
Research Article
Cloud Computing Task Scheduling Model Based on Improved
Whale Optimization Algorithm

LiWei Jia , Kun Li, and Xiaoming Shi

Computer Teaching and Research Section, Department of Public Infrastructure, Henan Medical College, Zhengzhou,
Henan 451191, China

Correspondence should be addressed to LiWei Jia; zzujialiwei@126.com

Received 30 May 2021; Revised 15 September 2021; Accepted 26 November 2021; Published 13 December 2021

Academic Editor: Omprakash Kaiwartya

Copyright © 2021 LiWei Jia et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The efficiency of task scheduling under cloud computing is related to the effectiveness of users. Aiming at the problems of long
scheduling time, high cost consumption, and large virtual machine load in cloud computing task scheduling, an improved
scheduling efficiency algorithm (called the improved whale optimization algorithm, referred to as IWC) is proposed. Firstly, a
cloud computing task scheduling and distribution model with time, cost, and virtual machines as the main factors is
constructed. Secondly, a feasible plan for each whale individual corresponding to cloud computing task scheduling is to find
the best whale individual, which is the best feasible plan; in order to better find the optimal individual, we use the inertial
weight strategy for the whale optimization algorithm to improve the local search ability and effectively prevent the algorithm
from reaching premature convergence; we use the add operator and delete operator to screen individuals after each iteration
which is completed and updated to improve the quality of understanding. In the simulation experiment, IWC was compared
with the ant colony algorithm, particle swarm algorithm, and whale optimization algorithm under a different number of tasks.
The results showed that the IWC algorithm has good results in terms of task scheduling time, scheduling cost, and virtual
machine. The application is in cloud computing task scheduling.

1. Introduction

The allocation of resources between users and enterprises is
currently a concern of people from all walks of life. Task
scheduling is a key technology in cloud computing to con-
trol resources and improve system stability, which directly
affects user experience. So far, the design of many task
scheduling algorithms has become a hot topic. Effective
combination in the existing task scheduling algorithm can
save the task completion time, meet the user’s service quality
requirements, and improve the load balance of the system.
Cloud computing follows the principle of on-demand alloca-
tion [1, 2], by establishing a huge resource pool, and then
selecting the most appropriate resource for the user accord-
ing to the user’s needs. It uses virtualization technology to
centralize various resources and then uses specialized soft-
ware to automatically manage the resources, so that users
do not have to worry about other problems besides tasks.
In this mode, the relationship between user task processing

time and cost will be inseparable. Cloud computing often
has to deal with a huge number of tasks, and resource sched-
uling has become a core issue. In scheduling, issues like cost,
load balancing, and service quality are all unavoidable
factors [3].

The whale optimization algorithm (WOA) is one of the
relatively new metaheuristic algorithms. It can provide good
global search capabilities and can be widely used in various
engineering problems. In this article, we try to use the whale
optimization algorithm to solve the task scheduling in cloud
computing. The experimental results show that the algo-
rithm has a better scheduling effect under different number
of tasks. Literature [4] merges Min–Min and Max–Min into
a genetic algorithm and uses this algorithm for cloud com-
puting task scheduling. In cloud computing scheduling, a
given task optimizes the task execution time, load, and cost
price of cloud computing; maps the task scheduling scheme
to the whale algorithm model; and obtains the optimal solu-
tion by using WOA. We propose an advanced method called

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 4888154, 13 pages
https://doi.org/10.1155/2021/4888154

https://orcid.org/0000-0001-6691-4778
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4888154

IWC (improved whale optimization algorithm), which is
mainly used to improve the search ability of the best solution
of the WOA algorithm. The contributions of this paper are
as follows: (1) in order to improve the efficiency of cloud
computing task scheduling, a multiobjective optimization
model for task scheduling is proposed, and WOA is used
to solve the entire problem; (2) an IWC algorithm is pro-
posed, which improves the convergence and accuracy of
the WOA-based method which improves the efficiency of
task scheduling; (3) describes the implementation process
of the IWC algorithm and compares it with the ACO,
PSO, and WOA algorithms. The experimental results show
that the algorithm works under different task quantity con-
ditions. Down has a better scheduling effect.

The rest of this article is organized as follows. The sec-
ond section introduces the related work. The third section
describes our scheduling system model. The fourth section
introduces IWC; the fifth section proposes the implementa-
tion details of the improved IWC; in the sixth section, we
simulated the algorithm and explained the scheduling effect;
and the seventh section is the end of this article.

