns or characteris-
tics of user’s behaviors by analyzing the security log and then
identifying the dangerous behavior in the system. The solu-
tions can be divided into two types. The first is building a
safe/normal behavior model as the evaluation criteria of user
behavior. When the user behavior is obviously different from
the safe/normal behavior model, it is considered to be an
intrusion. The second is building an unsafe/abnormal model
(a.k.a. intrusion behavior) based on a set of obtained data of
intrusion. If the detected behavior is similar with the unsa-
fe/abnormal model, we think it is an intrusion.

There are abundant ways to handle the intrusion detec-
tion problem, such as classification, clustering, and abnor-
mal detection. Besides those, time series classification is
considered to be a suitable solution because the traffic flow
data is temporal ordered. Luo et al. [11] modeled the brain
activity as time series and used the K-nearest neighbor algo-
rithm to detect the abnormal. Chin et al. [12] evaluated
abundant algorithms of anomaly detection which based on
symbolic time series analysis. Recently, Wei et al. [13] pro-
posed an assumption-free technique for anomaly detection
using time series classification. Kim et al. [14] introduced a
shapelet-based method to detect abnormal behavior in net-
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work traffic. However, the algorithm is based on exhaustive
search; hence, it is too time consuming.

2.2. Shapelet-Based Time Series Classification. Shapelet refers
to time series subsequences that are maximally representa-
tive of a class [15]. Due to the strong interpretability, it has
attracted abundant attentions from the community. In the
last decade, over a hundred papers have been published to
develop this technique. Later, we will recall some basic
knowledge in this field.

Definition 1 (Time series). The time series is denoted by a
sequence of values T'=t,,t,, -+, t7), where |T| is the length
of time series. Data points f,t,, 7/ are typically
arranged by temporal order and spaced at equal time
interval.

Definition 2 (Time series data set). A time series data set D is
a set of pairs of time series T; and its corresponding label
c;€C, ie, D={(T|, ), (T ¢),+(T,¢,)}, where n is
the number of time series in the data set and C is the set
of labels.

Furthermore, since most of the time series data in real
world are multidimensional, such as the monitoring data
collected from Internet of Things system, the ECG monitor-
ing system, and the IDS, we use T;; to represent the j-th
dimension of the i-th time series and the k-th position of
Ti’j can be written as Ti,j,k.

Definition 3 (Subsequence). A time series subsequence S is a

contiguous sequence of a time series. Subsequence of length /

of time series T;; starting at position k can be denoted as
ki _

Si,j - Ti,j,k’ Ti,j,k+1’ .

sequence of time series T with length [ is denoted as ¥(T, I).

> T jk+1-1- Furthermore, the overall sub-

For simplicity, lots of concepts introduced below only
explain the one-dimension time series and all of them can
be naturally extended to multidimension.

Definition 4 (« distance and f distance). The « distance and
B distance define the distance between two time series T, T,
with the same length and the distance between a subse-
quence S and a time series T, respectively.

In this paper, we also use Euclidean distance to measure
the two types of distance and the formulas are given below,
where m is the length of two time series.

. 1 ¢

dist, (T}, T;) = m Z(Tl,i -T5)
i=1 (1)

distg(S, T) = min_dist, (S,S').

§ew(Ts)

Shapelets which are maximally representative of a class
are essentially a set of subsequence. Our purpose is to choose
a subset of subsequences which have strong discriminatory
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power to build a classifier. To measure the discriminatory
power of a shapelet candidate, we give the definition of split
and information gain (IG).

Definition 5 (Split). A split is a tuple # = (S, 7), where S is a
time series subsequence and 7 is a distance threshold which
can split the data set D into two subsets D; and Dj.

Given a time series subsequence S, we can calculate the
distance between S and all series in D, ie., distg(S, T;). If

disty(S, T;) <7, the time series T will be added to Dy ; other-
wise it will be added to Dy.

Definition 6 (IG). The information gain of a split # = (S, 7)
can be calculated as follows:

1G(n) =E(D) - “LE(D,) - “*E(Dy).  (2)

The symbols n; and n, denote the number of time series
in D; and Dy, respectively, and E(D) = Zlg‘l(nl/n) log (n;/n)

is the entropy of data set.

