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To determine the feasibility of using a deep learning (DL) approach to identify benign and malignant BI-RADS 4 lesions with
preoperative breast DCE-MRI images and compare two 3D segmentation methods. The patients admitted from January 2014 to
October 2020 were retrospectively analyzed. Breast MRI examination was performed before surgical resection or biopsy, and the
masses were classified as BI-RADS 4. The first postcontrast images of DCE-MRI T1WI sequence were selected. There were two
3D segmentation methods for the lesions, one was manual segmentation along the edge of the lesion slice by slice, and the other
was the minimum bounding cube of the lesion. Then, DL feature extraction was carried out; the pixel values of the image data
are normalized to 0-1 range. The model was established based on the blueprint of the classic residual network ResNet50,
retaining its residual module and improved 2D convolution module to 3D. At the same time, an attention mechanism was
added to transform the attention mechanism module, which only fit the 2D image convolution module, into a 3D-
Convolutional Block Attention Module (CBAM) to adapt to 3D-MRI. After the last CBAM, the algorithm stretches the output
high-dimensional features into a one-dimensional vector and connects 2 fully connected slices, before finally setting two output
results (P1, P2), which, respectively, represent the probability of benign and malignant lesions. Accuracy, sensitivity, specificity,
negative predictive value, positive predictive value, the recall rate and area under the ROC curve (AUC) were used as evaluation
indicators. A total of 203 patients were enrolled, with 207 mass lesions including 101 benign lesions and 106 malignant lesions.
The data set was divided into the training set (n = 145), the validation set (n = 22), and the test set (n = 40) at the ratio of 7 : 1 : 2;
fivefold cross-validation was performed. The mean AUC based on the minimum bounding cube of lesion and the 3D-ROI of
lesion itself were 0.827 and 0.799, the accuracy was 78.54% and 74.63%, the sensitivity was 78.85% and 83.65%, the specificity
was 78.22% and 65.35%, the NPV was 78.85% and 71.31%, the PPV was 78.22% and 79.52%, the recall rate was 78.85% and
83.65%, respectively. There was no statistical difference in AUC based on the lesion itself model and the minimum bounding
cube model (Z = 0:771, p = 0:4408). The minimum bounding cube based on the edge of the lesion showed higher accuracy,
specificity, and lower recall rate in identifying benign and malignant lesions. Based on the lesion 3D-ROI segmentation using a
minimum bounding cube can more effectively reflect the information of the lesion itself and the surrounding tissues. Its DL
model performs better than the lesion itself. Using the DL approach with a 3D attention mechanism based on ResNet50 to
identify benign and malignant BI-RADS 4 lesions was feasible.
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1. Introduction

Breast cancer is a serious threat to women’s health and has
become the world’s most common cancer [1]. Early detection,
early diagnosis, and early treatment can improve both survival
and prognosis of breast cancer patients [2–4]. Greenwood
et al. [5] have reported that breastMRI plays an important role
in screening and assessing the extent of ductal carcinoma in
situ (DCIS) and predicting the potential invasiveness. The
degree of early enhancement reflects the vascular richness
and blood perfusion of the lesion and can reflect the character-
istics of the lesion. According to the guideline of the American
College of Radiology (ACR), the possibility range of the BI-
RADS 4 of malignancy is 2%-95% as defined by the breast
imaging report and data system (BI-RADS) [6]. Lesions with
BI-RADS 4 classification are difficult to define clearly. The
signs of the lesions are overlapping and intricate. These
lesions, benign or malignant, are all classified as BI-RADS 4,
along with recommended invasive procedures such as needle
biopsy to obtain pathological evidence [7–9]. Therefore, com-
prehensive understanding and improved evaluation methods
of benign and malignant breast lesions are urgently needed
to reduce invasive operations and the burden on patients.

In recent years, with the rapid development of artificial
intelligence-assisted diagnosis systems, deep learning has
emerged as a subfield of machine learning [10–13]. Its appli-
cation in medical imaging has attracted much attention,
along with its wide use in image recognition, segmentation,
and analysis [14]. Several studies [15, 16] have attempted
to increase the number of layers of CNNs from the original
5 layers of the AlexNet network [17] to the 19 layers of the
VGG network. Theoretically, a deeper network leads to bet-
ter effect, but the increase in network depth will also bring
additional problems that in turn cause reduced performance.
The main reason for the performance reduction was gradi-
ent dispersion (vanishing gradients in backpropagation lead
to weakened error signal) and gradient explosion (accumula-
tion of large error gradients results in infinity in loss func-
tion) that were caused by the increase in the number of
network layers. The residual module was proposed by Kha-
lili and Wong [15], which could effectively solve the afore-
mentioned problems above and has become the standard
configuration of CNNs.

