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IIoT (Industrial Internet of Things) has gained considerable attention and has been increasingly applied due to its ubiquitous
sensing and communication. However, the sparse characteristic of sensing data in distributed IIoT networks may bring out
tremendous challenges to implement the security protection measures. Based on the design of centralized data gathering and
forwarding, this paper proposes a novel anomaly detection approach for IIoT sparse data, which can successfully collaborate
the adaptive CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) feature exploitation with
one intelligent optimizing classification. Furthermore, in the adaptive CEEMDAN feature exploitation, the CEEMDAN energy
entropy based on adaptive IMF (Intrinsic Mode Function) selection is designed to extract the sensing features from IIoT sparse
data; in the intelligent optimizing classification, one effective OCSVM (One-Class Support Vector Machine) classifier optimized
by the IABC (Improved Artificial Bee Colony) swarm intelligence algorithm is introduced to detect various abnormal sensing
features. The experimental results show that, not only does the CEEMDAN energy entropy based on adaptive IMF
selection accurately describe the change of industrial production by analyzing the probability distribution and energy
distribution of sparse sensing data, but also the proposed IABC-OCSVM classifier has higher detection efficiency compared
with the OCSVM classifiers optimized by other swarm intelligence algorithms.

1. Introduction

IIoT (Industrial Internet of Things), which can effectively
implement real-time simulation and remote control during
the whole production or manufacturing cycle, has been
regarded as an important driving force in the industrial
intelligent revolution [1]. Furthermore, IIoT can successfully
establish one seamless connection between OT (Operational
Technology) and IT (Information Technology), and the
application of various IIoT devices (such as sensors, collec-

tors, or controllers) can cover most aspects of industrial
production by using some advanced technologies [2, 3],
including sensing technology, wireless interconnection and
communication technology, and intelligent analysis technol-
ogy. Under the integration of distributed monitoring and
centralized management, IIoT can accomplish the data pro-
cessing of various industrial activities in a more efficient way.
Consequently, it can not only improve the production qual-
ity and efficiency enormously, but it can also reduce the
product cost and resource consumption significantly.

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 4329219, 13 pages
https://doi.org/10.1155/2021/4329219

https://orcid.org/0000-0002-3517-8349
https://orcid.org/0000-0001-7863-3260
https://orcid.org/0000-0001-9195-8422
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4329219


Actually, the original definition of IIoT is characterized
by the high interconnectivity and large-scale distributed net-
work, and various IIoT devices can be directly or indirectly
exposed to the public Internet. However, information secu-
rity problems in no matter what type of cyberphysical sys-
tems or social networks emerge rapidly and extensively,
and the corresponding security incidents also occur repeat-
edly [4, 5]. As a consequence, IIoT is facing more and more
severe challenges of information security [6–9], and it may
suffer from greater risks than traditional IoT. In particular,
one integrated IIoT system always consists of thousands of
sensor nodes, which ensure interconnection and interopera-
bility by using some specific wireless communication proto-
cols. Once one or several sensor nodes have been maliciously
infiltrated and controlled by some sophisticated adversaries,
the corresponding disruptive activities may spread at a rapid
rate due to the through-hull connection of all sensor nodes
and have tremendous implications on the whole system
[10]. According to the basic flow and interaction of sensing
data, IIoT network architecture can be briefly divided into
three layers: data acquisition layer, data transmission layer,
and data processing layer, and each layer can experience var-
ious degrees of security threats due to distinct technology
solutions. For instance, in the data acquisition layer, some
intrinsic system flaws of IIoT devices may be considered as
the most direct invasion targets to inject malicious codes
[11]; in the data transmission layer, the public wireless
communication protocols and distributed network structure
may become some of the weak points, which can be stealth-
ily exploited to perform data-stealing or data-tampering
attacks, such as Sybil attacks or arbitrage attacks [12, 13];
in the data processing layer, various local or remote servers
are always exposed to the public network without some extra
protection measures, and these servers can be potentially
targeted by malicious adversaries who can easily excavate
more attack entries and paths [14, 15].