Given a time series subsequence S and a data set of time
series D, we can calculate the distance between S and all
series in D and obtain a set of distance sorted in ascending
order (d,,d,.---,d,). We say a split = (S, 1) is a shapelet
candidate that there is no #' = (S, ') that IG(n") > IG(y).
To distinguish the shapelet candidate with split, we use sym-
bol 6= (S, 1) to represent it. It is not difficult to find that
there are infinite splits for a specific subsequence. To limit
the search space, we only detect the mean value of any two
adjacent distance value, i.e., (d; +d;,;)/2.

Ye and Keogh [15] firstly introduced the concept of sha-
pelet; meanwhile, they proposed a Brute-Force algorithm to
search the best candidate to be the final shapelet embedded
into a decision tree classifier. The algorithm suffers from
two problems that the exhaustive search is too time-con-
suming, and the decision tree training is embedded in the
search process. There are some solutions to address the first
problem, including [15-17]. Due to the limit of page, we skip
the introduction of these techniques. Next, we introduce an
interesting technique, called shapelet transformation, which
separates the shapelet searching and the classifier building
by transforming the original time series data set to a new fea-
ture space [18].

Definition 7 (Shapelet transformation). Given a time series
data set D={T,, T,,~--,T,} and a feature space X consisted
of a set of selected shapelet, i.e, X=1{S;,S,, .S, }, shapelet
transformation is a matrix M with n rows and k columns,
where M; ; = distg(S), T)).

It is easy to find that, by shapelet transformation, the
temporal characteristic in original time series has been
removed. Hence, a large amount of classical data mining
techniques can be applied to the time series mining. How-
ever, there are also some problems in this technique. For

example, the process of shapelet selection is also time-con-
suming, and the selected shapelets are always be irrelevant
and redundant [19-21].

3. The Proposed Method

3.1. The RSFID Algorithm. The idea of the RSFID algorithm
(Random Shapelet Forest for Intrusion Detection) is
descripted as Figure 1. There are five steps that learn a ran-
dom shapelet forest (a.k.a. the classifier) from the original
time series. Firstly, the raw data of network traffic requires
to be represented by SAX [22]. Although there are some
other techniques for presentation of time series data, such
as PAA, APCA, and DFT, SAX has been proven to be the
most efficient technique to compress time series data [23].
The details of SAX technique can be found in [22]. It must
be noted that the traffic flow data not only contains real
value, but also includes other data types. For example, the
KDD CUP 99, which is a famous data set of intrusion detec-
tion, contains real value and nominal value. Therefore, the
raw data must be preprocessed and converted to normalized
real value. After that, the time series data is represented by a
set of symbolic words.

The second step is in charge of randomly selecting a
set of shapelet candidates. In [19], the authors have vali-
dated that random sampling is an effective technique
which can greatly reduce the running time by 3~4 orders
of magnitude than the Fast Shapelet (FS) algorithm, but
without loss of accuracy. Different with [19], we combine
the random sampling with SAX presentation which can
further improve the scalability of the algorithm. The third
step is merging shapelets extracted from the instances of
different classes in the same dimension. During this step,
part of self-similar shapelets will be removed to reduce
the redundancy of the features. Then, the time series data
are transformed to the new feature space. We should cal-
culate the distance between shapelets and all series in
data sets. In the fifth step, we adopt classical feature
selection algorithm to reduce the dimension of new data
sets, ie., the matrix. Finally, we train a set of random
forest classifiers for each dimension, which will be used
to adjudge whether a network traffic is an intrusion
attack or not.

The pseudo-code of the RSFID algorithm is given Algo-
rithm 1. It is not difficult to obtain the idea of the proposed
algorithm. From steps 3 to 9, it is composed of two loops.
The first loop is aimed at generating m random forest classi-
fiers, i.e., each forest corresponds to a dimension of the time
series (a.k.a. network traffic data). For prediction of a new
time series, the label is decided by the voting of all classifiers.
The inner loop is for generation of p decision trees for the
forest. There are two key steps in the inner loop. The func-
tion shapelet_sampling is to randomly sample r shapelets
from the j-th dimension of the data set D', which is repre-
sented by the SAX method. Another function random_sha-
pelet_tree is to generate a decision tree based on the
obtained shapelets S;; and D'. Next, we will explain the

two functions in detail.
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FIGURE 1: Description of the RSFID algorithm.

3.2. Shapelet Sampling. Since exhaustive search leads to expo-
nential growth of training time, researchers tested the random
sampling technique and the results show that it can reduce the
running time by 3~4 orders of magnitude than the exhaustive
search, without loss of accuracy [19]. However, the existing
work does not consider the redundancy and diversity of the
sampled shapelets. In this section, we firstly introduce defini-
tions of self-similarity and utility, which are used to filter out
nonsimilar shapelets with strong power of discrimination.
Then, we explain the code of shapelet_sampling(D’, j, 7).

