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In the past few decades, a number of multiobjective evolutionary algorithms (MOEAs) have been proposed in the continue study.
As pointed out in some recent studies, the performance of the most existing MOEAs is not promising when solving different shapes
of Pareto fronts. To address this issue, this paper proposes an MOEA based on density estimation ranking. The algorithm includes
density estimation ranking to shift the reference solution position, calculating the density of candidate solutions and ranking by the
estimated density value, to modify the Pareto dominance relation and for handling complicated Pareto front. The result of this
ranking can be used as the second selection criterion for environmental selection, and the optimal candidate individual with
distribution and diversity information is selected. Experimental results show that the proposed algorithm can solve various types
of Pareto fronts, outperformance several state-of-the-art evolutionary algorithms in multiobjective optimization.

1. Introduction

Multiobjective optimization problems (MOPs) are common
in the real-life, e.g., robotics [1], urban bus transit route
network design problem [2], smart grids [3], and electricity
selling market [4]. These problems aim to optimize more
than two conflicting objectives at the same time, which can
be mathematically formulated clearly depict as follows.

Min F xð Þ = f1 xð Þ, f2 xð Þ,⋯, f m xð Þð Þ
s:t x ∈ X

ð1Þ

where x denotes the decision vector, X ⊆ Rn is called the deci-
sion space, and FðxÞ ∈ Rm is the objective vector of x, which
consists of m objective functions of f iðxÞ, i = 1, 2,⋯,m.

However, owing to the conflicting nature of multiple
objectives, there is not an algorithm that obtains a single opti-
mal solution that can optimize all objectives. Instead, some
solutions can be obtained as a trade-off between different
objectives, called the Pareto set (PS). The PS is termed the

Pareto front (PF) in the objective space. To approximate
the Pareto optimal set, greatly quantities of multiobjective
evolutionary algorithms (MOEAs) have been proposed to
solve MOPs in the past several decades. These algorithms
can be roughly classified into three categories.

The first category is the dominance-based MOEAs,
which keep the nondominated solution and remove the dom-
inated solution in the population [5]. There are mainly two
types of dominance-based approaches: the first type of Pareto
dominance-based MOEAs, which Pareto dominance-based
mechanisms are adopted to distinguish and select candidate
solutions. For example, the elitist nondominated sorting
genetic algorithm (NSGA-II) [6], the Pareto envelop-based
selection algorithm II (PESAII) [7], and the strength Pareto
evolutionary algorithm 2 (SPEA2) [8] are representative
MOEAs of this type, where all nondominated solutions are
firstly identified, and then the other strategy is used to make
selections among the nondominated solutions to maintain
the population diversity.

The second type of dominance-based approaches, where
it improves the selection pressure of the environment by
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changing the Pareto dominance, thus does not the need for
other selection strategies. Remarkable MOEAs based on
change Pareto dominance have included ε-MOEA [9],
MO_Ring_PSO_SCD) [10], and HTL-PSO [11].

The second category is commonly known as the
decomposition-based MOEAs, which decomposes a complex
MOP into a number of subproblems and optimizes them
simultaneously [12]. There are mainly divided MOEAs into
two types of decomposition-based approaches. In the first
type of decomposition-based approaches, an MOP is divided
into a group of single-objective optimization problems
(SOPs) [13]. The MOEA/D proposed in [14] is a simple
and generic MOEA based on decomposition, which intro-
duces a set of weight vectors to manage and select candidate
solutions. [15] proposed a reference vector-guided evolution-
ary algorithm, which MOPs are divided into a set of SOPs by
the reference vector; in this way, the candidate solutions will
effectively converge to the optimal solutions of each SOPs
without considering the conflict between different SOPs.

In the second type of decomposition-based approaches, an
MOP is divided into a set of sub-MOPs or subregions. For
instance [16], the during decades proposed include reference
point-based nondominated sorting genetic algorithm III
(NSGA-III) [17], inverse modeling-based MOEA (IM-
MOEA) [18], and the k-means clustering method divides the
population into multiple subpopulations in GSMPSO-MM
[19], and learning to-decompose paradigm adaptively sets
the decomposition method with the Pareto front [20, 21] that
proposed a MOEAD-M2M, which divided MOP into a group
of simple subproblems and solving these in a collaborative
manner, population diversity will be achieved by this way.
The proposed algorithm termed as SPEA/R, which divides
objective space into a set of subregions, and individuals in
every subregion are driven toward target direction [22].

The third category is known as the indicator-based
approaches, where performance indicators of solution qual-

ity measurement are adopted as selection criteria in the envi-
ronmental selection. Representative MOEAs of this type
contain S metric selection evolutionary multiobjective opti-
mization algorithm (SMS-EMOA) [23], generational dis-
tance and ε-dominance based MOEA (GDE-MOEA) [24],
indicator-based evolutionary algorithm [25], a dynamic
neighborhood MOEA based on hypervolume indicator
(DNMOEA/HI) [26], an inverted generational distance
(IGD) indicator-based evolutionary algorithm [27], and R2
indicator-based many-objective metaheuristic-II (MOMBI-
II) [28], where the environment selection strategies are
designed based on a predefined the hypervolume (HV) indi-
cator, the generation distance (GD), binary indicator, and the
R2 indicator, respectively. The hype suggested an HV
indicator-based MOEA [29], where it uses Monte Carlo sim-
ulation to approximate the exact HV values. The AR-MOEA
is based on the enhanced inverted GD (IGD-NS) indicator
[30], where a reference point adaptation method is to adjust
a set of reference points based on the indicator calculation
of candidate solutions.

