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With the development of high-performance computing and big data applications, the scale of data transmitted, stored, and
processed by high-performance computing cluster systems is increasing explosively. Efficient compression of large-scale data
and reducing the space required for data storage and transmission is one of the keys to improving the performance of high-
performance computing cluster systems. In this paper, we present SW-LZMA, a parallel design and optimization of LZMA
based on the Sunway 26010 heterogeneous many-core processor. Combined with the characteristics of SW26010 processors,
we analyse the storage space requirements, memory access characteristics, and hotspot functions of the LZMA algorithm and
implement the thread-level parallelism of the LZMA algorithm based on Athread interface. Furthermore, we make a fine-
grained layout of LDM address space to achieve DMA double buffer cyclic sliding window algorithm, which optimizes the
performance of SW-LZMA. The experimental results show that compared with the serial baseline implementation of LZMA,
the parallel LZMA algorithm obtains a maximum speedup ratio of 4.1 times using the Silesia corpus benchmark, while on the
large-scale data set, speedup is 5.3 times.

1. Introduction

With the improvement of high-performance computer per-
formance, its scale is expanding. The large-scale high-
performance computing cluster system must maintain
long-term and stable uninterrupted operation. The amount
of data transmitted, stored, and processed is increasing,
and the amount of system log data is also increasing explo-
sively. At present and in the future, it can be predicted that
the scale of social computing data and scientific computing
data will continue to grow with the improvement of infor-
matization, which brings new challenges to big data process-
ing. Effective compression is necessary to reduce the space
required for data storage, make maximum use of the limited
communication bandwidth, and make the high-performance
computing cluster system give full play to its efficiency. With
the increasing amount of data, blockchain applications need
a lot of storage space. A fast big data compression algorithm
can improve the efficiency of blockchain applications [1].

In the actual application of the Internet of Things, there
are obvious shortcomings, such as the limited energy and

bandwidth of the sensor nodes, which brings huge chal-
lenges to the network data transmission of the Internet of
Things devices. The compression algorithm is currently an
important technology to reduce the amount of transmitted
data. It can appropriately remove the redundancy, reduce
the data storage space of the IoT, and improve the speed
and success rate of data transmission of the IoT. From the
point of view of the server, the rapid development of infor-
mation technology, especially IoT, has brought about the
explosive growth in the amount of data on the server due
to the demand for big data processing. This also requires
efficient compression algorithms to reduce the amount of
data storage and processing of algorithms such as distributed
big data processing and machine learning [2, 3]

Lossless compression algorithms have a wide variety of
open-source implementations. In the Sunway TaihuLight
supercomputer, the existing data compression algorithms
include zlib Deflate, XZ, and LZ4. None of the compression
algorithms is optimized in parallel, and only a single proces-
sor core is used for compression and decompression, while
the processing performance does not have much room for
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improvement. In compression algorithms, there are many
problems, such as the contradiction between compression
rate and storage space and poor data locality. In order to
achieve an effective performance improvement, deep algo-
rithm reconstruction and optimization must be carried out
for specific high-performance processors.

Many studies have used multicore processor architecture
to parallelize compression algorithms. The parallelization of
BWT (burrows Wheeler transform) compression algorithm
appeared earlier. Pankratius et al. [4] first proposed a parallel
implementation of BWT, which obtained a linear speedup
ratio and was applied to Bzip software. Pigz is a parallel ver-
sion of Gzip compression algorithm, which was proposed by
Gristwood et al. [5] and has been widely used, but the com-
pression rate of this parallel algorithm is low. Patel et al. [6]
used GPU to parallelize the binary tree search process of the
BWT lossless compression algorithm, and the acceleration
effect was significant. Wu et al. [7] studied the compression
algorithm based on CUDA (compute unified device archi-
tecture) and used the block parallel strategy to optimize
the LZ77 compression algorithm on the GPU. Pankratius
et al. [8] use MPI (message passing interface) programming
to realize the distributed MPIBZIP compression algorithm,
which is suitable for distributed memory computing. Wright
[9] uses MPI and pthreads programming interfaces to
implement the bzip2 parallel algorithm in the distributed
memory structure and the shared memory structure, respec-
tively. Although BWT-based compression algorithms are
easy to parallelize, they are not as good as LZMA (Lempel
Ziv-Markov chain algorithm) in terms of compression rate.
In the process of multithreading parallelization of open-
source compression software such as XZ and 7zip, only the
character matching core function in the LZMA algorithm
is parallelized. The acceleration effect is not ideal and is lim-
ited by the number of processors [10, 11] Leavline and Singh
used FPGA to accelerate the LZMA algorithm [12, 13],
which can obtain a higher speedup ratio, but the application
cost is higher and does not have general applicability.