2. Related Work

For task scheduling under cloud computing, many scholars
first established cloud computing task scheduling models
from different perspectives and then used metaheuristic
algorithms to solve the scheduling models and achieved
good scheduling results. Due to space limitations, this article
only elaborates on commonly used metaheuristics. Litera-
ture [5] uses the Genetic Algorithm to optimize task sched-
uling with energy consumption as the main goal; Literature
[4] merges Min–Min and Max–Min into the Genetic Algo-
rithm for the cloud computing task scheduling. The above
results show that the use of the Genetic Algorithm in cloud
computing tasks can reduce task completion time, reduce
energy consumption, and improve resource utilization. Lit-
erature [6] used Ant Colony Optimization to handle the
node load in the cloud in order to bring users a better user
experience; Literature [7] used Ant Colony Optimization in
the green cloud computing. The above results show that
cloud computing effectively reduces the completion time,
improves the efficiency of the node load, and reduces oper-
ating costs. Literature [8] used Particle Swarm Optimization
based on two different inertial weights in cloud computing
task scheduling to reduce task completion time; Saleh et al.
[9] used the improved Particle Swarm Optimization for
cloud computing task scheduling with the goal of average
task length and scheduling success rate. Literature [10] pro-
posed a binary-based Artificial Bee Colony for grid comput-
ing; Literature [11] used the Artificial Bee Colony to handle
the allocation of energy-aware resources under cloud com-
puting. The above results show that using Artificial Bee
Colony can effectively reduce energy consumption and save
user costs. Literature [12] proposed the use of a hybrid Shuf-
fled Frog Leaping Algorithm for resource and workflow
scheduling in cloud computing; Literature [13] proposed a
cloud computing task scheduling algorithm based on ACO
and PSO. Experiments show that this algorithm can help

improve the efficiency of cloud computing scheduling. Liter-
ature [14] proposed a cloud computing task scheduling algo-
rithm based on a mixture of ACO and WOA. Simulation
experiments show that this algorithm is indeed better than
ACO and WOA in cloud computing scheduling. Literature
[15] proposed a QoS-aware scheduling algorithm (QoS-
DPSO); experimental results show that QoS-DPSO can
effectively improve the performance and obtain the high
reliability; Literature [16] proposed a cloud computing task
scheduling algorithm based on game theory. Simulation
experiments show that the algorithm has better perfor-
mance. Literature [17, 18] proposed the Huffman coding
method and the whale optimization algorithm used in wire-
less sensor networks, which provide a new idea for cloud
computing resource scheduling.

3. Cloud Computing Task Scheduling Model

In cloud computing, the task scheduling strategy will directly
affect the resource utilization efficiency of the underlying
system. Therefore, how to allocate tasks has become a key
issue in cloud computing scheduling. This article mainly
focuses on the performance of different scheduling algo-
rithms. Therefore, assuming that all tasks submitted by users
are logically independent of each other, the task scheduling
process in the cloud environment can be summarized as
the following three steps. First, we input the detailed infor-
mation of the task and the available computing resources.
Secondly, the tasks and resources will be mapped according
to certain strategies, and the operation will be performed
according to the mapping. The task plan of the control layer
will generate an optimized task execution plan to meet cer-
tain assigned requirements (that is, the optimization goal).
Finally, the optimized plan is delivered to the underlying
task processing layer for execution, and the output result is
sent to the user. The advantage of adopting this mode is that
it can reduce the calculation delay, reduce the calculation
cost, and improve the user experience effect. This article
takes load balancing, completion cost, and execution time
as the reference basis for users to evaluate cloud computing
(Quality of Service, QoS) services [19].

Let the task set be T = fT1, T2,⋯TNg and the resource
node collection is N = fN1,N2,⋯NMg, in which N >M.
Task scheduling under cloud computing can be represented
by the following matrix:

A =

a11 a12 ⋯ a1M

a21 a22 ⋯ a2M

⋯ ⋯ ⋱ ⋯

aN1 aN2 ⋯ aNM

2
666664

3
777775: ð1Þ

In the matrix A, aij is 1, which means the task i is per-
formed on task j, or aij is 0, i ∈ ½1,N�, j ∈ ½1,M�. This article
defines the attributes of each resource node including pro-
cessing capacity (that is, processing time), initial memory
(that is, the load of response processing), and resource band-
width (that is, reflecting the cost of processing). Therefore,