In order to guarantee the stability and reliability of IIoT
systems, both academia and industry have carried out many
theoretical researches and practical applications on IIoT
security protection measures: for the data privacy challenge,
the work in [16] discusses and summarizes the main issues
in the traditional IIoT architecture and designs the detailed
data interaction process based on the blockchain architec-
ture to enhance security and privacy in smart factories; for
the data authenticity challenge, the work in [17] proposes a
robust certificateless signature scheme for data crowdsensing
in the cloud-assisted IIoT, which can be proven to effectively
deal with four types of signature forgery attacks; for the data
confidentiality challenge, the work in [18] presents a secure
industrial data access control scheme for cloud-assisted IIoT,
and it uses the ciphertext policy-attribute-based encryption
scheme to provide fine-grained data protection; for the mali-
cious data transmission challenge, the work in [12] intro-
duces a secured and intelligent communication scheme for
PES (Pervasive Edge Computing) in an IIoT-enabled infra-
structure, and it proposes a lightweight Sybil attack detection
protocol to protect low-powered IIoT devices; for the data
congestion challenge, by using an average consensus-based
algorithm, the work in [19] puts forward an optimal sched-

uling framework to resist a DoS attack for IIoT-based smart
microgrids. In the above protection measures, some addi-
tional security functions or schemes are designed to improve
the security of original IIoT systems. Although they can
reflect an enhanced level of security capability due to the fine
theoretical and experimental analysis, their applicability and
feasibility in real-world IIoT systems await verification by
future explorations. The main causes involve the following
two aspects: on the one hand, most IIoT devices only have
low power and limited system resources, and the security
add-ons may decrease their work performance by perform-
ing the higher or lower computational costs of security oper-
ations [20]; on the other hand, IIoT is usually designed to
serve industrial control systems, whose requirements on
high availability and reliability may be not completely satis-
fied because of the inefficient adaption between the original
system design and some added security services. Differently,
anomaly detection in IIoT systems can be widely regarded
as a feasible and effective measure to identify unexpected
industrial activities [8, 21–23], because it can scarcely affect
industrial availabilities and real-time requirements by using
the bypass monitoring. However, the sensing data in distrib-
uted IIoT networks has some special characteristics of
sparsity, statefulness, and correlation. In practice, the spar-
sity of sensing data may bring out tremendous challenges
to implement the global anomaly detection, because the
extracted spatial features seem to be unfavourable for a
full-scale anomaly detection model without establishing
the intrinsic relationship between different sparse sensing
data. In order to solve the above problem, one ideal method
is to collect and analyze all sparse sensing data in a local
wireless sensor network, which is mainly applied to com-
plete one technological process in the whole industrial
production or manufacturing. Additionally, based on the
relatively short-range communication characteristic, most
IIoT systems always utilize the data collector to gather and
forward the sensing data from distributed IIoT sensors,
and this design can contribute to developing an experienced
machine-learning anomaly detection model, which can thor-
oughly explore the statefulness and correlation characteris-
tics of sparse sensing data. From this point of view, this
paper proposes a novel anomaly detection approach for IIoT
sparse data, and this approach successfully collaborates the
adaptive CEEMDAN (Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise) feature exploitation
with one intelligent optimizing classification. Moreover, the
CEEMDAN energy entropy based on adaptive IMF (Intrinsic
Mode Function) selection is designed to extract the sensing
features from IIoT sparse data, and one effective OCSVM
(One-Class Support Vector Machine) classifier optimized
by the IABC (Improved Artificial Bee Colony) swarm intelli-
gence algorithm is introduced to detect various abnormal
sensing features. Additionally, we use some real-world data
captured from one local oilfield IIoT system in the northeast-
ern part of China to evaluate our approach, and the experi-
mental results show that, for one thing, compared with the
traditional CEEMDAN singular spectrum entropy and
EEMD singular value decomposition, the CEEMDAN energy
entropy based on adaptive IMF selection can accurately
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describe the change of sparse sensing data and is more sensi-
tive to the size of abnormal data; for another, compared with
the OCSVM classifiers optimized by other swarm intelligence
algorithms, the proposed IABC-OCSVM classifier has higher
detection efficiency.

2. Adaptive CEEMDAN Feature Exploitation

2.1. Preparation. Collect all IIoT sensing data in time inter-
val T (T =∑m

i=1ti, ∀i ∈ ½1,m�), and extract the corresponding
data sequence Di = di1d

i
2d

i
3 ⋯ din, ∀i ∈ ½1,m� from the IIoT

sensing data in each time interval ti (i ∈ ½1,m�), where din
represents the nth data value in the data sequence Di. After
that, all data sequences Di (i ∈ ½1,m�) form a data sequence
set D = fD1,D2,D3,⋯,Dmg, where m is the number of data
sequences in the set D.

