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The rapid growth of the Internet of Medical Things (IoMT) has led to the ubiquitous home health diagnostic network. Excessive
demand from patients leads to high cost, low latency, and communication overload. However, in the process of parameter
updating, the communication cost of the system or network becomes very large due to iteration and many participants.
Although edge computing can reduce latency to some extent, there are significant challenges in further reducing system
latency. Federated learning is an emerging paradigm that has recently attracted great interest in academia and industry. The
basic idea is to train a globally optimal machine learning model among all participating collaborators. In this paper, a gradient
reduction algorithm based on federated random variance is proposed to reduce the number of iterations between the
participant and the server from the perspective of the system while ensuring the accuracy, and the corresponding convergence
analysis is given. Finally, the method is verified by linear regression and logistic regression. Experimental results show that the
proposed method can significantly reduce the communication cost compared with the general stochastic gradient descent
federated learning.

1. Introduction

The Internet of Medical Things (IoMT) is using a variety of
communication systems to connect many devices to form
best-in-class systems that can detect, collect, exchange, ana-
lyze, and transmit valuable communications [1, 2], helping
companies manage smarter and deliver faster business solu-
tions. IoMT can build a large number of applications
through various “smart” sensors such as artificial intelli-
gence and machine learning (ML) technology, thereby rev-
olutionizing the ubiquitous computing system [3, 4]. Secure
communications and sensing technologies can leverage a
participatory approach to implement integrated solutions

while establishing new applications relevant to the industry,
particularly healthcare. One of the key applications of 5G-
based IoMT is healthcare, which is aimed at maintaining
patients’ medical information in electronic environments
(such as cloud and edge cloud) systems through the latest
telecom paradigm [5, 6]. For healthcare applications, ML
models are typically trained on enough user data to track
health status information. Traditional machine learning
methods such as support vector machine (SVM), decision
tree (DT), and hidden Markov model (HMM) can be used
in a variety of healthcare applications [7]. Patterns are ana-
lyzed and classified based on the construction of explicit or
implicit models, and its ML method has been used to
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improve the detection rate of malicious data [8]. However,
they still have many problems in detecting new or evolving
malicious data, and the accuracy of unsupervised anomaly
detection used to detect new security is low [9]. As the
number of variants grew, this became a major bottleneck,
mainly because of the amount of work required to gather
enough datasets. In addition, when new features from dif-
ferent network layers need to be combined to deal with
the evolving malicious data, the learned classifier cannot
be directly used to test the data with different feature
spaces [10]. This paper attempts to overcome these chal-
lenges, which involve data aggregation with security and
privacy protection. First, in the real world, data often
exists in separate, decentralized forms. Although there is
a lot of data in different sensors, it is not shared due to
privacy and security concerns [11]. If the same user uses
data from two different sensors, the data stored in differ-
ent clouds cannot be exchanged, making it difficult to
train powerful models with valuable data. Another impor-
tant issue is personalization based on feature data, most of
which are based on a common server model for almost all
users. After capturing enough user data, train a satisfactory
machine learning model, which itself is distributed to all user
devices that can track health information on a daily basis, but
the program lacks personalization. It can be seen that differ-
ent users have different characteristics and daily behavior
models. As a result, general models cannot deliver personal-
ized healthcare. Based on this idea, a federated transfer learn-
ing algorithm is proposed, which is an IoMT-enabled
intelligent healthcare framework named FT-IoMT Health
[12]. FT-IoMT Health can solve the problem of data decen-
tralization and model personalization through federated
learning and homomorphic multiparty encryption methods
[13]. FT-IoMT Health aggregates data from different sys-
tems to build powerful machine learning models and
appropriately protect user privacy. After building the cloud
model, FT-IoMT Health utilizes migration learning to
implement a personalized model for each network entity
[14]. Transfer learning is a novel machine learning technol-
ogy, which utilizes knowledge learned from related training
(source) sets to improve the prediction accuracy of test
(target) sets with almost no label data [15] and enables
the framework to update gradually. FT-IoMT Health is
scalable and used in many healthcare applications, enabling
them to constantly update their learning capabilities every
day.