2 Wireless Communications and Mobile Computing

the three vectors of virtual machine resources are the pro-
cessing power vector En, load capacity vector Sn, and
resource bandwidth vector Cn. At the same time, each task
corresponds to three matrices, which are the processing
power vector Et , load capacity vector St , and resource band-
width vector Ct ; P are the unit prices. Therefore, the time
target function time, load target function load, and cost tar-
get function cost are shown as follows.

time = 〠
N

i=1
〠
M

j=1
aij

Et,i
En,j

, ð2Þ

load = 〠
N

i=1
〠
M

j=1
aij

St,i
Sn,j

, ð3Þ

cost = 〠
N

i=1
〠
M

j=1
aij

Et,i
En,j

× Ct,i
Cn,j

× P: ð4Þ

In the formula, Et,i refers to the Et value of the i task, En,j
refers to the En value of the j virtual machine, St,i refers to
the St value of the i task, Sn,j refers to the Sn value of the j
virtual machine, Ct,i refers to the Ct value of the i task, and
Cn,j refers to the Cn value of the j virtual machine. For our
presentation in the following, we use the notations as listed
in Table 1.

Since the results represented in the three matrices of
resource nodes and task nodes have different standards, they
need to be normalized, so the above three objective functions
are expressed as follows:

Exetime = 1
N
〠
N

i=1
〠
M

j=1
aij

Et,i/En,j
max
∀i,j

Et,i/En,j
� � , ð5Þ

Vmload = 1
N
〠
N

i=1
〠
M

j=1
aij

St,i/Sn,j
max
∀i,j

St,i/Sn,j
� � , ð6Þ

Execost = 1
N
〠
N

i=1
〠
M

j=1
aij

PEt,iCt,ið Þ/ En,jCn,j
� �

max
∀i,j

PEt,iCt,ið Þ/ En,jCn,j
� �� � : ð7Þ

Therefore, the task function set in this article is

F ið Þ = ω1 × Exetime ið Þ + ω2 × Vmload ið Þ + ω3 × Execost ið Þ:
ð8Þ

In the formula, α, β, and γ are the weight values of
ExetimeðiÞ, VmloadðiÞ, and ExecostðiÞ, respectively, and ω1
+ ω2 + ω3 = 1. Therefore, min FðiÞ is the optimal scheme
for cloud computing task scheduling.

3.1. Whale Optimization Algorithm. In 2016, Mirjalil and
Lewis [20] proposed a whale optimization algorithm
(WOA) based on the behavior of whales’ preying in the
sea. In the WOA algorithm, the humpback whale in the
search space is a candidate solution in the optimization

problem, also called the “search agent.” The WOA algorithm
utilizes a set of search agents to determine the global optimal
solution to the optimization problem. The search process for
a given problem begins with a set of random solutions, and
the candidate solution is updated by the optimization rules
until the end condition is met. The whale optimization algo-
rithm is divided into three stages: surrounding preying, bub-
ble attack, and food search.

3.2. Surrounding Prey. In the initial stage of the algorithm,
humpback whales do not know where the food is. They find
the location of food by group work. Therefore, the whale
closest to the food is equivalent to the current local optimal
solution, and other individual whales may approach this
position and gradually surround the food. So, it can be
expressed in the following mathematical model:

D
!
= C

!
×X ∗�!

tð Þ − X
!

tð Þ
��� ���, ð9Þ

X
!

t + 1ð Þ =X ∗�!
tð Þ − A

!
×D

!
, ð10Þ

where D
!

indicates the distance vector from the search
agent to the target food, t is the current iteration number,

C
!

and A
!

are the coefficient vectors, X ∗ is the local optimal

solution, X
!
is the position vector, and C

!
and A

!
are expressed

as follows:

C
!
= 2 × r!, ð11Þ

A
!
= 2a! × r! − a!, ð12Þ

where a! represents a linear decrement vector from 2 to 0
and r is a random number between 0 and 1.

3.3. Bubble Attack. At this stage, it is simulated that the
humpback whales carry out a bubble attack, and the behav-
iors of whales’ preying and bubbling are designed by shrink-
ing the surrounding and spiral position updating to achieve
the purpose of local optimization of the whale.

(1) Principle of shrinking the surrounding. According to
formula (10), the humpback whales are shrinking

Table 1: Main notes in the task scheduling model.