The CNNs learned a large number of features. Some fea-
tures were not important for the final result, while some others
played a key role in predicting results thus deserve more atten-
tion. Based on this theory, Woo et al. [18] proposed the Con-
volutional Block Attention Module (CBAM). The so-called
greater attention was to give higher weight to those key fea-
tures. In this study, the efficiency of feature extraction and
classification of BI-RADS 4 breast lesions with two segmenta-
tionmethods was compared by the DLmodel with a 3D atten-
tion mechanism, so as to verify the feasibility of using an
improved convolutional neural network.

2. Materials and Methods

2.1. Study Cohort and Imaging Protocol. The patients who
underwent breast MRI examinations at Nantong First Peo-

ple’s Hospital were retrospectively collected from January
2014 to October 2020. A total of 296 patients with breast
lesions were enrolled in the study. Inclusion criteria: (1)
the diameter of the lesion was greater than 1 cm, or lesions
were visible to naked eyes at least two consecutive slices;
(2) the image quality was high without obvious artifacts or
distortion; (3) the lesions were all mass and showed irregu-
lar margins, or inhomogeneous enhancement, or ring
enhancement in MRI and classified as BI-RADS 4 by the
radiologist. Exclusion criteria: (1) the breast mass showed
no enhancement; (2) radiotherapy/chemotherapy or inva-
sive operations such as biopsy before breast MRI; (3) the
characteristics of the lesion and the pathological diagnosis
were not clear.

All MRIs in this study were acquired using a Siemens 3.0
T magnetic resonance scanner (Verio; Siemens, Erlangen,
Germany) with 16-channel phased array breast-specific coil.
The patients were placed in the prone position with head-
first entry; the breasts naturally hanged in the breast coil,
and the nipple remained at the center of the coil. The scan
sequence parameters were as follows: DCE T1-weighted
axial fat suppression 3D spoiler gradient echo: TR 4.67ms,
TE 1.66ms, flip angle 10o, FOV 340mm × 340mm, slice
thickness 1.2mm, scanning of 6 phases without interval,
scan time 6min 25 s, high-pressure syringe injection of 15-
20mL contrast agent Gd-DTPA based on body weight
(0.2ml/kg) at a flow rate of 2mL/s, and then injection of
the same amount of normal saline to flush the tube. After
the 25 s injection, scanning was triggered, and each phase
was collected for 1min. The first phase was nonenhance-
ment, and phases 2-6 were enhanced. Our study focused
on phase 2 images which was named DCE-MRI T1WI first
postcontrast sequence.

2.2. 3D-ROI Lesion Segmentation. All DCE-MRI T1WI first
postcontrast images of breast mass that meet the inclusion
criteria were imported into the image processing software
ITK-SNAP 3.8.0 in DICOM format, and the lesions were
manually segmented by an attending physician with 8 years
of experience in breast MRI diagnosis and reviewed by a
chief physician with more than 10 years of experience in
breast MRI diagnosis: (1) based on the ROI of the lesion
itself (Figures 1 and 2), the 3D-ROI segmentation method
was used to manually delineate the boundary of the lesion
slice by slice along the edge of the lesion, containing cystic
degeneration, necrosis, and calcification within the lesion;
(2) based on the minimum bounding cube, the maximum
diameter of the lesion was then projected onto 3 coordinate
axes of the image to determine its coverage range of x, y, and
z axes, and the bounding box of the lesion was finally
obtained (Figures 3 and 4).

2.3. Lesion Feature Extraction. There are two methods of fea-
ture extraction. One is to take the minimum bounding cube
of the lesion (including the lesion and part of the peritu-
moral area), and the other is to take only the lesion itself
and set the value of the image pixels of part of the nonlesion
area to 0. The minimum bounding cube is the smallest cir-
cumscribed cube containing the lesion. In addition, before
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inputting to the CNN, the pixel values of the image data are
normalized to 0-1 range. The formula is as follows:

x = X − Xmin
Xmax − Xmin

, ð1Þ

where x represents the normalized image pixel value, X repre-
sents the original image pixel value, and Xmax and Xmin repre-
sent the maximumpixel value and theminimum pixel value of
the minimum bounding cube of all lesions, respectively.