In the Sunway TaihuLight supercomputer system [14],
the basic unit is a computing node composed of a
SW26010 many-core processor, 32GB of memory, and
other control units. The processor architecture is shown in
Figure 1. Four core groups (CGs) constitute a SW26010 pro-
cessor, and there are 64 computing processing elements
(CPEs) plus one management processing element (MPE),
totally 260 computing units in SW26010. Among them, the
CPE adopts a lightweight core design, and its instruction
set function is very streamlined, does not support operations
such as interrupts, and only runs in user mode. Each CPE
contains 16KB instruction L1 cache and 64KB LDM (local
directive memory, on-chip local data space) and supports
256-bit SIMD operations. The CPE can share memory with
the MPE and use DMA (direct memory access) to exchange
data between memory and LDM. In the CPE cluster, the
CPEs in the same row or column can exchange data through
register communication, the maximum amount of data
transmitted each time is 256 bits, and the delay is low.

Figure 2 is a memory hierarchy diagram of CPE. The
slave core can read data from memory in two ways: direct

register access and register LDM access. Since there is no
shared cache between CPEs and MPE, the delay of direct
register access reaches nearly a hundred clock cycles. One
of the ways to solve the problem is to copy data to LDM
for memory access through DMA to improve memory
access speed. This increases the difficulty of parallel program
design and requires the programmers to set up DMA sched-
uling strategies reasonably, so as to achieve overlap of com-
puting and communication as much as possible and to
improve parallel efficiency. Data exchange between CPEs
can be carried out by register communication. The parallel
program on the SW26010 processor adopts the master-
slave parallel programming model. The master thread runs
on MPE, and the slave threads run on CPEs. The master
thread mainly completes data input, memory copy, result
output, and other operations, and the slave threads mainly
perform computing tasks. According to the characteristics
of the master-slave parallel programming model, Sunway
TaihuLight supercomputer system provides the Athread
accelerated thread library, which is divided into two parts:
the MPE accelerated thread library and the CPE-
accelerated thread library.

The main purpose of this paper is to design an LZMA
parallel algorithm for Sunway TaihuLight supercomputer
system and combine the characteristics of Sunway 26010
many-core processor to reconstruct and optimize the algo-
rithm. We present SW-LZMA that can obtain a maximum
speedup ratio of 4.1 times using the Silesia corpus bench-
mark while on the large-scale data set, speedup is 5.3 times.

2. Analysis of LZMA Algorithm Based on
SW26010 Processor

In this section, we mainly analyse the characteristics of the
LZMA algorithm that affect the performance of the algo-
rithm such as space requirements, memory access methods,
data locality, and hotspot functions. Combined with the
analysis of the key technologies of SW26010 Processor, the
algorithm can be reconstructed and optimized in a targeted
manner.

2.1. LZMA Workflow. The LZMA compression algorithm
was proposed by Pavlov in 1998 [15], and its core is based
on the improvement of the LZ77 compression algorithm.
LZMA uses a sliding window-based dynamic dictionary
compression algorithm and interval coding algorithm,
which has the advantages of high compression rate, small
decompression space requirement, and fast speed. Figure 3
shows the LZMA workflow, including the sliding window
algorithm based on LZ77 [16] and interval encoding [17,
18] (range encoding) two-stage compression.