In short, the main contributions of the paper are as
follows:

(1) This paper proposes an algorithm, FT-IOMT Health,
which is the first federated migration learning mech-
anism based on IoMT. This mechanism aggregates
data from different entities without compromising
privacy and security and obtains relatively personal-
ized models by means of transfer learning

(2) On the basis of known data analysis, transfer learn-
ing technique is used to detect new unknown data
analysis. The use of transfer learning itself is the

main advantage of enhancing the adaptability of
the detection model

(3) This paper validates FT-IoMT Health’s superior per-
formance in identifying human activity on UCI
smartphones. The experimental results show that
FT-IoMT Health greatly improves the recognition
accuracy compared with traditional ML methods

2. Related Work

In traditional healthcare applications, it is important to
note that models are typically built by aggregating all user
data. In practice, however, data is often separated and dif-
ficult to share due to privacy issues, and the models built
by applications lack the characteristics of model personal-
ities. A well-known network data detection technique is
signature-based detection, which is based on the deep
information of the specific characteristics of each detec-
tion. Another technique used for network data detection
is supervised learning [16, 17]. Both studies were less
accurate in detecting new data because they typically relied
on known cases of detection. Federated machine learning
was first proposed by Google [18]; since the phone is dis-
tributed throughout its life cycle, Google trains the machine
learning model on this machine, with the primary purpose
of protecting user data in the program. Federated learning
is a technical approach to solve the problem of data discrete-
ness through the training of privacy models in networks. The
goal of transfer learning is to transfer information from
known related fields to new fields, so as to achieve the pur-
pose of analogical reasoning, and the main goal is to reduce
the distribution differences between different fields. There-
fore, there are two main implementation methods: instance
reweighting [19] and feature matching [20]. Recently, deep
transfer learning technology has made great achievements
in many applications. FT-IoMT Health mostly involves deep
transfer learning. Many methods assume the feasibility of
training data, which is obviously unrealistic. FT-IoMT
Health builds deep migration learning into a federated learn-
ing framework, eliminating the need to access raw user data.
Therefore, this achieves the goal of greater security.

The point of federated transfer learning here is that
samples or features do not have more in common. In
recent years, a number of researchers have begun to dabble
in the field. In [12], Liu et al. put forward a secure federated
transfer learning algorithm in a two-party privacy protec-
tion environment, which paid more attention to data secu-
rity. Most studies also propose a federated domain adaptive
approach, which extends the domain adaptive approach to
federated setting constraints to achieve data privacy and
domain transformation. Although a great deal of research
work continues to develop rapidly, there are still many
challenges in the practical application of federated transfer
learning. The work in this paper is the first federated trans-
fer learning mechanism designed specifically for IoMT
applications and will therefore be extended by a variety of
transfer learning technologies.
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3. System Model

3.1. Problem Definition. Take data from N different users,
the user is represented as fU1,U2,⋯,UNg, and the reading
value of the sensor providing the data is defined as fD1,
D2,⋯DNg. The conventional method trains the general
model MGEN by combining all the data D = fD1 ∪D2 ⋯∪
DNg. All data should have different distributions. In
response to our proposed problem, we aim to gather on all
data to train the federated model MFED, in which no user
Ui will disclose these data Di to each other. If we define
the accuracy as A , the goal of FT-IoMT Health is to guaran-
tee that the accuracy of federated learning is approximately
or better than the accuracy of the following conventional
learning: AFED −AGEN > δ, where δ is a very small positive
real number.

FT-IoMT Health is aimed at leveraging joint transfer
learning technology to obtain accurate personal healthcare
information without compromising user privacy. Figure 1
shows a profile of the mechanism. Suppose there exist N
users (network data) and one server, and then, expand them
to a more general situation. The main components of the
framework are described below. First, train the cloud model
on the server based on a common dataset. Therefore, the
cloud model is distributed to all users so that each user will
train his model on his own dataset. The user model is then
uploaded to the cloud for training the new cloud model
using model aggregation. Finally, each user will implement
personalized models to train users based on cloud models,
network data, and predictive future data. In this process,
due to the large distribution difference between server data
and user data, the transfer learning method is adopted to
make the model more suitable for users, as shown on the
right end of Figure 1. It is important to note that none of
the parameter sharing processes will include user data leaked
through homomorphic encryption.