In this study, a total of 207 masses were obtained, of
which 106 were malignant and 101 were benign. The data

Figure 1: 3D-ROI segmentation method based on the lesion itself. Shows a case of fibroadenoma of the left breast.

Figure 2: 3D-ROI segmentation method based on the lesion itself. Shows a case of invasive ductal carcinoma of the right breast (stage II).
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set was divided into the training set (n = 145), the validation
set (n = 22), and the test set (n = 40) at the ratio of 7 : 1 : 2. To
avoid the selection bias of the benign and malignant lesions
of the test set samples, the test set was generated by random
sampling of 20 malignant lesions and 20 benign lesions. The
remaining samples were randomly divided into the training
set and the validation set in the ratio of 7 : 1. Fivefold cross-
validation was performed.

2.4. Model Establishment. The model was established based
on the blueprint of the classic residual network ResNet50
[19], retaining its residual module but changing the convolu-
tion module to a 3D convolution module. At the same time,

an attention mechanism was added to transform the atten-
tion mechanism module, which only fit the 2D image convo-
lution module, into 3D-Convolutional Block Attention
Module (CBAM) to adapt to 3D-MRI, as shown in
Figure 5. CBAM includes a channel attention module and
a spatial attention module, which together can solve the
question of which channel and which position characteris-
tics play decisive roles in final prediction [18]. Input module,
residual module, channel attention module, downsampling
module, and fully connected module constitute the main
modules of the network. Among them, the residual module
was mainly used to extract features, the CBAM module
was mainly used to give higher weight to key features, and
the downsampling module was used to reduce the size of
the feature map and to increase the number of channels in
the feature map. Blocks are used (Figure 5) to reflect the size
change of the feature map. After the last CBAM, the algo-
rithm stretches the output high-dimensional features into
a one-dimensional vector and connects 2 fully connected
slices. Lesion classification network parameters are shown
in Table 1. The network uses cross-entropy cost function
as the loss function and stochastic gradient descent (SGD)
whose weight decay is 0.0001 and momentum is 0.9 as the
optimizer. The batch size is 16. Dynamic learning rate strat-
egy is taken during the train process. The initial learning
rate is 0.1, which is considered as a big number, halved
every 25 epochs of iterations. Before finally setting two out-
put results (P1, P2), which, respectively, represent the prob-
ability of benign and malignant lesions. The lesion is
classified as benign if P1 > P2. Otherwise, the lesion is clas-
sified as malignant.

Figure 3: 3D-ROI segmentation method based on the minimum bounding cube at the edge of the lesion. Segmentation based on the
minimum bounding box of the mass edge, showing a case of fibroadenoma of the left breast.

Figure 4: 3D-ROI segmentation method based on the minimum
bounding cube at the edge of the lesion. The cubic model of
segmentation based on the minimum bounding cube of the
mass edge.
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2.5. Model Evaluation. The two DL feature models based on
the lesion itself and the minimum boundary cube of lesion in
the diagnosis of benign and malignant breast lesions were
compared. Model performance was evaluated using the area
under the ROC curve (AUC), accuracy, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive value
(NPV), precision, and recall rate. The AUC of the two DL
models was compared by the DeLong test.

3. Results

3.1. Patient Characteristics. A total of 296 patients with
breast lesions were investigated in the study. The following
cases were excluded: 3 patients with unqualified images
due to the presence of motion artifacts, 12 patients with a
history of biopsy or mastectomy before breast MRI examina-
tion, 53 patients with a single focal lesion or multiple focal

Input-modality 3D-Resmodule 3D-CBAM Down-sampling FC-layer

Flatten Output {p1, p2}

Data-flow

Figure 5: Structure of monomodal network.

Table 1: Tumor classification network parameters.