The LZMA supports a dictionary space of 4KB to hun-
dreds of MBs, which increases the compression rate and also
causes its search cache space to become very large. To reduce
the time required to match the longest string and quickly
search for matching characters, in the implementation of
the LZMA algorithm, multiple possible longest matches are
stored in the Hash table, and the data structure of the Hash
linked list or binary search tree is used to search data. As
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shown in Figure 4, in the Hash function, the hash value of
the first two bytes of the search cache is used as the index
of a hash array, and the hash array stores the starting posi-
tion of the corresponding matching character group. The
size of the hash array is a power of 2 that is half the size of
the dictionary. The LZMA encoder sets up different levels
of hash functions for 2, 3, and 4 adjacent bytes to achieve
efficient positioning corresponding to different dictionary
sizes.

2.2. Memory Space Demand. In the SW26010 processor,
each CPE is equipped with a 64KB LDM. In order to ensure
that the CPR can obtain higher acceleration performance, it
is necessary to copy the calculation data to the CPE’s LDM
space for memory access, which requires precise control of
the use of the CPE’s LDM variable memory space. Table 1
shows the usage of the local variables of the hotspot function
of the LZMA algorithm, which mainly includes the local
array size that takes up a large space, and the local scalar
space takes up a small space and is negligible.

In the string-matching function based on the hash table,
due to the large dictionary space, the hash table hash_buf
reserves a larger hash space. This far exceeds the 64KB
LDM space of CPE and needs to be optimized to compress
the use of local space. The range of the dictionary search
can be reduced as much as possible within the allowable

range of the compression loss, thereby reducing the size of
the hash space of the hash table lookup function.

2.3. Memory Access Characteristics. In the LZMA algorithm,
the data structure of the hash linked list is used to quickly
find matching characters. Due to its relatively large search
cache, its hash look-up table space has increased, with ran-
dom access to memory in the range of 100KBs to 10MBs.
At the same time, the LZ77 algorithm is based on sliding
window streaming compression, because the uncoded data
is continuously input, the coded data is discarded after
reaching the upper limit of the search buffer space, and its
data locality is poor.

Since it is impossible to prejudge the length and position
of the repeated character string in the uncoded data, nor can
it predict the distance of the matching character string, it is
difficult to prefetch the data in the LZMA algorithm. During
the compression process, the size of the dictionary gradually
increases as the number of matching strings increases. Com-
pressing the current data block depends on the dictionary
obtained from the previous compression process. The
LZMA algorithm has the characteristics of random access
to memory and data dependence, which is a memory
access-intensive algorithm. The key to its performance opti-
mization is to combine the storage structure of the SW26010
processor to reconstruct the data structure and memory
access of the algorithm to reduce memory access overhead
and maximize the acceleration performance of CPEs.

2.4. Hotspot Functions. The main time-consuming functions
of the LZMA compression algorithm are concentrated in the
LZ77 string matching core function. The core function pat-
tern matching process is shown in Algorithm 1. Among
them, the time-consuming operations are mainly hash table
lookup and character matching and hash table update.

In the hotspot function, the character matching process
access to memory has a certain continuity, that is, starting
from the current byte position, matching, and searching
the same longest string in the cache. And each matched
character is given by the input data. The position where
the longest matching character may appear is stored in the
hash table, and its look-up table access has certain random-
ness. In view of the characteristics of hotspot functions, there
are mainly two optimization ideas. The first is to finely
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Figure 1: General architecture of SW26010 processor.
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divide the space usage and focus the memory-intensive
operations on LDM to the greatest extent; the second is to
properly reconstruct the algorithm and replace the three-

byte hash function with a two-byte hash function to further
compress the use of LDM space. Both of those ways can
reduce the memory access delay. At the same time, attention

Input
data

Initialize
hash table

Sliding encode Range encode

Encoded
data

Encode and
output

Reflash the
hash table

Scan and find
best match

(DIS, IFN, next - symbol)

Figure 3: Flow diagrams of LZMA.
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Table 1: Local variable size of hotspot function.