The federated learning model is an important computa-
tion model for the entire FT-IoMT Health mechanism. Its
role in the whole process is to deal with model construction
and parameter sharing. The server model will be directly
applied to users after the learning and training process.
This is exactly a way based on traditional healthcare appli-
cations applied to model learning. Obviously, the probabil-
ity distribution of the samples in the server and the data
generated by each user is very different. Therefore, it is dif-
ficult for the general model to achieve personalized settings
of the data model. In addition, due to privacy security
issues, the user model cannot easily achieve continuous
model updates.

3.2. Federated Learning. FT-IoMT Health uses the federated
learning paradigm to implement training and sharing of
encryption models, and its steps mainly involve the follow-
ing two key parts: namely, cloud and user model learning.
For FT-IoMT Health, deep neural networks are used to learn
cloud and user models. The deep neural network uses the
original input of user data as the network input for end-to-
end feature learning and classifier training, where f repre-
sents the server model to be learned, and the learning goal is

argminL
θ

= 〠
N

i=1
L yi, f xið Þð Þ, ð1Þ

where Lð∗, ∗Þ indicates network loss function such as
cross-entropy loss for classification tasks, fxi, yig is a sample
of server data, and its size is N . θ represents all the parame-
ters to be learned, namely, weights and bias.

After obtaining the cloud model, distribute it to all
users. From the obstacle in Figure 1, direct sharing of user
info will be prohibited. The process exploits homomorphic
encryption to prevent info leakage. Due to the fact that
encryption is not a subject to be considered, only the pro-
cedure of homomorphic encryption applying the addition
of real numbers is explained. Therefore, this can complete
parameter sharing without leaking any user information.
We apply federated learning to aggregate user data with-
out compromising privacy and security. Therefore, the
learning goal for user u is defined as

argminLu
θu

= 〠
N

i=1
yui , f u xuið Þ: ð2Þ

After completing the training of all user models f u
according to the shared cloud model, upload them to the
server for aggregation. It can be seen from the evaluation
that in the case of shared initialization, the method of fed-
erated averaging [21] can be adopted to average the model
to achieve good performance in reducing loss. Therefore,
following [21], align the user model by the model average
value, and then, perform the cloud model update average
value on b user models in each training round. The
updated cloud model is expressed as

�f wð Þ = 1
B
〠
B

b=1
f ub wð Þ, ð3Þ

where w is the parameter of the network and B is the
number of users. After enough iterations, the updated
server model �f has better generalization capabilities. Then,
new users can join the next round of server model train-
ing. Therefore, FT-IoMT Health has incremental learning
functions.

3.3. Transfer Learning. Apply transfer learning technology to
improve the detection of new network data analysis by
transferring the information learned from known network
data analysis, so as to distinguish between the common
coarse feature model for all users and the fine-grained fea-
ture model for personalized user. The expression source
and target are used to define the training and test datasets
in the machine learning task, respectively. Both source and
target data are represented by normal flow records and
abnormal flow records. The purpose of this transfer learning
is to adapt source data to assist distinguish new detections
from the target, thereby building a personalized model for
each user.
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The transfer learning mechanism is composed of the
following three major processes: (1) feature extraction pro-
cess (obtained from the original network), (2) feature-
based learning process, and (3) supervised classification
process. The first step is to perform data tracking on the
original network to extract features based on the statistical
calculation of network traffic. In the second step, a feature-
based transfer learning algorithm is used to learn the new
feature representation from both the source data and the
target data, and the new representation will be fed to the
general basic classifier.

The data detection is modeled as a binary classification
problem, i.e., the data state is classified as malicious or nor-
mal. Assume a source training instance S = fX ∣ xig, X ∈ Rm

with label LS = yi, and target data T = fZ ∣ zig, Z ∈ Rn, where
X and Z are both users’ data extracted from the network. X
and Z come from different distributions PSðXÞ ≠ PTðXÞ, X
and Z have different dimensions, Rm ≠ Rn. Our goal is to
accurately predict the label on T .

The method is to apply new public latent space
through spectrum transformation, in which the distribu-
tion of malicious examples is similar, but the distance
between discriminatory ones is still very different. The
ultimate purpose is to learn a new representation of the
original data and target data in the k-dimensional latent
semantic space, namely, VS ∈ Rk, VT ∈ Rk, so that it can
use VS and VT instead of the original S and T better
against malicious data sort. Its key purpose is given in
Figure 2, because in the new projected public latent space
(Figure 2(c)), the distribution of malicious A and mali-
cious B are indistinguishable, even though they are in their
original 2D and 3D spaces.