Layer_name Input_size Detailed_parameters Output_size

conv 1 ∗ 64 ∗ 64 ∗ 64 Kernel = 3, stride = 1, padding = 1 8 ∗ 64 ∗ 64 ∗ 64
res conv ∗ 2 8 ∗ 64 ∗ 64 ∗ 64 Kernel = 3, stride = 1, padding = 1 8 ∗ 64 ∗ 64 ∗ 64
3D_CBAM 8 ∗ 64 ∗ 64 ∗ 64 1 ∗ 1 ∗ 1 convolution 8 ∗ 64 ∗ 64 ∗ 64
conv 8 ∗ 64 ∗ 64 ∗ 64 Kernel = 2, stride = 2, padding = 0 16 ∗ 32 ∗ 32 ∗ 32
res conv ∗ 4 16 ∗ 32 ∗ 32 ∗ 32 Kernel = 3, stride = 1, padding = 1 16 ∗ 32 ∗ 32 ∗ 32
3D_CBAM 16 ∗ 32 ∗ 32 ∗ 32 1 ∗ 1 ∗ 1 convolution 16 ∗ 32 ∗ 32 ∗ 32
conv 16 ∗ 32 ∗ 32 ∗ 32 Kernel = 2, stride = 2, padding = 0 32 ∗ 16 ∗ 16 ∗ 16
res conv ∗ 4 32 ∗ 16 ∗ 16 ∗ 16 Kernel = 3, stride = 1, padding = 1 32 ∗ 16 ∗ 16 ∗ 16
3D_CBAM 32 ∗ 16 ∗ 16 ∗ 16 1 ∗ 1 ∗ 1 convolution 32 ∗ 16 ∗ 16 ∗ 16
conv 32 ∗ 16 ∗ 16 ∗ 16 Kernel = 2, stride = 2, padding = 0 64 ∗ 8 ∗ 8 ∗ 8
res conv ∗ 4 64 ∗ 8 ∗ 8 ∗ 8 Kernel = 3, stride = 1, padding = 1 64 ∗ 8 ∗ 8 ∗ 8
3D_CBAM 64 ∗ 8 ∗ 8 ∗ 8 1 ∗ 1 ∗ 1 convolution 64 ∗ 8 ∗ 8 ∗ 8
conv 64 ∗ 8 ∗ 8 ∗ 8 Kernel = 2, stride = 2, padding = 0 128 ∗ 4 ∗ 4 ∗ 4
res conv ∗ 4 128 ∗ 4 ∗ 4 ∗ 4 Kernel = 3, stride = 1, padding = 1 128 ∗ 4 ∗ 4 ∗ 4
3D_CBAM 128 ∗ 4 ∗ 4 ∗ 4 1 ∗ 1 ∗ 1 convolution 128 ∗ 4 ∗ 4 ∗ 4
Flatten 128 ∗ 4 ∗ 4 ∗ 4 8192

Full connection 8192 2048

Full connection 2048 512

Softmax 512 2

“res_conv” is a residual convolution block which contains shortcut connection, and “res conv ∗N” means the block has N convolution blocks that share the
same parameters. 3D_CBAM uses 1 × 1 × 1 convolutions to adjust the channel numbers of the current feature map.
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lesions in the breast, 14 patients with incomplete examina-
tion or perfusion scan breast MRI, and 11 patients with
breast lesions combined with nonmass enhancement lesions.
Eventually, 203 patients were enrolled for analyses (Table 1).
The patients were 17-86 years old with an average age of
48:5 ± 13:1 years old. Among them, there was only one male
patient, aged 54 years. There were 105 patients with malig-
nant lesions with an average age of 55:5 ± 11:3 years and
98 patients with benign lesions with an average age of 41:0
± 10:6 years old. A total of 207 masses were included in
the study (Table 2).

3.2. Model Characteristics

3.2.1. Comparison of the Two Deep Learning Feature Model
Based on the Lesion Itself and the Minimum Boundary
Cube of Lesion in the Diagnosis of Benign and Malignant
Breast Lesions. Using first postcontrast images of DCE-
MRI T1WI sequence, the two deep learning feature model
based on the lesion itself (model 1) and the minimum
boundary cube of lesion (model 2) in the diagnosis of benign
and malignant breast lesions were compared. The means are
shown in Table 3. In comparison, the model 1 analysis
achieved mean AUC of 0.799, accuracy of 74.63%, sensitivity
of 83.65%, specificity of 65.35%, NPV of 71.31%, PPV of
79.52%, and recall rate of 83.65% and the model 2 analysis
achieved an average AUC of 0.827, accuracy of 78.54%, sen-
sitivity of 78.85%, specificity and PPV of 78.22%, NPV and
recall rate of 78.85%. There was no statistical difference in
AUC based on the lesion itself model and the minimum
bounding cube model (Z = 0:771, p = 0:4408). The mini-
mum bounding cube based on the edge of the lesion showed
higher accuracy, specificity, and lower recall rate in identify-
ing benign and malignant lesions.