Due to the different number of IIoT sensing data in each
time interval ti, the dimensions of all data sequences Di
(i ∈ ½1,m�) are distinct from one another. In order to recon-
struct new data samples with the same dimension, an adap-
tive CEEMDAN feature exploitation method is properly
proposed. Furthermore, this method first uses the CEEM-
DAN decomposition to perform the multiscale analysis on
each data sequence, and then adaptively selects the effective
IMF components as the feature factors [24]. After that, the
corresponding energy entropies are calculated as the final fea-
ture values to reconstruct all data samples Yi = ðyi1, yi2, yi3,⋯,
yif Þ (i ∈ ½1,m�), which have the same dimension. Here, yij rep-
resents the jth feature variable in the ith data sample Yi, and f
is the dimension number of Yi.

2.2. Adaptive IMF Selection. As mentioned above, in order to
construct the data samples Yi (i ∈ ½1,m�) with the same
dimension, it is necessary to determine the feature factors
and calculate the corresponding feature values which can
be further utilized to obtain the feature variable yij. In terms
of feature factor selection, although the IMF components
can be used as the feature factors for some traditional anom-
aly detection models, there is still a considerable issue that
the fixed parameter values cannot accurately describe the
intrinsic characteristics of original data. To address this
issue, the proposed feature exploitation method can suffi-
ciently analyze the contribution of a single IMF component
and the global reconstruction error, and adaptively adjust
the number of effective IMF components according to the
intrinsic characteristics. The specific selection process is
listed as follows:

Step 1. We calculate the root mean square error (RMSE),
correlation coefficient, and energy difference between the
original data and the reconstructed data, and design the
adjustment coefficient β to appropriately adjust the number
of IMF components for the adaptive selection of effective
IMF components.

Suppose x and x′ represent the original data and the
reconstructed data, respectively. The numerical difference
between x and x′ can be measured by the RMSE, which is
defined as

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

k=1
xk − xk′
� �2s

: ð1Þ

The correlation between x and x′ can be measured by
the correlation coefficient, which is defined as

r =
∑n

k=1 xk − �xð Þ xk′ − x′
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k=1 xk − �xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
k=1 xk′ − x′
� �r : ð2Þ

Additionally, the energy difference between x and x′ can
be calculated by

Diff E xð Þ, E x′
� �� �

= 1
E xð Þ − E x′

� ���� ��� : ð3Þ

Here, E represents the energy value calculation of the
original data or the reconstructed data.

Based on the above parameters, we can define the final
adjustment coefficient β as follows:

β = 1 − RMSE
r + diff E xð Þ, E x′

� �� � : ð4Þ

Step 2. We calculate the cumulative variance contribution
and cumulative energy proportion of each IMF component
and dynamically adjust their threshold parameters. After
that, we further select the effective IMF components which
are less than two threshold parameters. Two threshold
parameters of IMF components can be calculated by

Tλ = 1 −
∑m

j=1λj

∑J
j=1λj

,

TE = 1 −
∑m

j=1Ej

∑J
j=1Ej

,

8>>>>><
>>>>>:

 m ∈ 1, J½ �, ð5Þ

Here, λj is the variance of the jth IMF component, and
Ej is the energy of the jth IMF component.

In terms of feature value calculation, the following two
points need to be emphasized: the first is the probability dis-
tribution of data sequence, and the second is the energy dis-
tribution of data sequence. In practice, the technological
processes in industrial production can be mapped to indus-
trial communication behaviours by analyzing industrial
communications data [25]. That is, when industrial commu-
nication behaviours show different states or stages, the cor-
responding probability distribution and energy distribution
of data sequences dynamically change. As a result, the prob-
ability distribution and energy distribution of each IMF
component obtained by the CEEMDAN decomposition
can also change when performing the multiscale analysis
on the data sequences. In order to successfully track this
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change, this paper introduces the information entropy based
on the energy distribution of IMF components, and takes the
energy entropies of effective IMF components as the final
feature values.

2.3. Feature Calculation Based on CEEMDAN Energy Entropy.
As shown in Figure 1, the specific steps of feature calculation
based on CEEMDAN energy entropy are listed as follows:

Step 1 (data preprocessing). As mentioned earlier, we obtain
each data sequence Di = di1d

i
2d

i
3 ⋯ din, ∀i ∈ ½1,m� from the

original IIoT sensing data, and we form the data sequence
set D = fD1,D2,D3,⋯,Dmg.

Step 2 (IMF component calculation). Each data sequence Di
(∀i ∈ ½1,m�) is decomposed by the CEEMDAN decomposi-
tion to obtain J IMF components.

First of all, we suppose the original data x =Di, and we
carry out I different experiments on x + ε0wv by using the
CEEMDAN decomposition. Additionally, the EMD decom-
position in each experiment continues running until the first
EMD modal component is obtained. From these I experi-
ments, the first average IMF component can be further cal-
culated by

imf1′ =
1
I
〠
I

v=1
imf v1: ð6Þ

Here, imf v1 represents the first IMF component of the
vth experiment.