Variable Types Local memory size Scope (hot spot function)

hash_buf Int 558KB
Hc3Zip_MatchFinder_GetMatches

Hc3Zip_MatchFinder_Skip

data_stream Char 128KB GetOptimum

CRangeEnc_buf Char 48KB
LitEnc_Encode
LenEnc_Encode

Match Int 24KB
ReadMatchDistances

GetOptimum

isRepG0-G7 Int 4KB∗8 LzmaEnc_CodeOneBlock
GetOptimum

litProbs Typedef struct 16KB
LitEnc_Matched_GetPrice

ReadMatchDistances
FillAlignPrices

g_FastPos Int 10KB FillDistancesPrices
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should be paid to the LDM cache space size and the load bal-
ance of data transmission to achieve maximum hiding of
computing communication.

3. Design and Implementation of SW-LZMA

3.1. Parallel Design of SW-LZMA. First, we designed the SW-
LZMA multithreaded parallel algorithm on the SW26010
processor. The data to be compressed is evenly distributed
to 64 CPEs cores. The CPE directly accesses the main mem-
ory to read the data to be compressed, and after adding
header information to the compressed data, it directly out-
puts them to the main memory, and finally, the MPE writes
the data blocks into the file in order. We adopted master-
slave asynchronous parallelism and handed over the core
computing tasks of the LZ77 compression algorithm and
interval coding in the LZMA algorithm to the CPEs cluster.
The MPE is only responsible for data partitioning and I/O
operations. The steps of the thread parallel algorithm are
as follows.

Step 1. Data segmentation. According to the number of
CPEs, the data to be compressed are divided into several
subblocks. We divide them according to the integer multiple
of the memory page size. Since the amount of calculation in
the compression algorithm is approximately proportional to
the amount of input data, the parallel task load balance can
be achieved only if the size of the divided data block is equal.

Step 2. Two-stage compression. Each data block is indepen-
dently compressed by the CPE, including two-step compres-
sion. In the LZ77 algorithm, first, initialize the compression
dictionary. As the sliding window advances, the data to be
compressed continues to be input, and the dictionary size
increases accordingly. Subsequently, the data structure com-
pressed by the LZ77 algorithm is further compressed and
output as the input data of interval coding.

Step 3. Data consolidation. After the CPEs complete the
compression, the MPE is responsible for merging the com-

pressed data. First, the MPE writes a 5 Byte header, and
the content of which is compression parameter information
such as dictionary size and maximum matching length.
Then, each compressed block is output after adding 4 Byte
header information block_size in the order of arrangement.
The content of block_size is the size of the compressed data
block.

3.2. Implementation of DMA Double-Buffers. Through the
parallel method in Section 3.1, the core computing part of
the serial LZMA compression algorithm can be transplanted
to the CPEs cluster. However, when the CPE directly
accesses the main memory, its memory access overhead will
seriously reduce the performance of the parallel algorithm,
and its acceleration effect is not enough to compensate for
the performance loss caused by the memory access delay.
In addition, in the serial version of the LZMA compression
algorithm, the data to be compressed is stored in a dynami-
cally allocated memory space, and the current compressed
sliding window is determined by the address pointer. Due
to the large scale of compressed data and the limited space
of the CPE’s LDM, even if it is divided into blocks according
to thread tasks, its size is far greater than the 64KB maxi-
mum capacity of LDM, and the data blocks to be com-
pressed cannot be loaded all at once. Therefore, the
algorithm needs to be reconstructed and optimized to com-
press the use of LDM space.