The following discusses how to search the public latent
subspace. The optimal subspace is described in the
following.

3.3.1. Optimization. Based on the given source data S and
target data T , find the best projection of S and T on the best

subspace VS and VT on the basis of the optimization goals
given below:

min
VS,VT

L VS, Sð Þ + L VT , Tð Þ + γ∙D VS, VTð Þ, ð4Þ

where Lð∗, ∗Þ is a distortion function used to evaluate the
difference between the original data and the projection data
and DðVS, VTÞ indicates the projection difference between
the source data and the target data. γ is a trade-off parameter
used to control the resemblance between two datasets.

Therefore, the first two components of (4) can assure
that the projection data is as consistent as possible with the
original data structure. Define Lð∗, ∗Þ as follows:

L S, VSð Þ = S − PS ∗ VSk k, L T , VTð Þ = T − PT ∗VTk k, ð5Þ

where VS and VT are realized via a linear transformation
with linear mapping matrices expressed as RS ∈ Rk×m and
PT ∈ Rk×n to the source data and target data. kXk2 indicates
the Frobenius norm, which is also denoted as the matrix trace
norm. In another point of view, PS′ ∈ Rk×m and PT′ ∈ Rk×n pro-
ject the original data S and T into a k-dimensional space, in

which the projected data are equivalent ðLðS, VSÞ =
kSPS′ −VSk

2Þ. But it can produce trivial solutions PS = 0, VS
= 0. Therefore, Equation (5) will be applied. It is regarded
as matrix factorization, which is a well-known advantageous
tool for extracting latent subspaces while maintaining the
original data structure.

According to Lð∗, ∗Þ to define ΔðVS, VTÞ as

Δ VS, VTð Þ = L VS, VTð Þ, ð6Þ

which represents the difference between the projection target
data and the source data. Therefore, based on the minimized

User A

User B

User N

Data B

Data A

Data N

Model A

Model B

Model N

Cloud
model

Cloud User

Data Data

Model transfer

New user model

Figure 1: Overview of FT-IoMT Health framework.
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difference function (6), the source data and target data con-
straints of the projection are similar.

Substituting (5) and (6) into (4), the following optimiza-
tion goals to minimize with respect to VS, VT , PS, and PT are
as follows:

min
VS′VS = I, VT′VT = I

∇ VS, VT , PS, PTð Þ =
min

VS′VS = I, VT′VT

= I S −VSPSk k2 + T −VTPTk k2 + γ∙ VT − VSk k2� �
:

ð7Þ

Therefore, the loss function of the user model can be
calculated by the following formula:

argminLs
θs

= 〠
N

i=1
L yið , f xið Þ + 〠

Ns

i=1
L ysi , f s xsið Þð Þ + S −VSPSk k2

+ T −VTPTk k2 + γ∙ VT −VSk k2� �
:

ð8Þ

The learning process of FT-IoMT Health is given in
Algorithm 1. The framework will work continuously with
newly emerging user data. When faced with new user data,
FT-IoMT Health can simultaneously update the user
model and the network-based cloud model. Thus, the lon-
ger the user spends data, the more personalize the model.
In addition to transfer learning, other common methods

(e.g., incremental learning) are also implanted in FT-
IoMT Health for personalized settings.

4. Experiments

4.1. Datasets. We employ a public human action recognition
dataset named UCI smartwatch. The dataset involves 6
actions gathered from 35 users who use smartwatch around
their wristband. 10 accelerometer and gyroscope data chan-
nels are gathered at a constant rate of 50Hz. There exist
10,300 cases. To construct the subject status in FT-IoMT
Health, five relevant topic features (content IDS 31-35) are
extracted from them, and they are regarded as independent
users, who will not share data because of privacy security.
The data of the remaining 30 users is used to train the cloud
model. Then, the goal is to use the cloud model and all 5
independent objects to improve the accuracy of the activity
recognition of these 5 objects without compromising
privacy. Consider it is a simplification of the framework in
Figure 2, where there are 5 users.

For the feature transfer learning used in the construction
of the personalized model, we mainly analyze from the
network data detection. The network functions that contains
can be summarized into three groups: here, we focus on
studying the traffic data features, which are generally
extracted by flow analysis tools, and content features, which
need to deal with grouping content.