Symbol Meaning

N Number of tasks processed

M Number of virtual machines

aij
Indicates that the i-th task corresponds

to the j-th virtual machine

En Etð Þ VM (task) processing power vector

Sn Stð Þ VM (task) load capacity vector

Cn Ctð Þ Resource bandwidth vector of VM (task)

P Unit price

ω1, ω2, ω3 Weighting factor

3Wireless Communications and Mobile Computing

the surrounding. When ∣A ∣ <1, the individual
whales are approaching the whale at the current best
position; the larger ∣A ∣ is, the bigger the steps the
whales are taking, and vice versa.

(2) Spiral position updating. The individual humpback
whale firstly calculates the distance from the current
optimal whale and then swims in a spiral mode.
When the food is being searched, the mathematical
model of the spiral swimming is

X
!

t + 1ð Þ =D′
!

× elb × cos 2πlð Þ +X ∗�!
tð Þ, ð13Þ

where D′
!

= ∣X ∗�!ðtÞ − X
!ðtÞ ∣ indicates the distance vector

from the individual whale to the best whale distance, b is a
constant, and l is a random vector between 0 and 1. In order
to be able to maintain shrinking the surrounding circle and
swim along the spiral path to the food, the following position
updating equation is established:

X
!

t + 1ð Þ =
X ∗�!

tð Þ − A
!
×D

!
,

D
!
× elb × cos 2πlð Þ +X ∗�!

tð Þ:

8<
: ð14Þ

3.4. Food Searching Stage. By controlling the ∣A ∣ vector, the
humpback whales swim to get food. When ∣A ∣ >1, the indi-
vidual humpback whales are approaching the position of the
reference humpback whale and they swim towards the
updated position of the humpback whale randomly selected,
which ensures that the individual humpback whales can per-
form a global search to obtain a global optimal solution, and
its mathematical model is expressed as follows:

D
!
= C

!
×Xrand
��! − X

!
tð Þ

��� ���, ð15Þ

X
!

t + 1ð Þ =Xrand
��! − A

!
×D

!
, ð16Þ

whereXrand
��!

is a position vector of the randomly selected
reference humpback whale.

4. Task Scheduling in Cloud Computing Based
on Improved Whale Optimization Algorithm

Compared with other advanced algorithms, the WOA algo-
rithm has the advantages of simple operation and few
parameters, but it has the problems of slow convergence,
easily falling into the local optimum, and low convergence
precision. Therefore, it was improved from two aspects of
local search and global search in this dissertation.

4.1. Introduce Inertial Weight to Improve Local Search
Ability. In Ref. [21], the inertial weight adopted in the PSO
algorithm was beneficial to the local development of the
algorithm and accelerated the convergence speed. Therefore,
the inertial weight had an important influence on the con-
vergence speed and local optimum. The inertial weight had

a great influence on the WOA algorithm. Generally speak-
ing, the WOA algorithm was to introduce the inertial
weight, which decreased linearly with the increase of the
number of iterations. This method satisfied that the algo-
rithm required a large inertial weight in the early iteration
but a small weight in the later period. However, if the global
optimal value appeared in the early iteration of the algo-
rithm and the inertial weight could not be efficiently and
quickly reduced, then it might affect the tracking speed
and accuracy of the algorithm; if it only depended on the
inertial weight, of which the number of iterations was line-
arly decreasing, then it was difficult to effectively jump out
of the local optimum for the local convergence of the algo-
rithm. In order to make the inertial weight effectively
adjusted, an adaptive inertial weight was proposed, which
not only could depend on the change of the iteration num-
ber but also needs to consider the influence of the concentra-
tion of humpback whales, so as to achieve the purpose of
improving the convergence speed and the optimal solution
accuracy.

In the adaptive WOA algorithm, an iteration number
factor λ and a humpback whale clustering factor γ are intro-
duced. λ indicates the relationship between the current iter-
ation and the total number of iterations. The formula for
calculating the iteration factor is as follows:

λ =
ffi
exp t/Qð ÞK	
q

, ð17Þ

where t indicates the number of current iterations, Q is
the maximum number of iterations, and K is a constant
greater than 1. Obviously, the curve of this iterative factor
is a decreasing function related to t, and a larger weight
can be obtained in the early iteration of the algorithm but
a smaller weight in the later iteration. However, when the
iterative period reaches the optimal value of the problem to
be optimized, the inertial weight cannot be effectively
reduced. In this paper, γ is used to adjust the aggregation
degree of humpback whales, and the fitness function is used
to represent the value of γ. Although the average cost of the
IWC algorithm is lower than the other three algorithms,
overall, the difference between the four algorithms is very
small. When γ is relatively larger, it means that a large iner-
tial weight is needed. On the contrary, it means that a
smaller weight is needed. Therefore, the γ calculation for-
mula is as follows:

f avg =
∑N

k=1 f Pkð Þ
N

, ð18Þ

E = 1
N − 1〠

N

k=1
f Pkð Þ − f avg

h i2
, ð19Þ

γ = sin art tan Eð Þ: ð20Þ
In (18)–(20), f avg is the average value of the adaptive

value, f ðPkÞ indicates the adaptive value of the humpback
whale k, E is the variance of the adaptive function value,
and N is the total number of humpback whales.

4 Wireless Communications and Mobile Computing

Therefore, in the adaptive adjustment process of inertial
weight in the WOA algorithm, it should be fully considered
for the influence of iteration factor λ and humpback whale
clustering γ on inertial weight, so that the whale group can
quickly converge to the global optimal position by adjusting
the inertial weight with λ and γ to improve the accuracy of
the algorithm. So, the adaptive weight formula is as follows:

w =wmin + wmax −wminð Þ × λ × γ, ð21Þ

where wmax and wmin indicate maximum and minimum
values of the adaptive weights, respectively. In this disserta-
tion, wmax was selected as 0.9 and wmin as 0.2. Therefore, for-
mula (17) in the whale optimization algorithm is improved
to obtain the following formula:

X
!

t + 1ð Þ =w ×D′
!

× elb × cos 2πlð Þ +X ∗�!
tð Þ: ð22Þ

4.2. Add Operator and Delete Operator. After each iteration
of IWC, there is a lack of screening of individuals, which
affects the effect of the next individual iteration, thus affect-
ing the performance of the algorithm as a whole. Therefore,
this paper uses the addition and deletion of operators to
update the individuals after each iteration, so as to select
individuals with better quality. This paper uses the trigger
rules in literature [22] for the use of the operator. The rules
are as follows.

Rule 1: if the optimal individual is continuously updated
in the generation 2GP, and ps > PSmin, then the delete oper-
ator is executed to delete ndec individuals;

Rule 2: if the optimal individual is not continuously
updated in the generation GP, and ps = PSmax, then the
delete operator is executed to delete ndec individuals;

Rule 3: if the optimal individual is not continuously
updated in the generation GP, and ps < PSmax, then the
increase operator is executed to add ndec individuals

where PSmin is the initial clustering scale, PSmax is the
largest clustering scale, and GP is the growth cycle.

4.2.1. Design of Increased Operator. By adding operators to
increase new individuals in the clustering, new information
about current optimal individuals can be shared so as to
avoid excessive greed and thus reduce the diversity of the
clustering as follows:

(1) Determine the number of individuals to increase:

ninc = ps × PSmax − psð Þ2 × PS−2max, ð23Þ

where ps indicates the individuals of current clustering.

(2) Generation of parent individual set: the current clus-
tering is divided into ninc classes according to Algo-
rithm 1, and the optimal individuals of all groups
are selected to form an S1 set.

According to Algorithm 2, generate ½ninc/2� individuals
to form S2.

Select the value R between 0 and 1: Ud = c1 × xmax,
Ld = c2 × xmin

Δd Rð Þ =
Ud − Ldð Þ 2R2 + Ld

Ud − Ld

� �
, 0 < R < 0:5,

Ud − Ldð Þ 1 − 2 R − 1ð Þ2 + Ld
Ud − Ld

� �
, 0:5 ≤ R ≤ 1,

8>>><
>>>:

ð24Þ

where x = xbest + ΔdðRÞ, in which xbest is the optimal
individual in the current cluster; ninc − ½ninc/2� individuals
are generated to make up S3.

We generate the parent individual set S = S1 ∪ S2 ∪ S3.
(3) Generation of new individuals: randomly selected two

individuals x1 and x2 from S according to the following
method

xnew = α0:5x1 + 1 − αð Þx2: ð25Þ

Step 1: generate a reference point R within the search range;
Step 2: among the current clustering individuals P, select the point X ′ closest to R;
Step 3: in P \ fX ′g, find out the points closest to M − 1 and X ′ to form a subcluster;
Step 4: delete M individuals in P;
Step 5: repeat step 2–step 4 until the cluster has been divided into Np \M classes.