There are a few other algorithms that are not included in
the above three main categories. For example, a decision var-
iable analysis MOEA (MOEA/DVA) has been proposed
based on decomposition and differential evolution (DE)
[31]. The MOEA/D-CMA suggested in [32] in which it uses
DE and covariance matrix in the MOEA based on decompo-
sition, and DREA has been proposed in the [33], which is
based on diversity ranking. More recently, a new algorithm
has been suggested based on fuzzy and decomposition for
multiobjective optimization (MOEA-MCD) [34]. An
enhanced two-archive algorithm (Two_Arch2) has been sug-
gested based on different selection principles (indicator and
dominance) in [35], which design a new Lp-norm mainte-
nance for diversity and convergence. A one-by-one selection
strategy has been provided in [36], where main approach is in
the environment selection strategy to selection offspring
individuals one by one, which is based on a computationally
efficient convergence indicator to increase the selection pres-
sure towards the Pareto optimal front.

These MOEAs are suggested to solve MOPs in the litera-
ture, and the experimental results verify that many MOEAs
can well balance the convergence and diversity of population.
And yet, it have been pointed out in some recent studies that
the most existing MOEAs for the optimization problems show
performance that can strongly depend on PF shape [37, 38]. In
other words, some MOEAs are merely solving a type of PFs of
MOP and show versatility that is not good when these MOEA
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Figure 1: The relationships between the four sets in DEREA, i.e., the
population P, the initial boundary reference vectors R, the ranked
solutions S, and the subregions boundary reference point set R′.
First, the initial vectors of scale in R according to the dimension of
the population P and the extreme solutions is selected by the
boundary reference vector and obtain the rank value 0. Then, the
ranked solutions S close the true PF as subregions boundary
reference point R′. Finally, the DER selects subregions optimal
solution and rank.

Input:N (population size)
Output:P (a set of solutions)
1 Initialize:P = RandomInitializeðNÞ;
2.while termination criterion not fulfilled do
3.P′ =Matingselectionð2,N , PÞ
4.O = GAðP′Þ
5.P = EnvironmentalSelectionðP ∪O,NÞ
6. end while

Algorithm 1: Framework of DEREA.
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optimizing other types PFs of MOP. This is due to the most
MOEAs that are very sensitive to PF shapes.

For the above issues, this paper has been suggested a den-
sity estimation ranking- (DER-) based evolutionary algo-
rithm for multiobjective optimization, called DEREA. The
main contributions of this work included as follows.

(1) The current work has much of the study primary
selection criterion (i.e., modifying the Pareto domi-
nance approach) in Pareto-based algorithms to
solved multiobjective, and this paper enhances the
Pareto-based algorithm performance by the other
selection criterion (modifying the diversity mainte-
nance mechanism). This paper has been suggested a
DER approach in order to enhance Pareto-based
algorithm suitable for multiobjective optimization.
The DER simultaneously includes the convergence
and distribution information of individuals to
enhance MOEA performance

(2) The basic approach of DER is simple, considering the
contribution of individuals to population conver-
gence in sparse area, and the DER shifts poor conver-
gence individuals to density crowded area. In this
way, these individuals with poor convergence perfor-
mance will be given a high density value, which is
easier to be eliminated in the evolution process, so
improving the efficiency of the algorithm. In addi-
tion, the calculated density value is used directly for
ranking, and the calculation cost is negligible

The rest of this paper is organized as follows. In Section 2,
the details of the proposed algorithm DEREA are described.
The empirical results of DEREA compared with several clas-
sical MOEAs are presented in Section 3. Finally, conclusion
and future work are given in Section 4.

2. The Proposed DEREA Preparation

2.1. The Framework of DEREA. The proposed DEREA has
similar framework as NASA-II, except that DER is adopted

as the second select criterion and the boundary reference vec-
tors to manage diversity and convergence for various types of
the Pareto fronts. In general, there are four main solution sets
maintained in DEREA, i.e., the population P, the initial
boundary reference vectors R, the ranked solutions S, and
the subregions boundary reference point set R′. To be spe-
cific, the population P contains the candidate solutions,
guaranteeing uniform distribution of the candidate solutions
in P by the initial boundary reference vector set R and the
ranked solutions S as final output reflects the PF and guides
the boundary reference points adaptation come into being,
and the subregions boundary reference point set R′ is used
in the DER-based selection in the population P, where the
relationships between the four solutions are described in
Figure 1.

As presented in Algorithm 1, the main framework of
DEREA consists of the following steps. Firstly, an initial pop-
ulation P of size N is randomly generated. Then, in the main
loop, the mating selection is carried out to construct the P′
(mating pool) based on the ranking results, where mating
selection will be detail described in Algorithm 2. The O (off-
spring population) has been generated by genetic algorithm
operations. The parents and their offspring solutions are
obtained by the environment selection. Finally, the best N
solutions are selected by the environment selection, and the
new population comes into being.