4. Discussion

Deep learning in convolutional neural networks (CNNs) is
usually based on manually or semiautomatically segmented
tags to learn to recognize image features. Because breast
MRI is different from MRI for abdomen and lung lesions,
its position is fixed in a special breast coil and is less affected
by breathing movement, leading to relatively higher repro-
ducibility of the segmentation method for breast lesions.

However, the segmentation methods are quite different. Pre-
vious studies have mostly extracted the two-dimensional fea-
tures of the lesion (2D-ROI) [20], selected the largest slice of
the lesion or the most obvious slice of lesion enhancement
[21], and segmented along the edge of the lesion. 2D-ROI
can only represent the information covered by the current
area and cannot reflect all the information of the lesion.
Therefore, this will definitely affect the reliability of DL
models. The use of 3D-ROI is helpful to observe the lesion’s
overall morphology, leading to more accurate and compre-
hensive reflection of the characteristics of the lesion [22].
And more weight is given to the hemodynamic characteris-
tics of the relevant lesion in the model based on the usual
imaging physicians’ reading habits and the advantages of
early enhanced MRI.

4.1. The Efficacy of a Deep Learning Model Based on the
Minimum Bounding Cube of the Lesion in Breast Lesion
Classification. This study used two different segmentation
methods for 3D-ROI of the lesion: one was based on the
lesion itself, and the other one was based on the minimum
bounding cube of the lesion edge. These two different seg-
mentation methods were compared for their impact on the
accuracy of the DL model. Our results revealed that the DL
model based on the minimum bounding cube of the lesion
edge is more accurate, with a mean AUC value of about

Table 2: Age and pathological information of patients with benign and malignant breast tumors.

Benign patients (n = 98) Malignant patients (n = 105)
Age (year) 41:0 ± 10:6 55:5 ± 11:3

Pathology (207 masses)

Fibrocystic adenosis (n = 18) Invasive ductal carcinoma (n = 81)
Fibroadenoma (n = 71) Mucinous adenocarcinoma of the breast (n = 7)

Intraductal papilloma (n = 4) Invasive lobular carcinoma (n = 3)
Intraductal papillomatosis (n = 4) Intraductal carcinoma or tubular carcinoma (n = 8)
Benign phyllodes tumor (n = 4) Solid papillary carcinoma (n = 2)

Malignant phyllodes tumor (n = 1)
Small lymphocytic lymphoma (n = 1)

Medullary carcinoma (n = 3)

Table 3: Comparison of two 3D-ROI segmentation methods based
on the lesion itself and the minimum bounding cube at the edge of
the lesion.

Evaluation index Lesion itself Minimum bounding cube

AUC 0.799 0.827

Accuracy (%) 74.63 78.54

Sensitivity (%) 83.65 78.85

Specificity (%) 65.35 78.22

Negative prediction (%) 71.31 78.85

Positive prediction (%) 79.52 78.22

Precision (%) 71.31 78.85

Recall (%) 83.65 78.85

DeLong test Z = 0:771, p = 0:4408
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0.827. The reason may be that the minimum bounding cube
based on the lesion edge not only contains the internal infor-
mation of the lesion but also includes some tissues sur-
rounding the lesion.

Zhou et al. [23] applied 5 different input boxes (tumor
alone, the smallest bounding box, and 1.2, 1.5, and 2.0 time
box) in deep learning and showed that the performance of
diagnosis gradually decreases as the bounding box increases.
The per-lesion diagnostic accuracy was the highest when
using the smallest bounding box (89%), but the tumor ROI
on all slices were automatically segmented on contrast-
enhanced maps by using the fuzzy-C-means (FCM) cluster-
ing algorithm with 3D connected-component labeling, This
study used manually segmented images as a standard for
comparison, which may be more accurate. And the mini-
mum bounding cube based on the tumor edge did not
expand the box size but instead used 3D-CBAM to increase
the weight of key information, in order to prevent the box
containing too much information from normal tissue that
dilutes the effective information in the overall box or reduces
the resolution of the effective information of the image
imported into the neural network.