Algorithm 1: Establishment of the S1 set.

Step 1: initialization: generate individual points n and the search area ½xmin, xmax�;
Step 2: generate initial points (r1, r2,⋯rNd), ri = 2 cos ð2πi/pÞ, 1 ≤ i ≤Nd , and p is a minimum prime number meeting ðp − 3Þ/2 ≥Nd ;
Step 3: generate n points: xk′ = ðfk ⋅ r1g, fk ⋅ r2g,⋯fk ⋅ rNd

gÞ, k = 1,⋯, n; f⋅g indicates the fractional part.

Step 4: map the spawn point to the search domain xk = xmin + xkðxmax − xminÞ.

Algorithm 2: Establishment of the S2 set.

5Wireless Communications and Mobile Computing

Therefore, according to the above description, the indi-
vidual set S1 was generated by Algorithm 1 in this disserta-
tion, which avoided the excessive greed caused by directly
selecting the ninc individuals with the highest fitness and
accordingly protected the diversity of the cluster. Then, the
individual set S2 generated by Algorithm 2 could be more

evenly distributed in the search area than the individuals
randomly generated by obeying the uniform part, so that
the areas not randomly developed could be better searched.
The individual set S3 focused on learning of the optimal
individual. By adding new individuals around the optimal
one, the accuracy of the current optimal solution could be

Begin

Pass the position of the individual
whale to each cloud computing task

Set the algorithm parameters and use
the cloud computing scheduling
function value as the individual

fitness value of the whale

Calculate the fitness value of each
individual whale, and record the
optimal individual and location

Determine
whether the algorithm

is over

Output the optimal solution,
that is, the optimal task

scheduling plan

Update A and C according to
formulas (11) and (12)

Generate a random number p
between (0, 1)

Update individual
position according

to formula (13)

Update individual
position according

to formula (22)

Update individual
position according

to formula (10)

End

N

N Y

Y

Y

N

Calculating individuals to
add or delete judgment

conditions

P < 0.5

|A| < 1

Figure 1: Algorithm flowchart.

6 Wireless Communications and Mobile Computing

improved and the effectiveness of the algorithm could be
protected. Therefore, by increasing the operator, the diver-
sity of the cluster could be improved and the overall devel-
opment capability of the algorithm was enhanced.

4.3. Design of Delete Operator. When the cluster is evolving,
some individuals may be redundant inevitably. In order to
further improve the efficiency of the algorithm, the delete
factor should be designed to delete some redundant individ-
uals. The design steps are as follows:

(1) Determine the number of individuals to be deleted

ninc = ps2 × PSmax − psð Þ × PS−2max: ð26Þ

(2) Divide the cluster into ndec classes according to Algo-
rithm 1, and delete the worst individuals in each
class. In this way, the deleted individuals are evenly
distributed in the cluster, which is beneficial to pre-
serve the diversity of the cluster

Therefore, when the cluster has not fully evolved during
the evolution process and its size reaches the upper limit, it
indicates that the cluster may fall into the local optimum,
and if the size reaches the upper limit, it is impossible to
add new individuals to improve the diversity. Then, the
delete operator should be performed to remove the ndec indi-
viduals with the least fitness and reserve a space for new
individuals produced.

4.4. Algorithm Flow. The algorithm flow is shown in
Figure 1.

5. Algorithm Complexity Analysis

Time complexity refers to the computational workload
required in the execution of the algorithm, which mainly
depends on the number of repeated executions of the prob-
lem. In the basic whale optimization algorithm, the time
complexity is mainly influenced by the population size N ,
the number of iterations T , and the search dimension D,
and the time complexity of the basic WOA is OðN ∗ T ∗D
Þ. On the basis of the WOA, the complexity of the IWOA
proposed in this paper has been increased as follows. The
improved inertial weight to improve local search ability the
complexity of OðTÞ.The addition operators and deletion
operators increase the complexity of OðT ∗DÞ. Therefore,
the total complexity of the IWOA is OðN ∗ T ∗DÞ +OðTÞ
+OðT ∗DÞ. The overall time complexity is higher than that
of the WOA.