In order to improve the locality of data, we use the non-
blocking DMA-based memory access double buffer technol-
ogy based on the characteristics of the LZ77 sliding window
algorithm and LDM space resources. As shown in Figure 5,
the CPE does not directly access the main memory to read
compressed data. Instead, the data in the current compres-
sion window and the data before and after it are transferred
to the LDM buffer as a compression unit through the DMA
method to achieve fast memory access. At the same time, the
next compression unit has initiated DMA transfer to per-
form data prefetching. After the task of the current compres-
sion unit is completed, the compression calculation can be
performed directly to achieve calculation and memory

Require:
Hash_table: Hash table for fast search entry
cur_pos: Pointer on first byte of the uncompressed data
Process:

1. Dictionary initialization
2. While(there are still having uncompressed data in cur_pos)
3. Calculate the hash_value of the first batch
4. If(the hash_value can be found in hash_table){
5. Update the value to the hash_table
6. Encode the maximum string as (offset, len, cur) from current position
7. }else{
8. Encode the value as (0, 0, cur) according to the current position
9. }
10. End while

Output: (offset, len, cur)

Algorithm 1: LZ77 compression algorithm based on sliding window.

5Wireless Communications and Mobile Computing



access overlap, which further reduces memory access over-
head. At the same time, the output data is also buffered
and copied to the memory through DMA. Algorithm 2 is
an example of LZMA algorithm multithreaded parallel
implementation using Athread interface.

3.3. LDM Space Layout Optimization. In the serial version of
the LZMA algorithm, a pointer is used to directly point to
the memory space of the data to be compressed, and a slid-
ing window-based dictionary compression algorithm is
implemented in the form of displacement. In the SW-
LZMA algorithm, the compressed data needs to be copied
to the LDM buffer area for memory access. In order to
achieve DMA double buffering and make full use of the
LDM space, we use manual methods for fine-grained man-
agement and allocation of the LDM address space and
reconstruct the sliding window algorithm. We set up contin-
uous double buffer space, and the pointer buffer_base points
to the starting address of the address space, that is, the start-
ing position of the first buffer. The pointer buffer_middle
points to the middle position of the buffer space, that is,
the starting position of the second buffer. The pointers
pos_start and pos_end point to the start and end positions
of the current sliding window, respectively.

At the beginning of the algorithm, as shown in Figure 6,
the CPE initiates a blocking DMA request to read the data
block to buffer 1, then calls the sliding window compression
function, and initiates a nonblocking DMA request to read
the next data block to buffer 2. When the sliding window
pointer pos_end moves to the buffer_middle position, check
that the nonblocking DMA request is completed, and then
the compression can continue. Later, when the sliding win-
dow pointer pos_start moves to the buffer_middle position,
a nonblocking DMA request is initiated to read the next data
block to buffer 1. When the pointer pos_start and pointer
pos_end move to the end position of the buffer, they move
to the start position in a loop and continue to compress until
all the data is compressed.

4. Evaluation

We mainly test and analyse the compression rate and com-
pression time of the SW-LZMA algorithm. The benchmark
performance is the compression ratio and compression time
of the serial LZMA algorithm running on the main core. The
timing method of the test is to use the Athread timing inter-
face to count the number of CPU beats that the algorithm
has run and calculate the operation time cost.

Input data in
RAM

Compression buffer in LDM Output data in
RAM

DMA - writiingDMA - reading

DMA - W buffer2

DMA - W buffer1

DMA - R buffer2

DMA - R buffer1

Processor

Figure 5: DMA double-buffers.

Require:
Hash_table: Hash Table for fast search entry
cur_pos: Pointer on first byte of the uncompressed data
Src: Pointer on input data (in main memory)

Process:
1. DMA_get(buffer_base, src, buffer_size)
2. While(src data is not empty){
3. If(buffer block compression is finished){
4. DMA_iget(buffer_base, src, buffer_size)
5. DMA_iput(dest, compressed _data, compressed_size)
6. }else{
7. LZ77_Compress(hash_Table, cur_pos, buffer_base)
8. Range_Encode(compressed _data)
9. }
10. }end while

Output:
Dest: Compressed _data output (in main memory)
Compressed _data: Output buffer (in LDM)

Algorithm 2: LZMA Athread on CPEs.
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4.1. Benchmark Corpus and Experiment Platform. The Silesia
compressed test corpus was proposed by Sebastian Deoro-
wicz in 2003 [15], providing a file data set covering typical
data types currently in use. The files’ sizes are between
6MB and 51MB. The corpus is proposed to solve the prob-
lem of the lack of large files and single file types in the tradi-
tional Canterbury corpus. Table 2 shows the test example of
the benchmark test set.