Definition 8 (Self-similarity) [23]. Given two subsequences
of time series S; and S,, let id, and id, be the index number
of time series that we extract S;, S, from, and pos,, pos, and
len;, len, denote the start position and the length of S, S,,
respectively. We say S; and S, have self-similarity, when
id, =id, A |pos; — pos,| <o A |len; —len,| < A.

Here, symbols 0 and A are two user-defined threshold.
The former denotes the allowed distance between the start-
ing positions of two shapelets, and the latter represents the
allowed difference of two shapelet lengths. Next, we give
the definition of utility.

Definition 9 (Utility). Given a shapelet candidate 6 = (S, 1), ¢
denotes the label of the instance that we extract 6 from, C(-)
is a function that returns the label of an instance. We denote
the precision, recall, and utility as follows:

distz(S, TY<tAc=C(T
_ 5(ST) (T)

P(6) ! . TeD,
||dist(S, T) < 7|
_||distg(S, T) s T Ac=C(T)||
R(0) = T =CTl ,TeD, (3)
 2P(O)R()

It is easy to find that utility is, essentially, the f-score
integrated with precision value and recall value which is
regarded as the quality score of a shapelet candidate. Next,
we show the pseudo-code in Algorithm 2. In step 2, the algo-
rithm refines the data set of time series that only keeps the j
-th dimension of D. From steps 3 to 8, the algorithm ran-
domly extracts a subsequence of a time series and generates
a shapelet candidate 0. If the 0 is self-similar with any candi-
dates in ©, it would discard it and resample a new one; oth-
erwise, the 6 would be added into the shapelet set ®. The
extraction will be repeated for r x x times where « is a coef-
ficient for controlling the total number of shapelet candi-
dates for evaluation. After that, we sort the shapelet
candidates in © by their utility; then, we keep the top r best
shapelets as the final choice.

3.3. Random Shapelet Tree Generation. The pseudo-code of
the function random_shapelet_tree is shown in Algorithm 3.
It is aimed at generating a decision tree based on a set of sha-
pelets. The algorithm is a typical recursive algorithm which
is usually adopted in tree generation. In the third step, the
function bestShapelet is to find the best shapelet from ©
which has the highest information gain. If two or more sha-
pelets have the same gain, we choose the one that maximizes
the separation gap [16]. After that, we remove the selected
shapelet from ® in step 4. The function distribute is used
to separate the instances in D into two groups, those with
a distance distg(S, T;) <7 and those with a distance distg(S
, T,) > 7. Then, we invoke random_shapelet_tree to generate
the left subtree and right subtree based on D; and Dy,
respectively. Finally, the function makeLeaf returns a repre-
sentation of a leaf in the generated tree by simply assigning
the class label that occurs most frequently among the
instances reaching the node, dealing with ties by selecting a
label at random according to a uniform distribution.

3.4. Time Complexity Analysis. Since the time complexity of
applying SAX to represent the original time series data is far
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10— g;

2 D' — SAX(D);

3 for j=1to m do

4 Fj—

5 fori=1topdo

6 O, — shapelet_sampling(D', j, r);

7 ST;; — random_shapelet_tree(D’, 0;;);
8  Fje—F,UST,;

9 O—QUF I

10 return (;

Input: D: a data set of time series; p: the number of trees in forest; r: the number of shapelet for each tree
Output: Q= {F,, F,,--+,F,,}: a set of random forests and each for one dimension.

ArcoriTEM 1: RSFID (Random Shapelet Forest for Intrusion Detection).

Output: ®: a set of shapelets
10— g;

2D — refine(D, j);
3fori=1torxxdo

5 0« generateShapelet(D’, id, I, pos);
6 if self_similar(6, ®) = true do

7 i «—— i—1; continue;

8§ O®—0OUb;

9 sort_by_utility(®);

10 ® «— select_best_top_r(®);

11 return ®;

Input: D: the data set of time series; j: The dimension of the time series; r: the number of shapelet for each tree

4 ide—rand (1, |D']), I « rand (3,len(T;y) — 3), pos «— rand (1,len(Ty) — I +1);

ArgoriTHM 2: Shapelet_sampling ().