6. Experimental Simulation

In order to further verify the task scheduling effect of the
algorithm in cloud computing, the algorithm IWC is com-
pared with ACO, PSO, and WOA algorithms. The parame-
ters required by the algorithm are shown in Table 1. Select

CPU as Core i3, memory is 4G DDR3, hard disk capacity
is 1000G, operating system is Windows 7, and software is
MATLAB 2012. The experiment is divided into small-scale
tasks and large-scale task cloud computing tasks. The com-
parison indicators are cost value, time value, and memory
load value. In order to explain the effect of better scheduling,
this paper sets the number of small-scale tasks to [0, 1000]
and sets the number of large-scale tasks to [1000, 10000].

In order to further illustrate the efficiency of the algo-
rithm in cloud computing task scheduling, the ant colony
algorithm (ACO), Particle Swarm Optimization (PSO) algo-
rithm, and whale optimization algorithm(WOA) were
selected from the classical algorithms and compared with
the algorithm proposed herein for task scheduling in cloud
computing. Then, the cloud computing environment was
simulated on the CloudSim simulation platform. The main
parameters required by the algorithm here are shown in
Table 2. Combined with the characteristics of the tasks in

Table 2: Relevant parameters of comparison algorithm.

Algorithm Parameter Value Description

ACO

τ 0.0005 Pheromones

ρi 0.01 Pheromone coefficient

p 0.5 Path selection probability

w 0.5 Inertial weight

PSO
c1 0.5 Learning factor of particle swarm

c2 0.5 Learning factor of particle swarm

WOA

F 0.5 Follower number

rand 0.5 Random number

α 0.5 Random weight

IWC

wmax 0.9 Maximum weight

wmin 0.2 Minimum weight

K 5 Control number of clustering

L 1000 IWOA parameter

PSmax 10 Upper limit of clustering

PSmin 1 Lower limit of clustering

Table 3: Test functions.

No. Function name Test function

F1 Sphere f xð Þ =〠n

i=1x
2
i

F2 Schwefel2.22 f xð Þ =〠n

i=1 ∣ xi ∣ +
Yn

i=1
∣xi∣

F3 Schwefel1.2 f xð Þ =〠n

i=1 〠i

j=1xj
 �

F4 Schewfel2.21 f xð Þ =max abs xið Þð Þ
F5 Rosenbrock f xð Þ =〠n−1

i=1 100 xi+1 − x2i
� �2 + xi − 1ð Þ2

h i

F6 Step f xð Þ =〠n

i=1 xi + 0:5½ �ð Þ2

F7 Rastrigin f xð Þ =〠n

i=1 x2i − 10 cos 2πxið Þ + 10
� �

7Wireless Communications and Mobile Computing

cloud computing, the tasks were divided into small-scale
tasks and large-scale tasks, which were compared from time
and cost in the QoS indicators, respectively.

(1) Time comparison. In this paper, 7 test functions from
CEC2017 (shown in Table 3) are selected to evaluate
the performance of the proposed algorithm. These

Table 4: Time comparison of 4 algorithms in test functions.

Algorithm Dimension F1 F2 F3 F4 F5 F6 F7

ACO

2 0.084 0.086 0.701 0.073 0.246 0.072 0.098

5 0.08 0.1 1.666 0.081 0.441 0.084 0.134

10 0.102 0.121 3.717 0.102 0.853 0.092 0.199

30 0.155 0.182 11.891 0.146 2.219 0.153 0.507

50 0.221 0.257 22.119 0.228 2.802 0.219 0.683

100 0.337 0.397 58.007 0.316 4.189 0.332 1.064

PSO

2 0.046 0.045 0.080 0.041 0.048 0.033 0.043

5 0.095 0.112 0.315 0.093 0.181 0.092 0.114

10 0.186 0.223 0.900 0.188 0.423 0.191 0.261

30 0.595 0.706 6.673 0.602 2.121 0.601 1.201

50 1.054 1.250 17.800 1.054 4.981 1.071 2.712

100 2.463 2.942 76.739 2.473 19.647 2.502 8.952

WOA

2 0.025 0.018 0.0351 0.014 0.017 0.013 0.017

5 0.034 0.041 0.133 0.031 0.072 0.032 0.042

10 0.081 0.092 0.440 0.076 0.189 0.082 0.116

30 0.433 0.478 3.510 0.428 1.159 0.431 0.783

50 1.130 1.191 9.859 1.101 3.124 1.161 2.117

100 4.238 4.461 41.151 4.590 12.967 4.481 8.720

IWC

2 0.034 0.021 0.041 0.016 0.027 0.012 0.012

5 0.033 0.038 0.143 0.031 0.074 0.028 0.029

10 0.074 0.176 0.436 0.075 0.192 0.073 0.084

30 0.451 0.502 3.713 0.434 1.183 0.432 0.481

50 1.176 1.312 10.618 1.112 3.067 1.115 1.263

100 4.211 4.516 41.094 4.263 12.172 4.236 4.741

0 20 40 60 80 100 120 140 160 180 200
0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

Ec
on

m
ic

 co
st

Iteration times

ACO
WOA

PSO
IWC

Figure 2: Comparison of the four algorithms’ normalized cost.