Also, the first unique remainder can be obtained by

r1 = x − imf1′: ð7Þ

Secondly, according to the above method, we further
decompose r j + εjEjðwvÞ, v = 1, 2,⋯, I for each j
(j = 1, 2,⋯, J), and we calculate the ðj + 1Þ-th IMF compo-
nent by

imf j+1′ = 1
I
〠
I

v=1
E1 r j + εjEj wvð Þ� �

: ð8Þ

Also, the jth unique remainder can be obtained by

rj = rj−1 − imf j′, j ∈ 2, J½ �: ð9Þ

Here, imf j′ is the jth IMF component obtained by the
CEEMDAN decomposition, Ejð·Þ is the jth EMD modal
component obtained by the EMD decomposition, εj−1 is
the SNR adjustment coefficient when adding the noise to
solve imf j′, and wv is an added zero mean white noise source
for v experiments.

Finally, we repeat the above calculation process until no
remainder can be decomposed, and we obtain all J IMF
components IMF = fimf1′ , imf2′ ,⋯,imf j′g. Also, the final
remainder can be calculated by

R = x − 〠
J

j=1
imf j′: ð10Þ

To sum up, the original data x can be finally decomposed
into

x = 〠
J

j=1
imf j′+ R: ð11Þ

Step 3. According to the adaptive IMF selection process, we
need to calculate the RMSE, correlation coefficient, and
energy difference between the original data x and the recon-
structed data x′ which is reconstructed by the IMF compo-
nents, and we also calculate the cumulative variance
contribution and cumulative energy proportion of each
IMF component. Through the adaptive IMF selection, we
can obtain f effective IMF components.

Step 4. By further calculating the energy Ej (∀j ∈ ½1, f �) of
each effective IMF component, we can construct the corre-
sponding energy vector VE = ðE1, E2,⋯,Ef Þ.

Step 5. For the energy vectorVE, the calculated energy entropy
HðEjÞ (∀j ∈ ½1, f �) of each effective IMF component can be
regarded as one feature value. Also, we can get the energy
entropy vector VH = ðH1,H2,⋯,Hf Þ. The energy entropy of
each effective IMF component can be calculated by

H Ej

� �
= −P Ej

� �
log P Ej

� �
: ð12Þ

Here, Ej represents the energy value of the jth IMF com-

ponent; PðEjÞ = Ej/∑J
j=1Ej is the energy proportion of the jth

IMF component in the total energy.

Step 6. We set the data sample Yi =VH = ðH1,H2,⋯,Hf Þ
(∀i ∈ ½1,m�), and we form the final data sample set Y = fY1,
Y2,⋯,Ymg.

3. IABC-OCSVM Anomaly Detection Classifier

3.1. OCSVM Classifier. OCSVM [26, 27], which has a rela-
tively fine classification effect and a generalization capability
for small sample data, belongs to one improved version of
traditional SVM (Support Vector Machine). Differently,
OCSVM exploits the aggregation of original data in the
high-dimensional feature space to find one optimal separat-
ing hyperplane, which keeps the maximum distance from
the coordinate origin. In one sense, OCSVM only needs
one class of samples to train a suitable classifier.

Actually, OCSVM is briefly designed to solve the follow-
ing quadratic programming problem:

min 1
2 ωk k2 + 1

vl
〠
l

i=1
ξi − ρ

s:t: Φ xið Þω ≥ ρ − ξi, ξi ≥ 0, i = 1⋯ l:

ð13Þ
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Here, xi (∀i ∈ ½1, l�) represents one training sample in the
training sample set X, and l is the number of training sam-
ples; Φ : X ⟶H represents the mapping function from
the original data space to the high-dimensional feature
space; ω and ρ represent the normal vector and compensa-
tion of the hyperplane in the high-dimensional feature
space, respectively; v ∈ ð0, 1� represents the trade-off param-
eter, which is used to control the proportion of support vec-
tors in the training samples; ξi represents the relaxation
variable, which indicates the misclassified degree of some
training samples.