Output: ST: a shapelet tree

1 if isTerminal(D) do

2 return makeLeaf(D);

3 6 < bestShapelet(D, ©);

40— O/6,

5 (D, Dg) «— distribute(D, 0) ;

6 ST, < random_shapelet_tree(D,, ®)
7 STy «— random_shapelet_tree(Dy, ®)
8 Return (ST, STy);

Input: D: the data set of time series; ®: a set of shapelets; r: the number of shapelets

ArcoriTHM 3: Random_shapelet_tree ().

less than the generation of random shapelet forest, we only
discuss the latter part. In Algorithm 2, the function
generateShapelet requires to find the best split of a subse-
quence whose worst time complexity is O(nl*) where n is
the number of instances in data set and [ is the length of time
series. Besides, the time complexity of the function self_sim-
ilar is O(r*) which is far less than O(nl*). Therefore, the time
complexity of shapelet_sampling is O(rxnl*). In Algorithm 3,
the function random_shapelet_tree requires to select the
shapelet that has the highest information gain whose time

TaBLE 1: Description of UNIT.

Normal Attack S-effect Total

198950 768
198047 522

200680
199511

#training instance 962
#testing instance 942

complexity is O(rn?I*). Then, it recursively builds the left
subtree and the right subtree. The worst case is that the data
set is separated into two subsets with equal size in each
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TaBLE 2: Description of KDD CUP 99.

Normal Probing DoS U2R R2L Total
#training instance 10000 4107 5467 52 1126 20752
#testing instance 60593 4166 229853 228 16189 3111029
TaBLE 3: The precision and recall values of five algorithms on UNIT (%).
INN+DTW NS ST+CART ST+SVM IDRSF
Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall
Attack 99.9 87.7 99.9 81.7 100.0 89.3 100.0 89.4 100.0 92.4
S-effect 31.6 77.2 46.7 75.1 64.7 86.6 65.3 87.7 87.4 98.1
Normal 3.7 92.5 2.0 76 3.7 86.8 4.1 94.9 5.7 96.4
TaBLE 4: The precision and recall values of five algorithms on KDD CUP 99 (%).
INN+DTW NS ST-+CART ST+SVM IDRSF
Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall
Probing 82.7 75.2 69.5 71.4 81.7 83.2 91.1 80.4 90.9 87.5
DoS 91.9 86.3 88.2 84.0 98.5 90.2 98.9 94.6 99.9 97.6
U2R 7.5 7.1 11.1 4.2 18.3 15.1 29.6 14.4 48.5 14.0
R2L 26.2 159 27.7 3.8 48.8 12.8 65.3 12.2 77.5 13.2
Normal 59.2 87.4 46.2 75.8 63.3 92.5 76.0 92.3 75.7 99.4
iteration. Thus, the complexity is as follows:
0.900 -|
0.800 -
272 (M (M (™, o 22
O(rnl +(r 1)(5) P+(r 2)(5) P+(r 3)<Z> P+ >~O(rn ). 0.700 -
0.600 -
4 2
( ) § 0.500
5 5 = 0.400
Obviously, O(rxnl®) is less than O(rn*l*); hence, the 0300
overall time complexity of the IDRSF algorithm is O( 0.200
rpmnzlz). Recall that, the symbols r, p, and m represent the 0.100 4
number of sampled shapelets, the number of trees in forest, 0.000 , , - I_
and the number of dimensions in time series, respectively, Attack S-effect Normal
fmd it is not dlﬂicqlt to finger out that its time complexity INN+DTW ST+SVM
is far less than the time complexity of classical shapelet algo- = NS = IDRSF
rithm, i.e., O(mn**). ST+CART

4. Experiments

4.1. Data Sets and Parameter Setting. The data sets in the
experiments include UNIT [24] and KDD CUP 99 [25],
both of which are usually adopted in the field of network
security. The UNIT data set includes 14 million records of
network attack flows. The collected instances are divided
into three groups, which are malicious traffic (attact), side-
effect traffic (S-effect), and unknown traffic (normal).
Because the size of the UNIT data set is too large to be han-
dled, and meanwhile it lacks normal network traffic, Winter
et al. [26] sampled part of instances according to the distri-
bution of the original data set and supplement 1904
instances of normal network traffic. In this paper, we adopt
Winter et al.’s data set. KDD CUP 99 is a famous data set
for intrusion detection which has 5 million instances of net-

FIGURE 2: The f-score of five algorithms on UNIT.

work traffic. There are four different types of network attack
in KDD CUP 99, which are labeled as Probing, DoS, U2R,
and R2L, respectively. We also sampled 10 percent instances
of the original data set and obtained a training data set with
494021 instances and a testing data set with 311029
instances. The details of UNIT and KDD CUP 99 data sets
are given in Tables 1 and 2, respectively. Additionally, both
data sets were preprocessed, including transform of nominal
value to integer value and z-normalization.