The DL model that is based on the minimum bounding
cube of postcontrast images of DCE-MRI T1WI sequence
showed superiority in the test set, a mean specificity of
78.22%, which are better than those of the DL model that
is based on just the lesion itself. The reason may be that
the microenvironment around the tumor plays a critical role
in tumor growth and aggressive tissue behavior [24, 25]. 3D-
CBAM was to give higher weight to those key features. The
area around the tumor contains much valuable and hidden
information about the disease, including survival predictors
for vascular activity and lymphangiogenesis and the infiltra-
tion of lymphatic and blood vessels around the tumor, and
immune response signals around the tumor for interstitial
response and lymphocyte infiltration around the tumor
[26]. As we have shown in a previous study [27], the peritu-
moral edema on T2WI images is better and appears as T2WI
hyperintensity around the tumor. This sign is combined
with the T2WI signal, leading to significantly increased sen-
sitivity and specificity for the differential diagnosis of benign
and malignant breast tumors, and there is a positive correla-
tion between peritumoral edema and Ki-67 expression.
These results demonstrate the importance of the tissue sur-
rounding the tumor. However, related studies are still lim-
ited at present; thus, the information about surrounding
tissues has not been captured by the artificial intelligence
learning technology. Braman et al. [26] collected a total of
117 patients and extracted omics features after marking the
breast tumors and surrounding areas (2.5-5mm area around
the tumor) using breast images from DCE-MRI-T1WI.
Their results showed that the omics features of surrounding
tissues helped to predict pCR and that combined use of
tumor internal characteristics and peritumoral characteris-
tics led to better prediction accuracy, which as a whole
may help guide the personalized treatment of locally
advanced breast cancer. This indicates that extracting the
information contained in the tissue around the tumor has
a high clinical application value.

4.2. The Diagnostic Efficacy of the Deep Learning Model
Based on First Postcontrast Images of DCE-MRI T1WI
Sequence in Benign and Malignant Breast Lesions. The deep
learning model that is based on the minimum bounding
cube of dynamic contrast postcontrast images has high
specificity in the classification of benign and malignant
breast lesions. We speculate that this may be related to
the early hemodynamic information of the lesion, as shown
in a previous study of ours that DCE-MRI can not only
reveal tumor’s morphological changes but also reflect its
microvascular perfusion, angiogenesis, grades, and malig-
nancy for evaluating the effect of tumor treatment and
prognosis. The degree of early enhancement reflects the
abundance of blood vessels and blood perfusion of the dis-
ease [28]. Malignant lesions grow fast, have multiple large
blood vessels, are immature, and have a large number of
arteriovenous anastomoses.

In addition to the high accuracy in diagnostic perfor-
mance of the minimum bounding cube based on the edge
of the lesion, we also found that the method is relatively sim-
ple and easy to use, as it only needs to find the largest level of
the three dimensions of the image through image processing
software. At this level, the minimum rectangle that can cover
the outermost edge of the lesion is used, and finally, the min-
imum bounding cube containing the lesion is generated by
the computer traversal method. However, the 3D-ROI based
on the lesion itself needs to be delineated slice by slice and
along the edge. For nonenhancement sequence images,
sometimes, the edge of the lesion is unclear, leading to the
lack of local edge information of the lesion.

5. Conclusion

In summary, based on the segmentation method of the min-
imum bounding cube at the edge of the lesion, postcontrast
images of DCE-MRI T1WI sequence were extracted, and a
DL model was established. This model can combine the
information inside the lesion and that of containing peritu-
moral area to improve the diagnostic efficacy for both
benign and malignant breast lesions. Using the DL approach
with a 3D attention mechanism based on ResNet50 to iden-
tify benign and malignant BI-RADS 4 lesions was feasible.

6. Limitations of This Study

This study was a small-sample single-center study, and the
results obtained in this study need to be confirmed by future
large-sample multicenter investigations. Only mass lesions
were included in the study; thus, whether the segmentation
method is equally applicable to nonmass lesions remains to
be tested. The inclusion/exclusion criteria are quite stringent
and exclude many of the lesions which a radiologist reading
breast MRI will routinely come across. The study only used
first postcontrast images of DCE-MRI T1WI for segmenta-
tion by the minimum bounding cube of the lesion, which
needs to be examined to see if it fits other sequences of image
segmentation. Another limitation is that this study only
compared two lesion segmentation methods; thus, future

7Wireless Communications and Mobile Computing



investigation is needed to test whether other ROIs contain-
ing peritumoral area may be better.
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