By introducing the Lagrange function to solve the qua-
dratic programming problem, we can further construct the
dual model by using the kernel function and obtain the fol-
lowing decision function:

f xð Þ = sgn 〠
l

i=1
αik xi, xj
� �

− ρ

 !
: ð14Þ

Here, ρ =∑l
i=1αikðxi, xjÞ, and RBF (Radial Basis Func-

tion) is selected as the kernel function:

k xi, xj
� �

= Φ xið Þ,Φ xj
� �� 	

= exp
− xi − xj


 

2
2σ2

 !
: ð15Þ

From the above functions, we can see that the OCSVM’s
trade-off parameter v and the RBF’s parameter σ are two
critical factors affecting the classification performance, and
the optimization of these parameters is an important phase
to obtain an excellent OCSVM classifier [28].

3.2. IABC Parameter Optimization Based on Multivariate
Gaussian Mutation. In order to strengthen OCSVM’s classi-
fication performance, this paper proposes a novel IABC-
OCSVM anomaly detection model, which uses one
improved ABC swarm intelligence algorithm to optimize
the above parameters. More specifically, the ABC swarm
intelligence algorithm is a typical multiobjective optimiza-
tion method which imitates the searching behaviours of dif-
ferent bees, and its minimum searching model includes two
basic elements: bee colony and honey source [29, 30].
Through the local optimization behaviour of individual bees
in the searching process, the division and cooperation of

Feature extraction CEEMDAN decomposition

Original data x

CEEMDAN decomposition

R
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1d1

2d1
3 d1
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D2=d2

1d2
2d2

3 d2
n

Dm=dm
1dm

2dm
3 dm

n

D1→ Y1=(y1
1,y1

2,y1
3, ,y1

f)
D2→ Y2=(y2

1,y2
2,y2

3, ,y2
f)

Dm→ Ym=(ym
1,ym

2,ym
3, ,ym

f)

Ej (j [1,f]) of each effective 
IMF component is calculated to 

construct the corresponding 
energy vector VE.

H(Ej) (j [1,f]) of each effective
IMF component is calculated

based on the energy vector VE,
and the corresponding

eigenvector VH is constructed.

IMF1 IMF2 IMFJ

IMF1 IMF2 IMFf

The RMSE , correlation
coefficient and energy

difference between the original
data x and the reconstructed data

x' are calculated.

Adaptive selection off effective
IMF components.

Di(i [1,m]) is decomposed by 
CEEMDAN to obtain J IMF 

components.

Choose f effective IMF 
components.

The cumulative variance
contribution rate and cumulative

energy proportion of IMF
components were calculated.

Figure 1: Feature exploitation process of CEEMDAN energy entropy based on adaptive IMF selection.
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three different bee colonies (the leader, the follower, and the
scouter) can highlight the global optimization in the colo-
nies. In order to homogenize the distribution of the honey
source and improve the searching efficiency, this paper
introduces the multivariate Gaussian mutation into the tra-
ditional ABC algorithm to dynamically guide the searching
processes of different bee colonies, mainly including the fol-
lowing: (1) in the searching process of scouter bees, which is
also the initial process of the honey source, since the initial
honey source is mutated by the multivariate Gaussian muta-
tion; (2) in the searching process of leader bees, wherein the
OCSVM’s classification accuracy of current global optimiza-
tion is used to dynamically guide the searching process; and
(3) in the searching process of follower bees, where the local
optimum of leader searching is applied to carry out the var-
iant search of the neighbouring honey source. Figure 2
describes the parameter optimization and anomaly detection
process of the IABC-OCSVM model.

In the initialization process of the honey source, the ini-
tial honey source is mutated by the multivariate Gaussian
mutation:

xi,j = xmin
j + rand 0, 1ð Þ xmax

j − xmin
j

� �
,

p = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑j j 2πð Þd

q exp −
1
2 x − μð ÞT 〠

−1
x − μð Þ

 !
:

8>>>><
>>>>:

ð16Þ

Here, the expression of xi,j (∀i ∈ ½1,N�, ∀j ∈ ½1,D�) is the
initialization formula of the ith honey source, and N and D
are the number and dimension of honey sources, respec-
tively; in our algorithm, D is set to 2 due to the OCSVM’s
parameter v and RBF’s parameter σ; xmax

j and xmin
j are the

maximum and minimum in each dimension of the honey
source; the expression of p is the multivariate Gaussian
mutation formula, and x = fx1,j, x2,j,⋯xN ,jg and p = fp1,j,
p2,j,⋯pN ,jg represent all honey sources before and after
Gaussian mutation, respectively; μ and ∑ are the mean and
covariance matrix of x, and ∑−1 and d are the inverse and
dimension of ∑.