The experiments were performed on a PC with Intel
Core i7-8700 3.2GHz CPU and 32GB RAM. In the pro-
posed algorithm, there are five parameters. We performed
cross-validation to decide the parameter settings. The
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1.000 -
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000 -

FScore

Prob DoS

» INN+DTW
® NS
ST+CART

U2R R2L Normal

ST+SVM
m IDRSF

FiGUre 3: The f-score of five algorithms on KDD CUP 99.

number of shapelets sampled for each forest r is set to |C|
x y/m, the number of trees p in forest is set to 500, the sam-
pling coeflicient « is set to 1.2, and the two parameters, i.e., §
and A, for self-similarity detection are set to 2 and 5,
respectively.

4.2. Experimental Results and Analysis. To evaluate the effec-
tiveness of the IDRSF algorithm, we choose four algorithms
for comparison in the experiments. The first is a classical
algorithm, named as INN+DTW, which employs one-
nearest-neighbor classifier and dynamic time warping.
Wang et al. [27] proved that the INN+DTW is a classic
algorithm for time series classification which is hard to be
defeated. Except INN+DTW, other three algorithms are all
based on shapelet technique, including Naive Shapelet
(NS), Shapelet Transform-based CART (ST-CART) algo-
rithm, and Shapelet Transform-based SVM (ST-SVM).
Additionally, we employed three metrics to evaluate the
effectiveness, which are recall, precision, and f-score. It is
well known that there are four possible results when predict-
ing a new instance, ie., true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). TP and
TN refer to the correct prediction of normal behavior and
attack behavior. FP and FN refer to the incorrect prediction.
Then, the formulas of the three metrics are given below.

TP
Recall= ——— |
TP + FN
Precisi TP (5)
recision= ————,
TP + FP
2 X ision x 1l
fscore = precision X reca

precision + recall

The precision and recall value of five algorithms on two
data sets are given in Tables 3 and 4, respectively. In each
table, the experimental results are listed according to the
class label. We can find in Table 3 that all the precision
values of five algorithms on class “normal” are very low, just
from 2% to 5.7%. The rationale behind the result is the

unbalance of the UNIT data set. The number of instances
in class “normal” is only several hundreds, but tens of thou-
sands of “attack” instances are assigned the label “normal” in
the prediction. This dramatically decreases the precision
value. The same phenomenon appears in Table 4, e.g., the
precision value and the recall value on class “U2L.”

For more intuitive comparison, the f-scores obtained by
the five algorithms on two data sets are shown in Figures 2
and 3. From the two tables and the two figures, it is not dif-
ficult to find that the precision value and the recall value
obtained by the IDRSF algorithm on two data sets are obvi-
ously better than other four algorithms. Moreover, we can
see that the IDRSF algorithm usually performs better on
the recall metric, and this is very important for an IDS sys-
tem. Furthermore, we compare the results of the IDRSF
algorithm with that of the state-of-art algorithm (named
DSSVM) reported in [28], and we can find that the IDRSF
is superior to the DSSVM algorithm. This proves the effec-
tiveness of the proposed algorithm.

However, we cannot ignore that the precision and recall
values obtained by the IDRSF algorithm on classes “U2L”
and “R2L” are not satisfactory. The reason behind the results
is that the testing instances of the two classes include lots of
“new patterns” which not appears in the training data set.
The shapelet-based technique is essentially a pattern-based
method; therefore, it is not easy for the IDRSF to deal with
this problem.

5. Conclusions

In this paper, we propose a novel algorithm, named IDRSF,
to handle the intrusion detection problem. The algorithm is
based on a new primitive “shapelet” in the field of TSC. The
advantages of this technique not only include the better abil-
ity of classification than traditional techniques in TSC, but
also have good interpretability which is not provided by
the deep learning methods. The IDRSF algorithm is evalu-
ated on two famous data sets of intrusion detection, i..,
UNIT and KDD CUP 99, and it is compared with four clas-
sical algorithms in the field of TSC in which three are based



on shapelet. Experimental results prove the effectiveness of
the proposed algorithm. Next, we will try to extend this tech-
nique to further handle the unbalance data set and new pat-
terns which not appear in the training set.

Data Availability

The data sets in the experiments include UNIT and KDD
CUP 99, both of which are usually adopted in the field of
network security [24, 25].
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