4.2. Specific Implementation Steps. Both the server and the
user side use CNN for training and testing. The cyber is
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Figure 2: Overview of the proposed feature space transformation form.
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consisted of the following 2 convolutional layers, 2 pooling
layers and 3 fully connected layers, which employ a 1 × 9
convolution size. It is optimized using small batch stochastic
gradient descent (SGD). In the training process, 80% of the
training data is used for model training, and the remaining
20% is used for assessment. Set user B = 5 and fixed. When
the batch size is 64 and the training period is set to 80, the
learning rate α is set to 0.01. Model network data detection
as a binary classification issue to differentiate malicious traf-
fic from normal one.

To effectively assess the transfer learning method, source
and target datasets will be generated as follows. To assess the
performance of the transfer learning method in detecting
unknown model variants in the cloud, so as to construct
personal model, the problem is regarded as a detection that
only exists in the target network but is not visible in the
source network. Suppose there is one data detection in the
source and another detection in the target. Therefore, the
distribution of detection feature value between the source
and the target is different. Therefore, three datasets are
reconstructed, each of which includes a series of randomly
chosen normal cases and a set of detections from one cate-
gory. Here, one of the datasets is set as the target, and the
other dataset is set as the source. Therefore, there are
mainly the following three detection tasks: Seen⟶Unseen
(i.e., source Seen data for training, target Unseen data
(new network) for testing), Seen⟶Detection, and Detec-
tion⟶Unseen. It is presumed that the feature space
between the source and target is the identical. The accuracy
of user u is computed by the following formula: Au = jX
: X ∈Du ∧ ~yðXÞ = yðXÞj/jX : X ∈Duj, where yðXÞ and ~yðXÞ
define the true and predicted labels on X, respectively.
Perform federated learning according to homomorphic
encryption. During the transfer learning period, all convolu-
tion and pooling layers in the network are frozen, and only
the parameters of the fully connected layer are updated
using SGD. To verify the validity of FT-IoMT Health, its
performance was compared with conventional deep learning

(DL). In traditional deep learning, we only use the primary
server model and other conventional machine learning
modes to record each the performance of each subject. The
hyperparameters used in all comparison methods are
adjusted by cross-validation. To achieve a fair study, all
experiments were performed 5 times to record the average
accuracy. Table 1 shows the performance comparison
between the detection technologies proposed based on FT-
IoMT and the benchmark method. Table 2 shows the accu-
racy of activity classification for each topic. Figure 3 indicates
the ROC curve. Figure 4 compares FT-IoMT with other
transfer learning methods. Figure 5 shows the results of
extending FT-IoMT through other transfer learning
methods.

4.3. Evaluation. FT-IoMT achieves the best classification
accuracy for all users. From the outcomes in Tables 1 and
2, it can be concluded that FT-IoMT Health has importantly
enhanced performance in all examples. Compared with DL,
it slightly increases the average result by 5.6%. Mainly due to
the fact that federated learning can be used indirectly for
more info from distributed data model to train better and
applying transfer learning, the model can be more personal-
ized for each user’s features. Compared with traditional
methods such as KNN, SVM, and RF, FT-IoMT Health also
significantly enhances the recognition outcomes. Overall, it
proves the validity of the FT-IoMT Health mechanism. For
activity recognition, the results also show that deep learning
methods (DL and TL-IoMT) attain better outcomes than
conventional modus.

It is controlled by the representation capabilities of deep
neural networks, while conventional modus depend on
manual feature learning. Deep learning also has another
advantage of enabling the online update model to be incre-
mentally updated without retraining, while conventional
modus need further incremental algorithms. The perfor-
mance is very valuable in model reuse and federated transfer
learning. In view of the unseen new network data detection

1: Input:T , S, γ, k, fD1,D2,⋯,DNg, learning rate α, steps = 500
2: Output: f u,VS,VT
3: Construct an initial cloud model f with common datasets applying Equation (1)
4: Distribute f to all users
5: Train user model by Equation (2)
6: All user models are updated to the server through homomorphic multiparty encryption. Perform aggregation on the model
employing Equation (3). Then, the server treats the aggregation model as the updated cloud model �f .
7: Distribute �f to all users and then execute transfer learning on each user to obtain their model f u
Applying Equation (8)
8: while optimized function Equation (7) not converge do
9: Update VT by gradient descent with VT =VT − αð∂∇/∂VTÞ
10: Update VS by gradient descent with VS =VS − αð∂∇/∂VSÞ
11: Update PT by gradient descent with PT = PT − αð∂∇/∂PTÞ
12: Update PS by gradient descent with PS = PS − αð∂∇/∂PSÞ
13: step++
14: end
15: Repeat the above process for new user data constantly appearing