In the searching process of leader bees, based on the
Gbest searching strategy, the dynamic searching process is
carried out through the guide of global optimization, and
the OCSVM’s classification accuracy in the current search-
ing process is introduced to realize the adaptive search.
The search of a neighbouring honey source can be expressed
by

vi,j = f pipi, j + ϕi, j f pi pi,j − f pkpk, j
� � 1

iter + ψi,j f pgpg, j − f pipi,j
� � 1

iter :

ð17Þ

Here, vi,j represents a new honey source; pi,j is the honey
source generated after the multivariate Gaussian mutation,
and pi = fpi,jg (∀j ∈ ½1,D�); pk,j (k ≠ i, ∀k ∈ ½1,N�) is a neigh-
bouring honey source randomly selected from all honey
sources, and is different from the current honey source pi,j;

pg,j represents the global optimal solution; f p∗ represents
the OCSVM’s classification accuracy corresponding to the
honey source p∗; ϕi,j is one random number in the range ½
−1, 1�; ψi,j is one random number in the range ½0, 1�; iter is
the goal-setting number of iterations.

In the searching process of follower bees, according to
the local optimum in the searching process of leader bees,
the mutation operation can be performed on the neighbour-
ing honey source, and the OCSVM’s classification accuracy
in the current searching process is introduced to realize the
variant search. The search of a neighbouring honey source
can be expressed by

vi,j = f pl pl,j + ϕi,j f pipi,j − f pkpk,j
� � 1

iter : ð18Þ

Here, pl,j represents the optimal solution in the searching
process of leader bees.

In the whole searching process, each honey source repre-
sents a feasible solution, and the yield of a honey source is
consistent with the fitness of a feasible solution, which is cal-
culated by

Fiti =

1
1 + f pi

, f pi ≥ 0,

1 + abs f pi

� �
, f pi < 0:

8>><
>>: ð19Þ

Here, f pi represents the OCSVM’s classification accuracy
corresponding to the honey source pi.

4. Experimental Evaluation and Discussion

4.1. Experimental Data and Preparation. In order to verify
the effectiveness and advantage of the proposed approach,
we use some real-world data captured from one local oilfield
IIoT system in the northeastern part of China to perform
some experimental evaluations, and the basic system archi-
tecture can be briefly stated as follows: all IIoT sensors are
physically deployed in the wellheads and perform the real-
time data acquisition of the pumping well working status,
mainly including the pressure, the motor speed, the flow,
and some electrical parameters. By using the WIA-PA pro-
tocol [31], the IIoT sensors in one wellhead send these sens-
ing data to one RTU (Remote Terminal Unit) which can be
regarded as the data collector in our approach, and the RTU
forwards these sensing data to the upper monitoring center
by using the Modbus/TCP protocol. After capturing the
Modbus/TCP packets in one RTU for 9 hours, we totally
obtain 109,672 IIoT sensing data, and form 225 data
sequences by the initial preparation.

4.2. Experimental Comparison and Analysis on Different
Feature Exploitations. For the obtained data sequence set,
in each experiment, we randomly select 200 data sequences
as the normal data sequences and construct 100 abnormal
data sequences by injecting or falsifying some malicious data
which cannot conform to the regular production pattern.
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After the proposed adaptive CEEMDAN feature exploita-
tion, we record all normal and abnormal data samples as
“+1” and “-1” data samples, respectively. Moreover, all nor-
mal data samples are used to train the IABC-OCSVM anom-
aly detection classifier, and the test sample set consists of
randomly selected 100 “+1” data samples and 100 “-1” data
samples. Additionally, because the number of malicious data
in each data sequence can directly reflect different attack
powers, we design 5 incremental attack powers when con-
structing 100 abnormal data sequences. From attack power
1 to 5, the number of malicious data in each data sequence
is set from 6 to 10. In order to verify the main advantage
of adaptive CEEMDAN feature exploitation in the multi-
scale analysis of data sequences, we introduce the classifica-
tion accuracy as one significant evaluation indicator to
perform two distinct groups of experiments: the first group
of experiments compare the CEEMDAN decomposition

with the EEMD decomposition whose IMF components are
depicted in Figure 3, and the training and test classification
accuracies of their extracted features are shown in Table 1;
the second group of experiments compare different test classi-
fication accuracies of CEEMDAN energy entropy, CEEM-
DAN singular spectrum entropy, and EEMD singular value
decomposition, and the experimental results are shown in
Table 2.

As seen in Table 1, when the average training classifica-
tion accuracies of EEMD and CEEMDAN decompositions
reach 92.30% and 95.10%, their average test classification
accuracies are 86.50% and 89.00%, respectively. From the
above compared results, it can be concluded that both the
training classification accuracy and the test classification
accuracy of CEEMDAN decomposition are larger than the
ones of EEMD decomposition. That is to say, the CEEM-
DAN decomposition can effectively discover more intrinsic
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The fitness value of new
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Figure 2: Parameter optimization and anomaly detection of IABC-OCSVM model.
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characteristics of original data, and the corresponding
extracted features can contribute to improving the classifica-
tion accuracy of the OCSVM classifier.