2.2. Offspring Creation. In the suggested DEREA, the widely
used genetic operators [39], i.e., the polynomial mutation
[40] and the SBX (simulated binary crossover) [41], are
introduced to combine with the binary tournament selection
[42], which constructs the mating selection method to gener-
ate the offspring population. Thus, initial population P
includes N individuals, and a number of N/2 couple of par-
ents are randomly generated, i.e., each of the N individuals
has same probability to participate in the reproduction pro-
cedure. Algorithm 2 details the binary tournament selection
and density estimation in the main loop. This is possible
partly thanks to boundary reference vector strategy (it will
be explained in detail later), which can capture the boundary

Input:P (population)
Output:P′(parents for variation)
1 Define the rank of all solutions by density estimation ranking;
2 Calculate the density estimation DE value of all solutions;
3 fori = 1 to jPjdo
4 Randomly select p and q from P;
5 ifDEp >DEqthen

6 P′ = P′ ∪ q;
7 else ifDEp <DEqthen

8 P′ = P′ ∪ p;
9 else
10 P′ = P′ ∪ randomðp, qÞ;
11 end if
12 end for

Algorithm 2: Mating selection.
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of the PF to manage the diversity effectively (m boundary ref-
erence vector search m solutions).

2.3. Density Estimating. In a population, an individual den-
sity represents the degree of crowding in the region where
the individual is located. Density estimation plays a funda-
mental role in the select Pareto solution set. Ther are various
density estimation strategies in the MOEAs. For instance, the
SPEA2 uses a nearest neighbor density estimation strategy to
calculation the density of an individual [8]. NSGA-II gives
an expression in the density of an individual by calculating
crowing distance [6]. Most grid-based MOEAs, for exam-
ple, the dynamic multiobjective evolutionary algorithm
[43] and PESAII, calculat the number of individuals in
the hyperbox to reflect the density of an individual; yet,
some scholars proposed to use a set of hyperboxs to
describe the density of an individual based on the degree
of individual crowding [44, 45].

Despite the various strategies of density estimation, this
all measures the similarity of degree between individuals in
a population. Generally, lower density individuals are prefer-
able when two individuals are nondominant individuals in
the population. DE contributes greatly to the Pareto solution
set in the MOEA-based Pareto dominates. Therefore, this
paper introduces enhance shift-based density estimating
(SDE) [46] to maintain the diversity and convergence of
population.

Simply speaking, if there is an individual performing bet-
ter than individual p for an objective, this objective will be
moved to the same position of p in the population; otherwise,
its position will remain unchanged. Formally, the density D
ðp, PÞ of a candidate solution p in the population P can be
expressed as follows:

D p, Pð Þ =D dist p, q1′
� �

+ dist p, q2′
� �

+⋯+dist p, qN−1′
� �� �

,

ð2Þ

where distðp, qi′Þ denotes the calculation of the Euclidean dis-
tance between individual p and selected solution qi′, N denotes
the size of population P, and qi′ is the shift version of an indi-

vidual qi (qi ∈ P and qi ≠ p), which is defined as follows:

qi jð Þ′ =
qi jð Þ otherwise

p jð Þ if qi jð Þ < pi jð Þ

(
, j ∈ 1, 2, 3,⋯,mð Þ, ð3Þ

where pðjÞ, qiðjÞ, and qiðjÞ′ denote the jth objective value of indi-
vidual p, qi, and qi′, respectively, andm denotes the number of
objectives.

The following sections will describe the twomain compo-
nents of suggested DEREA, i.e., the density estimation rank-
ing and environment selection.

2.4. Ranking the Solutions. When a great number of objec-
tives are involved, the proportion of nondominant individ-
uals in the population becomes quite large. In extreme
cases, all individuals in the population may become
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Figure 2: An illustrative example to show the advantage of DER over SDE.

Input:P = fx1, x2,⋯xNg: Population.
Output:Rðx ∈ PÞ:Ranking results.
1 fori = 1 to mdo
2 Find the i-th extreme solution ei
3 RðeiÞ = 0 //extreme solutions obtain the rank 0
4 end for
5 O = fe1, e2,⋯emg // the set of ranked solutions
6 U = P −O // the set of unranked solutions
7 for allx ∈Udo

/initialize the distance to ranked solutions
8 DEðxÞ =min ðdistðx, e1′Þ+⋯+distðx, em′ ÞÞ

// ei′Shifted by ei.
9 end for.
10 RðxÞ =DEðxÞ // current rank value

11 whilejUj > 0do
// find the candidate solution close to PF in region s

12 s = fxjx ∈U , min ðdistðx,Os′ÞÞg
// Os′ has a subregions boundary solution Os shifted

13 RðsÞ =DEðsÞ
14 O =O ∪ fsg,U =U − fsg
15 end while

Algorithm 3: Density estimation ranking.
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nondominated with each other. In this case, the individual
density will play a dominant or even unique role in the selec-
tion process of the algorithm to distinguish them. It can be
clearly known that only the individual with both good diver-
sity and convergence has a low crowding value, when using
the density estimation method calculation of an individual
density. Certainly, either individual with poor diversity or
poor convergence has some neighbors. Individual has a high
crowding when an individual has with both poor diversity
and poor convergence. Therefore, we want to select the indi-
vidual with the smallest density value by ranking.