Algorithm 1: The learning process of FT-IoMT Health.
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environment, we will compare the performance of FT-IoMT
Health with common basic classifiers, instead of using the
transfer learning method for the three detection tasks. We
chose random forest (RF), SVM, and KNN as common basic
classifiers. From the ROC curve illustrated in Figure 3, it will
be seen that FT-IoMT Health has improved the detection
rate compared to the baseline. Comparison of IoT-based
transfer learning methods: we have used other feature-
based transfer learning methods (such as HeMap [22] and
CORrelation ALignment (CORAL) [23]) to evaluate FT-
IoMT network data detection tasks. From the outcomes

illustrated as Figure 4, it can be achieved that the perfor-
mance of FT-IoMT is better than other feature-based
methods in all classifiers for network data detection tasks.
There exist two adjustable parameters, the similarity confi-
dence parameter γ and the size of the new feature space k,
which will be set manually or automatically by experiential
research. There are methods for automatically determining
the best parameters, for example, by calculating the similar-
ity degree between the source and the target data to deter-
mine the similarity confidence parameter γ. In this work, a
small labeled dataset (300 labeled) is used in the test set to
search the best parameters.

For the use of other transfer learning methods to expand
FT-IoMT Health, using different transfer learning methods
to analyze the scalability of FT-IoMT Health, it uses two
methods to compare its performance: (1) fine-tune, by only
fine-tune the network on each subject, it will not signifi-
cantly reduce the distribution difference between sets; (2)

Table 1: Classification accuracy of the test objective.

Subject KNN SVM RF DL FT-IoMT Health

P1 82.6 80.8 86.7 93.4 97.6

P2 87.4 95.7 94.6 94.1 97.8

P3 91.8 96.8 87.5 92.6 99.7

P4 84.5 94.8 90.3 94.8 98.9

P5 91.3 97.9 92.1 91.9 99.8

AVG 87.5 93.2 90.2 93.2 99.1

Table 2: Accuracy of unprediction network detection.

Datasets Method SVM KNN RF

Seen→Unseen
No-TL 0.51 0.52 0.54

TL-IoMT 0.82 0.81 0.80

Seen→Detection
No-TL 0.76 0.75 0.65

TL-IoMT 0.87 0.82 0.80

Detection→Unseen
No-TL 0.50 0.52 0.53

TL-IoMT 0.84 0.82 0.81
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Figure 3: ROC curve on Seen⟶Unseen.
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MMD (Maximum Mean Difference) is used for transfer, and
MMD loss is used instead of alignment loss. The comparison
outcome is shown in Figure 5. It will be seen from the figure
that in addition to alignment loss, FT-IoMT Health can also
attain desirable outcomes through fine-tuning or MMD.

The outcomes of transfer learning are greatly better
than no transfer in average accuracy. It shows that the
transfer learning process of FT-IoMT Health is very valid
and scalable. Thus, FT-IoMT Health is universal and will
be expanded in many fields by merging other transfer
learning algorithms. In addition, other encryption algo-
rithms can also be used to extend the federated learning,
which may be a future research direction.

5. Application of Assistance in Diagnosis and
Treatment of Neurological Diseases

Parkinson’s disease is generally a neurological disease char-
acterized by some motor symptoms, so biosensors can be
used in IoMT to help diagnose [24]. In addition, patient data
is also a privacy-sensitive problem and must be resolved
through federated learning. Therefore, FT-IoMT Health is
applied to assist in diagnosis and treatment of Parkinson’s
disease and is arranged in hospitals. After training the user
model on the user side, the patient downloads it to the bio-
sensor and connects to the network to update it during the
next access. This allows users to detect and obtain real-
time feedback on their own, so as to more easily obtain dis-
ease status.