From Table 2, we can see that, for the feature exploita-
tion methods based on CEEMDAN singular spectrum
entropy and EEMD singular value decomposition, their
average classification accuracies are 84.90% and 82.20%,

respectively. Obviously, these accuracies are less than that
of the proposed feature exploitation method, which can
reach 89.00%. Through the comprehensive comparison of
these two tables, we can conclude that, on the one hand,
the proposed feature exploitation method has distinct
advantages in the improvement of classification accuracy,
on the other hand, these results indirectly show that the
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Figure 3: Compared results of CEEMDAN and EEMD decompositions.

Table 1: Training and test classification accuracies of CEEMDAN and EEMD decompositions under different attack powers.

Attack power
CEEMDAN EEMD

Training accuracy Test accuracy Training accuracy Test accuracy

1 96.0% 86.5% 92.5% 81.5%

2 93.5% 88.0% 91.0% 87.5%

3 91.0% 90.0% 92.0% 88.5%

4 96.5% 87.0% 94.5% 87.0%

5 98.5% 93.5% 91.5% 88.0%

Average 95.10% 89.00% 92.30% 86.50%

Table 2: Test classification accuracies of three different feature exploitation methods.

Attack power
CEEMDAN energy

entropy
CEEMDAN singular
spectrum entropy

EEMD singular value
decomposition

1 86.5% 82.0% 80.5%

2 88.0% 85.0% 82.5%

3 90.0% 83.5% 83.5%

4 87.0% 85.5% 81.0%

5 93.5% 88.5% 83.5%

Average 89.00% 84.90% 82.20%
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proposed method can more accurately describe the change
of industrial communication behaviour. Additionally, as
the attack power increases, that is, the number of malicious
data in each data sequence increases, the classification accu-
racy generally shows an upward trend. In other words, the
proposed feature exploitation method is more sensitive to
the number of malicious data, which can help to improve
the anomaly detection performance.

Figure 4 compares the CEEMDAN decomposition
results of normal and abnormal data samples. When some
abnormal communication behaviours occur in industrial
production, not only the energy information and probability
information in all data sequences change accordingly, but
also the implicit information in each data sequence differs
from others under different scales. Figure 5 depicts the
energy proportion and variance contribution rate of differ-
ent IMF components after the CEEMDAN decomposition.
Totally, the energy and variance of each IMF component
can appear surprisingly distinct from each other. Based on
this result, when selecting the appropriate feature parame-
ters, we can focus on the IMF components which have larger
contribution rates and remove the IMF components with
insufficient information.

4.3. Experimental Comparison and Analysis on Different
Parameter Optimizations. In order to further illustrate the
influence of parameter optimization on the OCSVM’s classi-
fication performance, we, respectively, use the traditional
ABC algorithm and PSO (Particle Swarm Optimization)
algorithm to optimize the OCSVM classifier and compare
their classification accuracies by performing some experi-
ments under 5 attack powers. Moreover, the fitness curves
in two parameter optimization processes are shown in

Figure 6, and the training and test classification accuracies
of two classifiers are compared in Table 3. Obviously, the
above experimental results can directly reflect that two
parameter optimization algorithms have different effects on
the OCSVM’s classification performance. In terms of classi-
fication accuracy, the average training and test classification
accuracies of the ABC-OCSVM classifier are 95.10% and
89.00%, respectively. Differently, the average training and
test classification accuracies of the PSO-OCSVM classifier
are 98.00% and 83.20%, respectively. Although the average
training classification accuracy of the ABC-OCSVM classi-
fier is slightly lower than that of the PSO-OCSVM classifier,
the average test classification accuracy of the ABC-OCSVM
classifier can present a trend of higher resolution. That is,
the ABC-OCSVM classifier can have a smaller span change
from training accuracy to test accuracy, and obtain a rela-
tively higher classification accuracy in practice. Also, the
above compared results have proven that different combina-
tions of OCSVM’s trade-off parameter v and RBF’s parame-
ter σ can have a pronounced impact on the OCSVM’s
classification accuracy, and one fine parameter optimization
algorithm can help to improve the detection performance of
OCSVM’s classifier.