Based on the density estimation strategy, the DER is pro-
posed in this subsection. Supposing a population P contains
N solutions, the task of DER is to distribute a rank value to
each candidate solution in P, using the calculation density
value of the individual as the rank value and describes its
quality in terms of both diversity and convergence. In this
study, hoping to get a smaller rank value, the best solutions
accept the rank 0. Therefore, when applying density estima-
tion to evolutionary algorithms, candidate solutions with
smaller rank values are more apt to survive in the mating
selection and the environmental selection.

Compared to the SDE, DER adopts more comprehensive
information to select a solution set. Consider an example as
shown in Figure 2, where x1‐x11 is a candidate population.
In the case that five out of the eleven candidate solutions
are to be selected for next generation, SDE to select solutions
is fx1, x2, x3, x4, x11g. The DER chooses evenly distributed
solutions that arefx1, x3, x6, x9, x11g, which are the best can-
didate solutions in terms of diversity and convergence. The
reason for this phenomenon is that SDE selected the enough
solutions in the one region. However, during the selection
process by DER category, solutions divide a complex PF into
a number of subregions, then selecting the optimal solution
in every subregion.

DER works like a selection operator which selects
unranked solutions iteratively. In its main loop, there are
two sets O and U , which are composed of ranked solutions
and unranked individuals, respectively. Initially,O is the set

of extreme solutions e1, e2,⋯, em, and the extreme solutions
are selected by the boundary reference vector. Capturing
the boundary of the PF can be beneficial for the next step of
the selection optimal solutions. This part is not the main con-
tribution of this paper, and thus the method proposed in [16]
is employed here, and the extreme solutions in O. These are
the most boundary solutions of PF, facilitating the DER
method to rank the population by PF boundary. However,
U includes all remaining solutions:

O = e1, e2,⋯,emf g,U = P −O: ð4Þ

After the initialization, we select a solution s with the
smallest individual density value from U according to the
density estimation method. The s is selected processing
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Figure 3: Illustration of the first two iterations of the ranking approach.

Input:P (combined population), NV (reference vector),
N (population size)

Output:Q (population for next generation)
// Non-dominated sorting.
1 Front = NondominatedSortðPÞ;
2 k⟵minimumnumber satisfies jUk

i=1Frontij ≥N ;
3 Q⟵Uk−1

i=1 Fronti ;
4 / ∗ solutions obtained from last front ∗ /
5 p⟵ arg minp∈FrontkNV ;
6 ifp +Q ≥N
7 Q =Q ∪ p
8 else continue select solutions
9 whilelength < ðN −Q − pÞ
10 Q′ = arg max ðDERðFrontkÞÞ;
11 end
12 Q =Q ∪Q′ ∪ p
13 end

Algorithm 4: Environmental selection.
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which is defined as follows:

s = arg min
x∈U

D x, eOð Þ, ð5Þ

where eO denotes the extreme solutions by boundary refer-
ence vectors, and Dðx, eOÞ denotes calculate density of an
individual x in the population. This step is designed to main-
tain the diversity. Since s is close to PF, selecting the solutions
has high quality in terms of both convergence and diversity.
The estimated individual density value as the ranking value
is moved to O. Then, the s is divided in the entire region into
two subregions, and selecting optimal solution s in every sub-
regions is moved to O. These operations are repeated until U
is empty.

All the details of DER have been discussed in above.
Algorithm 3 provides the pseudocode of DER. The result of
ranking x is denoted by RðxÞ. Lines 1 to 4 use the boundary
vector to select the extreme solutions and obtain the rank 0.
In lines 5 to 9, O and U are initializing, and the minimum
density value to the rank solutions after the shifted position
of each solution in U is initializing. Then, loop in lines 11
to 16 iteratively ranks the remaining solutions. Specifically,
in constant iteration, the promise solution s is first found in
line 12. The density value of the promise solution is its rank
value in line 13. Finally, in line 14, we move s from U to O.
Since the key individual is inserted every time the loop ranks,
the density of unranked individuals will gradually decrease;
so, previously ranked solutions always get higher rank value
than those ranked in the subsequent iterations.

To clearly understanding the ranking of process, Figure 3
depicts an illustration of its first two iterations. The circle in
the figure represents the solutions in the entire population,
where filled circle (i.e., x1 and x2) represents the extreme
solutions selected by the boundary vector, and the dotted cir-
cle indicates the position after the extreme solution is shifted
when calculating the individual density. x13, x14, x15, x16, x17,
x23, x24, x25, x26 , and x27 denote the position after shifting
when calculating the individual density, where x13 and x23
represent the position after x1 and x2 shift when calculating
the density of individual x3. Firstly, calculating the density of
unranked individual p using the extreme solutions selected by
the boundary vector, where extreme solution position is shifted
by the density estimation approach and then selected the indi-
vidual with the smallest density value as the promise solution
s. Then, the individual x3 with the smallest density value is
selected as s by comparing the density values of all individuals.
Meanwhile, it gets rank value that is the density value. Secondly,
bipartition the objective space into two subregions SA and SB by
x3. Then, x1 and x3 are the boundary extreme solutions of sub-
region SA, and x2 and x3 are the boundary extreme solutions of
subregion SB; in the second iteration to select key individual in
each subregion, the key individual with the smallest density
value is the promising solution, and it gets the rank and is
moved to O. After these iterations, obtaining the rank solutions
is x1, x2, x3, x4, andx7.