Based on this, a biosensing application was developed to
collect the patient’s acceleration and gyroscope signals at a
frequency of 80Hz for symptom testing. The symptom con-
dition test is designed in the following states: arm swing, bal-
ance, walking, postural normal tremor, and resting tremor.
For each test set, each symptom is divided into five levels
from normal to severe. The treating doctor evaluated the

collected symptoms. We collected sensor data from 150
patients aged 18 to 85 years. In the following evaluation pro-
cess, the test data of arm swing and postural normal tremor
are evaluated, and two categories with quite sufficient data
are chosen as references.

Evaluate the classification accuracy of the collected data-
set. The data is gathered from three hospitals, 80% of each
hospital is randomly chosen as the public dataset, the
remaining 20% are randomly selected as 5 users, and K = 5.

Table 3 shows the comparison results. In addition, the
proposed method gives the result of the ideal scheme. Due
to all the data is preserved in one location, it is easier to view
the upper bound of the model performance. From the out-
comes, it will be seen that FT-IoMT Health has achieved
the best classification accuracy, which obviously exceeds
the best comparison means, and has narrowed the gap with
the perfect case. It is fully proved that using federated

Table 3: Classification accuracy of every subject in arm swing and postural normal tremor.

Subject KNN SVM RF DL FT-IoMT Health Upper bound

Arm swing

P1 37.2 41.5 45.1 50.2 74.7 87.9

P2 45.3 47.6 49.2 58.5 91.2 99.4

P3 56.2 55.7 53.4 63.6 86.4 87.5

P4 63.8 62.0 56.7 69.4 94.6 100

P5 84.9 73.6 66.6 71.3 85.7 88.4

AVG 57.5 56.0 54.2 62.6 86.5 92.6

Postural tremor

P1 51.3 46.5 58.3 46.2 84.3 86.2

P2 52.5 58.7 56.9 60.4 75.8 85.9

P3 64.8 54.1 56.1 58.7 68.6 75.6

P4 58.6 59.2 52.7 62.8 71.4 86.8

P5 65.2 53.6 52.0 59.2 69.1 76.4

AVG 58.4 54.5 55.2 57.4 73.8 82.4
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Figure 6: Extending on arm swing test.
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transfer learning technology, the FT-IoMT Health mecha-
nism can achieve effective symptom classification in practi-
cal applications.

Consistent with the experimental setup mentioned
above, Figures 6 and 7 show the scalability results of the
arm swing and normal posture tremor test data, respectively.
It can be shown that in most cases, FT-IoMT Health can
achieve satisfactory results using fine-tuning or MMD,
which also shows that FT-IoMT Health and other transfer
learning algorithms are as effective and scalable in practical
applications.

For the performance of the given model, we further
study ablation analysis (also called sensitivity analysis) to
evaluate the two components of joint learning and transfer
learning. We apply No-TL to mean an average model
without personalize transfer learning. The outcomes are

indicated in Figures 8 and 9. It can be seen from the
results that both federated learning and transfer learning
have made significant achievements to the performance of
FT-IoMT Health. Comparing No-TL with DL, it can be seen
that the model with federated conditions will increase the
classification accuracy, which shows the effectiveness of fed-
erated learning. By further comparing No-TL with our feder-
ated transfer learning mechanism FT-IoMT Health, it can be
seen that integrated with transfer learning technology, each
user model will attain better performance in classification.
The reasons are as follows. (1) Using federated learning, the
server can indirectly aggregate more communication from
multiple users to obtain a more general network cloud model.
(2) Using transfer learning, users will obtain a more person-
alized user data model based on the cyber cloud model.

6. Conclusion

In the paper, we propose FT-IoMT Health, which is a fed-
erated transfer learning mechanism based on IoMT health-
care. FT-IoMT Health aggregates data from different
network users without affecting privacy and security and
realizes the user’s relatively personalized model learning
through transfer learning. The key is feature-based transfer
learning technology to overcome various detection methods
that lead to variants in network performance. Experiments
and applications have verified the validity and accuracy of
the mechanism compared to other benchmark methods.
Meanwhile, the experimental outcomes also indicate that
the transfer learning method enhances the performance of
detecting unseen new network malicious data compared
with the baseline and proves that FT-IoMT Health can sup-
port the detection of new data in different feature spaces. In
the future, we will plan to expand FT-IoMT Health through
incremental learning to achieve a more personalized, flexi-
ble, and efficient healthcare system.
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Figure 7: Extending on normal posture tremor test.
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Figure 9: Ablation analysis on normal posture tremor test.
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Figure 8: Ablation analysis on arm swing test.
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