The experimental platform is the Sunway Taihulight
supercomputing system, and its parameters are shown in
Table 3 [18]. The compression algorithm benchmark test
set used in the experiment is the Silesia corpus benchmark
test set. At the same time, in order to test the compression
performance of a large amount of data, we copied and pack-
aged the Silesia corpus test set files to form GB-level data for
compression testing.

4.2. Performance Evaluation. In order to test the acceleration
effect of the SW-LZMA parallel algorithm on SW26010 pro-
cessor, the serial version of the MPE LZMA algorithm was
selected as a benchmark to compare the performance of differ-
ent optimization schemes. The compression speed and com-
pression rate of SW-LZMA in the Silesia corpus benchmark
test are shown in Figure 7. Due to the large memory access
bottleneck, the 64-thread parallel version that reads data
directly from the main memory only obtains an average
speedup of 2 times and even spends more time than the serial
compression in some cases. In contrary, the optimized version

of communication overlaps using DMA double buffering
obtained an average speedup ratio of 3.7 times and a maxi-
mum speedup ratio of 4.1 times, indicating that the parallel
performance of using DMA double buffering has been greatly
improved. In terms of compression ratio, the compression
ratios of parallel and serial versions are basically the same.

Further analysis, we discussed the impact of the choice of
single buffer size buffer_size on the number of message
transfers and compression rate in the DMA double buffer
design. As shown in Figure 8, when the buffer_size is less
than 20KB, due to the small amount of data copied by a sin-
gle DMA, calculation and communication cannot be fully
overlapped. At the same time, the number of DMA
increases, the corresponding DMA overhead increases, and
the compression speed decreases slightly. When the buffer_
size is greater than 25KB, the compression speed does not
change much with the buffer size. Theoretically, the setting
of the buffer should enable the DMA communication delay

Table 2: Silesia corpus test contents.

Filename Description Type Raw size (byte)

dickens Collected works of Charles Dickens English text 10192446

mozilla Tarred executables of Mozilla 1.0 (Tru64 UNIX edition) Exe 51220480

mr Medical magnetic resonance image Picture 9970564

nci Chemical database of structures Database 33553445

ooffice A dll from Open Office.org 1.01 Exe 6152192

osdb Sample database in MySQL format from open source database benchmark Database 10085684

reymont Text of the book by Władysław Reymont Polish pdf 6627202

samba Tarred source code of Samba 2-2.3 Src 21606400

sao The SAO star catalog Bin data 7251944

webster The 1913 Webster Unabridged Dictionary HTML 41458703

xml Collected XML files HTML 5345280

x-ray X-ray medical picture Hospital image 8474240

DMA reading
DMA read

LDM double buffer

Sliding window DMA buffer block

Step 1

Step 2

Step 3

Figure 6: LDM address space partition of sliding window encoding based on DMA double buffer.

Table 3: Experiment environment.

Item Parameters

MPE 1.45GHz, 32KB L1 D-cache, 256 KBL2 cache

CPE 1.45GHz, 64KB LDM

CG 1MPE + 64CPE
Single node 1 CPU (4 CGs) +4∗8GB DDR3 memory
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and calculation to achieve load balance, but because the
LDM space is limited and needs to be reserved for other
local variables, the buffer cannot be expanded indefinitely.

In Section 2.2, we mainly discuss the memory space
demand of the LZMA algorithm and try to satisfy it within
the 64KB LDM space of each CPE. We designed DMA dou-
ble-buffers, and LDM address space partition of sliding win-
dow in Section 3 to make full use of LDM space. According
to the experimental results, SW-LZMA parallel algorithm
has reached the maximum utilization of the local memory
space of CPEs and cannot be expanded to reach the maximum

bandwidth utilization and frequency of the SW26010 proces-
sor mainly due to the LDM space limitation and memory
access latency. Therefore, we take the buffer size with the best
performance currently as the optimal parameter to maximize
the overlap gain of computing communication optimization.