In the above example, it is easy to understand that the selec-
tion pressure is usually greater in the previous stage, but the
selection pressure gradually decreases with more and more

solutions that are selected and ranked. Thus, previously ranked
solutions have a high quality, because they have survived in the
fierce selection competition. And they will be assigned a larger
rank values compared to those ranked in the later stage.

2.5. Environment Selection. The DEREA is similar to the most
existing MOEAs, which adopt elite strategies to make envi-
ronmental selections for the combined population of each
generation’s parent and offspring candidate solutions.

The procedure of the DER-based environmental selec-
tion is given in Algorithm 4. The main loops are as fol-
lows: Firstly, before the DER to selecting the candidate
solution, making the combined population is first sorted
by adopting the high efficiency nondominated rank. Then,
population in all candidate solutions from nondominated
fronts in the first k − 1 was selected directly for the next
generation (line 3 in Algorithm 4). Secondly, the corre-
sponding solution is selected by the boundary vector to
enter the next generation (line 5 in Algorithm 4). Finally,
because p +Q <N , continuing to select N − ðp +QÞ candi-
date solutions from the population by DER (line 11and 13
in Algorithm 3). The DER is used to select candidate solu-
tions in the kth front Frontk, where k defined the mini-
mum number it satisfies jUk

i=1Frontij ≥N . Each candidate
solutions in the Frontk and its contribution to Frontk on
DER are calculating the Euclidean distance. Then, we will
delete the solution with small contribution for efficiency,
recalculate the contribution of the remaining solution in the
Frontk, and repeating this process until the number of remain-
ing solutions in Uk

i=1Fronti reaches N.
It is noteworthy that although the selection process in the

most Pareto-based dominance MOEAs are guided by the
density estimation value, the motivation of employing DER
in DEREA is very different. In DEREA, we transfer position
of each individual by SDE mechanism, then rank of each
individual by density estimation value. The most existing

Table 1: Pareto fronts of the test instances.

Problem Pareto front

DTLZ1 Linear

RegularDTLZ2-4 Concave

WFG4-9 Concave

DTLZ5-6 Mostly degenerate

Irregular

DTLZ7 Disconnected

IDTLZ1-2 Inverted

WFG1 Sharp tails

WFG2 Disconnected

WFG3 Mostly degenerate

Table 2: Setting of the population size.

M Division Population size

2 (15, 0) 100

3 (13, 0) 105
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Figure 4: The nondominated solutions obtained by DEREA, dMOPSO [48], MOEA/D [14], MOEA/DDE [50], NSGA-II [6], PESAII [7],
SMEA [51], and SPEA2 [8] on DTLZ1 problem with 3-objective.
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Figure 5: The nondominated solutions obtained by DEREA, dMOPSO [48], MOEA/D [14], MOEA/DDE [50], NSGA-II [6], PESAII [7],
SMEA [51], and SPEA2 [8] on WFG5 problem with 3-objective.
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Figure 6: The nondominated solutions obtained by DEREA, dMOPSO [48], MOEA/D [14], MOEA/DDE [50], NSGA-II [6], PESAII [7],
SMEA [51], and SPEA2 [8] on IDTLZ2 problem with 3-objective.
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MOEAs estimate the density of each individual in the popu-
lation based on the position of the individual’s neighbors.
Therefore, the long-term existence of low-convergence indi-
viduals will cause the disappearance of some high-
convergence individuals in the limitation of population size
in the environmental selection. When estimating the sur-
rounding area density around in any individual in a popula-
tion, reflecting the relative proximity of the individual to the
PF by DER will shift the position of other individuals based
their convergence. This will better maintain the diversity of
solutions. Hence, DEREA adopts DER strategy in order to
select the convergence of the individual in the population.

3. Experimental Results and Analysis

In this section, the suggested DEREA with some state-of-the-
art MOEAs was designed for solving MOPs to demonstrate
the performance of the DER, and these classical MOEAs
include GDE3 [47], dMOPSO [48], MOPSO [49], MOEA/D
[14], MOEA/DDE [50], NSGA-II [6], PESAII [7], SMEA
[51], and SPEA2 [8]. The main step of the experimental pro-
cess includes

(1) Firstly, the experimental settings used in this paper
are illustrated

(2) Secondly, each algorithm is run 30 times indepen-
dently for each test question, and the Wilcoxon rank
sum test is adopted to compare the results obtained
by DEREA and those by others compared algorithms
at a significance level of 0.05

In the experiments, test problems include multiple widely
used test suites that are employed and DTLZ1–DTLZ7,
IDTLZ1, IDTLZ2 [30], WFG1–WFG9, ZDT1–ZDT6, and
UF1–UF9, where seven test problems are DTLZ1–DTLZ7
from the DTLZ test suite [49], test problems WFG1–WFG9
and UF1–UF9 taken from WFG test suite [22], and UF test
suites [52], respectively. Six test problems are ZDT1–ZDT6
that are taken from ZDT [14] test suites. For IDTLZ1,

IDTLZ2, DTLZ1–DTLZ7, and MaF1–MaF7, the number of
decision variables is set to n = k +M − 1, where M is the
objective number, k = 5 is used for IDTLZ1 and DTLZ1,
k = 10 is used for IDTLZ2, and DTLZ2–DTLZ6, k = 20,
is used for DTLZ7. For WFG1–WFG9, the number of
decision variables is set to n = k + l, k is used for (M – 1),
and l is used for 10. Pareto fronts of the above part test
instance are given in Table 1. For UF test suites and
ZDT test suites, UF1–UF10 and ZDT1–ZDT3 test instance
in the number of decision variables is set to 30, and ZDT4
with ZDT6 and ZDT5 corresponds to the setting n = 10
and n = 80, where UF test suites contain 10 continuous
multiobjective optimization problems with constraints.
All the compared MOEAs in this paper are implemented
based on MOEA platform PlatEMO [53].