In order to obtain better parameters and further improve
the anomaly detection efficiency, we propose an IABC-
OCSVM anomaly detection classifier optimized by the
improved ABC algorithm. To evaluate this classifier, we per-
form some compared experiments to analyze the training
classification accuracy, test classification accuracy, and test
time between the traditional ABC-OCSVM classifier and
the IABC-OCSVM classifier, and Table 4 shows the experi-
mental results under 5 attack powers. As shown in Table 4,
under a similar average test time, the average training and
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Figure 4: CEEMDAN decomposition results of normal and abnormal data samples.
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test classification accuracies of the IABC-OCSVM classifier
can reach 94.50% and 89.80%, respectively. Although the aver-
age training classification accuracy of the IABC-OCSVM clas-
sifier is slightly lower than that of the ABC-OCSVM classifier,
its average test classification accuracy is higher than the one of
the ABC-OCSVM classifier. Especially, for the test samples
with a stronger attack power, the test classification accuracy

of the IABC-OCSVM classifier is significantly higher than
the one of the ABC-OCSVM classifier. For example, under
attack power 5, the test classification accuracy of the IABC-
OCSVM classifier can reach 95.50%, which grows by two
percentage points. More narrowly, Figure 7 gives the classifi-
cation results of training samples and test samples under
attack power 5. Furthermore, Figure 7(a) shows 3 training
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samples that are wrongly classified in all 200 training sam-
ples, and Figure 7(b) shows 9 test samples that are wrongly
classified in all 200 test samples. Additionally, the average test
time of the IABC-OCSVM classifier is only 0.0081 s, which

still reaches the millisecond level and has a strong real-time
classification capability. From the comprehensive evaluation
of classification accuracy and detection time, the proposed
IABC-OCSVM classifier has a higher detection efficiency.

Table 4: Detection efficiency comparisons between traditional ABC-OCSVM and PSO-OCSVM anomaly detection classifiers.

Attack power
ABC-OCSVM IABC-OCSVM

Training accuracy Test accuracy Test time Training accuracy Test accuracy Test time

1 96.0% 86.5% 0.0079 s 96.0% 86.5% 0.0076 s

2 93.5% 88.0% 0.0079 s 92.0% 88.5% 0.0080 s

3 91.0% 90.0% 0.0090 s 91.0% 90.5% 0.0081 s

4 96.5% 87.0% 0.0076 s 95.0% 88.0% 0.0079 s

5 98.5% 93.5% 0.0086 s 98.5% 95.5% 0.0089 s

Average 95.10% 89.00% 0.0082 s 94.50% 89.80% 0.0081 s
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Figure 7: Classification results of training samples and test samples under attack power 5.

Table 3: Training and test classification accuracies of traditional ABC-OCSVM and PSO-OCSVM anomaly detection classifiers.

Attack power
ABC-OCSVM PSO-OCSVM

Training accuracy Test accuracy Training accuracy Test accuracy

1 96.0% 86.5% 98.0% 80.5%

2 93.5% 88.0% 96.5% 83.0%

3 91.0% 90.0% 98.0% 85.0%

4 96.5% 87.0% 100.0% 84.0%

5 98.5% 93.5% 98.0% 83.5%

Average 95.10% 89.00% 98.00% 83.20%
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5. Conclusions

The sparsity of IIoT sensing data may bring out tremendous
challenges to implement the global anomaly detection, and
the collection and analysis of all sparse sensing data in a local
wireless sensor network can provide a feasible opportunity
to develop an experienced machine-learning anomaly detec-
tion model by exploring their statefulness and correlation
characteristics. From this point of view, this paper proposes
a novel IABC-OCSVM anomaly detection approach for IIoT
sparse data, which can successfully collaborate the adaptive
CEEMDAN feature exploitation with the intelligent opti-
mizing OCSVM classifier. Firstly, the multiscale analysis of
IIoT data sequences is carried out through the CEEMDAN
decomposition, and the effective IMF components can be
adaptively selected to calculate the corresponding energy
entropies and construct the final data samples. Secondly, this
approach designs one improved ABC algorithm based on a
multivariate Gaussian mutation to optimize the important
parameters of a traditional OCSVM classifier, which can
unambiguously match with the adaptive CEEMDAN feature
exploitation method. Finally, many experiments are per-
formed to evaluate the proposed approach: on the one hand,
by comparing different feature exploitation methods, we
prove that the proposed feature exploitation method can
more accurately describe the change of industrial communi-
cation behaviour, and have distinct advantages to improve
the classification accuracy; on the other hand, by comparing
different parameter optimization algorithms, we prove that
the proposed IABC-OCSVM classifier can have higher
detection efficiency.

Data Availability
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