Most of the compressed test corpus data are small in
scale, and no GB-level test cases are provided. We use Linux
tar tool to package multiple copies of Silesia corpus to gener-
ate several large file test sets. We test the compression per-
formance of the SW-LZMA parallel algorithm on big data
based on the large file test sets. Table 4 shows the
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performance comparison between the serial LZMA algo-
rithm and the SW-LZMA parallel algorithm in large-scale
data compression. It can be seen from the data table that
when the data volume exceeds 500MB, the parallel compres-
sion rate has a significant increase, with a maximum
speedup of 5.3 times. The parallel compression algorithm
has better adaptability in the compression of large-scale data.

4.3. Related Work. Alakuijala et al. used the Canterbury
compression test corpus to perform performance testing
and comparative analysis on compression algorithms such
as Bzip2 and LZMA [19]. Their experiment platform is Intel
E5-1650 v2 3.5GHz processor. We compare it with the test
results of the SW-LZMA parallel algorithm. Since the com-
pressed data sets are different, we only compare the average
compression ratio and average speedup ratio. The results are
shown in Table 5. Because the CPU frequency gap is obvi-
ous, the performance of the LZMA serial algorithm on
SW26010 is inferior to that on Intel CPU, and the parallel
version of the LZMA has a more obvious acceleration effect
than that of the Intel CPU, indicating that the SW-LZMA
has better performance advantages.

5. Conclusions

The main work of this paper is to transplant the LZMA
compression algorithm to the Sunway Taihulight supercom-
puter system and to reconstruct and optimize the parallel
algorithm according to the characteristics of the Sunwei
many-core processor. We use the Athread interface to paral-
lelize the LZMA algorithm with multithreads and blocks and
design a DMA-based double buffer mode to achieve overlap
of computing communication. In further optimization, we
perform fine-grained management and layout optimization
on the LDM address space, set the buffer size reasonably,
and obtain the best computing communication overlap
effect. The test results show that in the Silesia Corpus bench-

mark test set, the SW-LZMA algorithm achieves a maximum
speedup of 4.1 times. In the large file compression test, the
SW-LZMA parallel algorithm achieved a maximum speedup
of 5.1 times. Compared with mainstream CPU serial algo-
rithms such as x86 CPU, the SW-LZMA algorithm has an
obvious acceleration effect on SW26010 many-core proces-
sors, greatly reducing algorithm execution time, and has bet-
ter performance. The SW-LZMA parallel algorithm not only
can provide high-speed compression algorithms for applica-
tions in the field of high-performance computing but also is
well known about its feasibility for more big data applica-
tions such as smart grid [20] and cloud computing [21].

In the future, there will be two research directions to fur-
ther improve the performance of the LZMA algorithm: one
is to upgrade the LZMA algorithm to further reduce the
use of local space without affecting the compression rate;
the other is to design more efficient parallel LZMA algo-
rithm based on the new high-performance computing
processors.
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The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (Grant no.
2018YF0804003).

Table 5: Performance test comparison between Intel x86 and Sunway 26010.

Hardware architecture Intel E5-1650 v2 3.5GHz Sunway 26010

Software environment Linux 3.13, gcc 4.8.4 at -O2 level optimization, single thread
sw5CC -O2 level optimization,

athread multithreads

Compression corpus Canterbury corpus Silesia corpus

Thread number Single thread Single thread Athread

Compression ratio 28.96% 34.12% 32.33%

Compression speed (MB/s) 4.40 3.01 15.71

Speedup 1 0.68 3.57

Table 4: Large-scale data compression test results.

File size (MB)
Serial Athread

Speedup
Time (s) Compression ratio Time (s) Compression ratio

202.1387 34.01 32.96% 15.88 30.24% 2.142

404.2676 66.93 32.96% 27.74 30.22% 2.412

808.5254 268.55 32.96% 51.48 30.21% 5.216

1212.7832 409.78 33.23% 77.11 30.21% 5.314
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