3.1. Experimental Setting

(1) Setting for crossover and mutation operators: The
simulated polynomial mutation [40] and binary
crossover (SBX) [41] are applied in all MOEAs. The
probabilities of crossover and mutation are set to
1.00 and 1/D (where D denoting the number of deci-
sion variables). The distribution indexes of both SBX
and polynomial mutation are set to 20

(2) Population size: The population sizes of the algo-
rithm for experimental comparison are determined
by the number of reference vectors or reference
points in this paper. For problems with M ≥ 3, the
population size is generated by a two-layer vector
generation strategy [54]. For the accuracy of the com-
parison results, the specific setting of the population
size of the comparison algorithms is summarized in
Table 2, and the population sizes are also set accord-
ing to Table 2 for the proposed DEREA

(3) Performance metrics: In these experiments, the
widely used hypervolume (HV) and the inverted gen-
erational distance (IGD) were adopted to as

Table 4: The statistical results (mean and standard deviation) of the IGD values obtained by DEREA, PESAII, dMOPSO, NSGA-II, and
MOEA/DDE on UF1-UF10. The best results are highlighted in blue.

Problem M DEREA PESAII [7] dMOPSO [48] NSGA-II [6] MOEA/DDE [50]

UF1 2 7.6648e-2 (1.86e-2) 1.2949e-1 (4.29e-2)- 2.1650e-1 (6.57e-2)- 8.2028e-2 (1.29e-2) ≈ 3.8810e-2 (1.64e-2)+

UF2 2 2.4740e-2 (4.42e-3) 3.7279e-2 (1.57e-2)- 5.3844e-2 (6.62e-3)- 2.7868e-2 (6.93e-3)≈ 2.1435e-2 (8.96e-3)+

UF3 2 2.1154e-1 (4.33e-2) 2.5232e-1 (4.31e-2)- 3.3960e-1 (2.08e-2)- 2.3749e-1 (4.41e-2)- 2.1562e-1 (4.37e-2)≈
UF4 2 4.0734e-2 (1.72e-3) 4.6986e-2 (1.70e-3)- 9.7788e-2 (7.03e-3)- 4.2393e-2 (1.25e-3)- 5.9141e-2 (5.89e-3)-

UF5 2 2.7954e-1 (6.80e-2) 3.9438e-1 (1.06e-1)- 1.1205e+0 (2.25e-1)- 3.2780e-1 (8.90e-2)- 4.5750e-1 (1.02e-1)-

UF6 2 2.0051e-1 (7.66e-2) 3.1073e-1 (1.24e-1)- 9.4042e-1 (7.82e-2)- 2.0025e-1 (8.76e-2)≈ 3.1438e-1 (1.52e-1)-

UF7 2 8.6449e-2 (1.17e-1) 2.5804e-1 (1.88e-1)- 1.1975e-1 (2.68e-2)- 1.0507e-1 (1.34e-1)≈ 2.2722e-2 (4.22e-2)+

UF8 3 1.4673e-1 (4.44e-2) 2.2468e-1 (5.76e-2)- 2.9173e-1 (3.77e-2)- 2.4555e-1 (5.27e-2)- 1.3471e-1 (3.73e-2)≈
UF9 3 1.3775e-1 (5.50e-2) 3.3876e-1 (1.27e-1)- 4.1963e-1 (5.45e-2)- 3.9328e-1 (1.40e-1)- 1.9027e-1 (5.71e-2)-

UF10 3 3.3628e-1 (4.64e-2) 4.4792e-1 (6.74e-2)- 8.5001e-1 (2.25e-1)- 4.0483e-1 (7.23e-2)- 5.4458e-1 (5.32e-2)-

+/ − /≈ 0/10/0 0/10/0 0/10/0 3/5/2

′ + ′, ′ − ′ and′ ≈ ′ indicates that the result is significantly better, significantly worse, and statistically similar to that obtained by DEREA, respectively.
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Figure 7: Continued.
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performance metrics for comparisons among the
experiments results obtain by each algorithm. All
the objectives are normalized according to the ideal
point and the worst point of the Pareto optimal front
before HV calculation, then calculated with a refer-
ence point (1.1, 1.1, ..., 1.1). Besides, in the calculation
of IGD metric, almost 5,000 uniformly distributed
points are sampled on the PF by Das and Dennis’s
method for each test instance, where defined by the
symbols ‘+,”-,’ and’≈’ indicate that the performance
metrics by others MOEA is significantly better, sig-
nificantly worse, and statistically similar to that
obtained by DEREA, respectively

(4) Termination condition: The termination criterion of
each run is the maximal number of generations. For
all test problems adopted in the experiment, set the
maximal number of generations based on test prob-
lems or different number objective. For DTLZ1,
DTLZ3, and WFG1–WFG9, the maximal number
of generations is set to 1000. For DTLZ2, DTLZ4,
and UF test suite, the maximal number of genera-

tions is set to 500. For ZDT1–ZDT6 test suite, the
maximal number of generations is set 300. The max-
imal number of generations of each algorithm to deal
with identical problems is the same

(5) Specific parameter settings in the compared algo-
rithm: For PESA-II, the number of divisions in each
objective is set to 10. For MOEA/D andMOEA/DDE,
the size of weight vectors neighborhood T is set to ½
0:1 ×N� (where N is the population size), the maxi-
mum number of solutions substitute by each off-
spring nr is set to ½0:01 ×N�, and the Tchebycheff
method is employed as the aggregation function. In
addition, for MOEA/DDE, the probability of select-
ing neighborhood solutions δ is set to 0.9. For
dMOPSO, Tα denotes the age threshold that is set
to 2. For SMEA, the number of neurons in each
dimension of the latent space D is determined by
the number of dimensions M, the initial self-
organizing maps learn rate τ0, and the size of neigh-
borhood mate pools H are set to 0.7 and 5, respec-
tively. In the experimental comparisons, for GDE3,
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Figure 7: The nondominated solutions obtained by DEREA, MOPSO, MOEA/D, GDE3, MOEA/DDE, NSGA-II, PESAII, and SPEA2 on
UF2 problem with 2-objective.

Table 5: The statistical results (mean and standard deviation) of the IGD values obtained by DEREA, PESAII, dMOPSO, NSGA-II, and
MOEA/D on ZDT1-ZDT6. The best results are highlighted in blue.

Problem M DEREA PESAII [7] dMOPSO [48] NSGA-II [6] MOEA/D [14]

ZDT1 2 4.1510e-3 (7.97e-5) 1.1847e-2 (5.24e-3)- 8.5475e-3 (2.98e-3)- 4.6078e-3 (1.47e-4)- 4.6049e-3 (6.45e-4)-

ZDT2 2 4.6195e-3 (1.98e-5) 1.0719e-2 (1.44e-3)- 8.5282e-2 (2.06e-1)- 5.0609e-3 (2.40e-4)- 3.8946e-3 (6.24e-5)+

ZDT3 2 2.0741e-2 (3.25e-2) 6.5135e-2 (6.04e-2)- 3.1740e-2 (9.28e-2)- 3.0418e-2 (3.52e-2)- 2.4470e-2 (2.07e-2)-

ZDT4 2 4.8255e-3 (6.43e-4) 1.1187e-2 (1.86e-3)- 7.3167e-3 (2.21e-3)- 4.8779e-3 (5.48e-4)≈ 1.0252e-2 (2.48e-3)-

ZDT5 2 1.1021e+0 (2.90e-1) 4.9351e-1 (2.36e-1)≈ 0.0000e+0 (0.00e-0)- 1.7390e-2 (3.69e-2)≈ 1.2512e+1 (3.96e-1)-

ZDT6 2 3.3452e-3 (5.76e-5) 8.0858e-3 (1.29e-3)- 3.1043e-3 (2.03e-6)+ 3.7711e-3 (1.43e-4)- 5.5360e-3 (8.50e-4)-

+/ − /≈ 0/5/1 1/5/0 0/4/2 1/5/0

′ + ′, ′ − ′ and′ ≈ ′ indicates that the result is significantly better, significantly worse, and statistically similar to that obtained by DEREA, respectively.
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NSGA-II, DEREA, and SPEA2, there are no addi-
tional specify additional parameter

3.2. Comparisons between DEREA and Existing MOEAs for
Solving MOPs

3.2.1. Performance on WFG1–WFG9, DTLZ1–DTLZ7, and
IDTLZ1–IDTLZ2. Table 3 demonstrates the HV values
obtained by DEREA and other four classical MOEAs
designed for solving MOPs, namely, dMOPSO, MOEA/D,
NSGA-II, and SPEA2 on WFG1 to WFG9 and DTLZ1 to
DTLZ7, IDTLZ1, and IDTLZ2 with two and three objectives.
In general, the suggested DEREA significantly outperforms
the other four MOEAs in term of the HV values. For test
problems with irregular PF, Table 3 summarizes the HV
values of each algorithm solving the test problems, and
DEREA shows a performance surpass others competitors
on the majority of the test instances. However, the perfor-
mance of DEREA shows significance advantages with
dMOPSO, MOEA/D, NSGA-II, and SPEA2 on the regular
PFs. NSGA-II is outperformance by DEREA on more than
24 test instances, but it performs pretty well on WFG1 and
IDTLZ1. MOEA/D and SPEA2 achieve competitive results
on IDTLZ problems. The dMOPSO does not have an advan-
tage and is surpassed by DEREA on almost all the test prob-
lems. The performance will become poor when algorithms
solving with irregular PF test problems, and algorithms with
density estimation (i.e., DEREA) indicate clear improvement
over the others competitor MOEAs. However, the perfor-
mance of MOEA/D, NSGA-II, and SPEA2 deteriorates sig-
nificantly, being inferior to both DEREA on the most test
instance. This phenomenon resulted from the fact that the
Pareto fronts of these test instances are complicated, discon-
nected, or degenerate.

To visually understand the experimental results, Figure 4
plots the solution sets on the 3-objective DTLZ1. SMEA per-

forms poorly on this test problem, and the selection solutions
do not converge to PF. The other several MOEAs indicate
high performance in terms of converges. MOEA/D and
MOEA/DDE reach the PF sparse area and obtain a distrib-
uted solution sets, but its selection solutions may not be close
to the true PF, which illustrates why it has small HV value.
The solutions are uniformly distributed on PF by DEREA
obtained. It is easy to see that the solution obtained by
dMOPSO, NSGA-II, PESAII, and SPEA2 has poor perfor-
mance, which due to solutions located near the PF bound-
aries. Figure 5 plots the final solutions on the 3-objective
WFG5. NSGA-II, PESAII, and SPEA2 converge to the PF
region but its solutions fail to uniformly distribute. Due to
some dominant solutions that were deleted with that algo-
rithm selective solution only by individual position informa-
tion, SMEA indicates poor performance in terms of coverage.
The other three MOEAs have their own traits in the distribu-
tion of the solutions, and they obtain smaller HV values.
dMOPSO selected optimal solutions of away from the PF
and MOEA/D obtain solutions located near the PF bound-
aries. AndMOEA/DDE has poor performance with diversity.

The final solutions on the 3-objective IDTLZ2 problem
plotted in three-dimensional space are provided in Figure 6.
dMOPSO, NSGA-II, PESAII, and SMEA all converge to the
PF area, and however, fail to manager population diversity.
The other three competitors indicate clear advantages in pre-
serving diversity. These algorithms show performance that
are similar to DEREA, but the best HV value by DEREA
was obtained.

3.2.2. Performance on UF1–UF10. The results on problems
with UF in terms of IGD are presented in Table 4. DEREA
performs the best among the five algorithms. It obtains the
best results on ten test instances. NSGA-II and MOEA/DDE
are also competitive with DEREA on the majority of the test
instances, i.e., UF1, UF2, and UF7. Other competitors (i.e.,

0 0.05 0.1 0.15 0.2 0.25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT3

f 2

f1

(g) PESAII [7]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
ZDT3

f 2

f1

(h) SPEA2 [8]

Figure 8: The nondominated solutions obtained by DEREA, MOPSO, MOEA/D, GDE3, MOEA/DDE, NSGA-II, PESAII, and SPEA2 on
ZDT3 problem with 2-objective.
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PESAII and dMOPSO) perform inferior to the above algo-
rithms, where PESAII and dMOPSO indicate performance
poorly on the most test instances.

To further observe the differences among solutions set
obtained by the several compared algorithms, add three clas-
sical algorithms (i.e., MOEA/D, GDE3 and SPEA2). Figure 7
depicts the objective values of nondominated solution sets
with the IGD value. It can be clearly seen that the solution
sets obtained by DEREA and MOEA/DDE have shown good
performance, and this is why IGD values are similar. The per-
formance of other algorithms is similar, but except
MOEA/D, which it selected optimal solutions that fail con-
verge to the PF. Comparing this algorithm in UF2 instance
DEREA has indicated a slight advantage.

3.2.3. Performance on ZDT1–ZDT6. Table 5 presents the
mean and standard deviation of the IGD values of the final
solutions by each algorithm obtained for ZDT test suites.
Table 5 reveals that in terms of IGD, the final solutions by
DEREA are better than the other algorithms for ZDT1,
ZDT3, ZDT4, and ZDT5 instances. DEREA performance
surpasses the other four algorithms.

To facilitate visual comparison, Figure 8 shows the final
solutions of a run of the several algorithms. Clearly, the solu-
tions of DEREA have good balance between diversity and
convergence. MOEA/D and PESAII struggle to maintain
diversity, but lead to its selected solutions concentrated in a
local optimum. NSGA-II and SPEA2 selected solutions show
good diversity, but convergence performs slightly worse
DEREA. However, MOPSO and GDE3 indicate poor perfor-
mance, and the most of the solutions have a poor conver-
gence, thus leading to its high IGD value.

4. Conclusion

This paper proposes density estimation ranking strategy for
multiobjective optimization, namely, DEREA. In this paper,
a solution ranking method named DER is proposed. The
DER is introduced to adapt different shapes of Pareto fronts.
In addition, the DER is the most significant contribution of
this paper, changing the position of individuals by their rela-
tive proximity to the Pareto front, DER considers the conver-
gence and diversity of each individual in the population, and
the implementation of it is very simple.

Through extensive comparison of several widely use test
suites, a systematic experiment was carried out. From the
experiment results, the DEREA is quite competitive with
the several state-of-the-art algorithms on a majority of the
test suites. Moreover, due to DER are employed, the perfor-
mance of DEREA is less dependent on the Pareto front
shapes and is robust in solving problems having irregular
Pareto fronts.

In the future, we will have a future investigation into the
density estimation mechanism in the selected strategy. We
also want the future how to deal with more challenging prob-
lems, some of which are not easy to obtain during the search
process. And it is also meaningful to study many objective
optimization problems.
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