8 Wireless Communications and Mobile Computing

test functions have both high dimensions (30, 50,
100) and low dimensions (2, 5, 10) that can be com-
pared with the ACO, PSO, WOA in all aspects at
time comparison (shown in Table 4).

Table 4 show a comparison of the usage times of the 4
algorithms in different dimensions under the 7 test func-
tions. It is found that the usage time of this algorithm is lon-
ger than those of ACO, PSO, and WOA in all dimensions.
This shows that the algorithm in this paper has good
performance.

(2) Cloud task scheduling normalization index.
Figures 2–4 show the comparison of the four algo-
rithms for normalized cost values, normalized time
values, and normalized load values. Figure 2 shows

the normalized cost of the four algorithms. The nor-
malized value of the ACO algorithm is much larger
than the other three algorithms, and the cost nor-
malized values between the PSO, WOA, and IWC
algorithms are not much different. When the num-
ber of tasks is between [0, 65], the normalized result
of the IWC algorithm is lower than the WOA algo-
rithm which is higher than the PSO algorithm, and
when the task exceeds 65, the normalized result of
the IWC algorithm is lower than the PSO and
WOA algorithms. From the overall effect, the cost
normalization values of the four algorithms tend to
be stable. Compared with the ACO algorithm, the
PSO algorithm, and the WOA algorithm, the IWC
algorithm is reduced by 31.32%, 13.48%, and
9.57%, respectively. This shows that the IWC

0 20 40 60 80 100 120 140 160 180 200
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44

Ti
m

e c
on

su
m

pt
io

n

Iteration times

ACO
WOA

PSO
IWC

Figure 3: Time value of the four algorithms’ normalized cost.

0 20 40 60 80 100 120 140 160 180 200
0.686

0.688

0.690

0.692

0.694

0.696

0.698

0.700

0.702

0.704

Lo
ad

Iteration times

ACO
WOA

PSO
IWC

Figure 4: Load value of the four algorithms’ normalization.

9Wireless Communications and Mobile Computing

algorithm can effectively reduce the task scheduling
cost under cloud computing. Figure 3 shows the nor-
malized time comparison of the four algorithms. The
normalized time result of the ACO algorithm is
much larger than the other three algorithms. When
the number of tasks is between [0, 65], the normali-
zation result of the IWC algorithm is lower than the
WOA algorithm which is higher than the PSO algo-
rithm. When the number of tasks exceeds 65, the
normalization result of the IWC algorithm is lower
than that of the PSO algorithm and the WOA algo-
rithm. From the overall effect, the normalization
time of the four algorithms tends to be stable. Com-
pared with the ACO algorithm, the PSO algorithm,
and the WOA algorithm, the IWC algorithm is
reduced by 18.29%, 4.88%, and 3.05%, respectively.

Figure 4 shows the normalized load values for the
four algorithms. After the number of tasks is greater
than 60, the ACO algorithm tends to a fixed value.
After the number of tasks is greater than 18, the
PSO algorithm tends to a fixed value. After the num-
ber of tasks is greater than 20, the algorithm curve
tends to a fixed value. The IWC algorithm tends to
a fixed value after the number of tasks is greater than
70. Overall, the load value of the IWC algorithm is
lower than 15.99%, 0.44%, and 0.14%, respectively,
compared to the ACO algorithm, PSO algorithm,
and WOA algorithm.

(3) Comparison of the number of small-scale tasks.
Figures 5–7 show the cost, time consumption, and
load comparison of the four algorithms for small-

100 200 300 400 500 600 700 800 900 1000
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ec
on

m
ic

 co
st

Number of Task

ACO
WOA

PSO
IWC

Figure 5: Comparison of the four algorithms’ cost in small-scaled task.

100 200 300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m

e c
on

su
m

pt
io

n(
M

S)

Number of Task

ACO
WOA

PSO
IWC

Figure 6: Time comparison of the four algorithms’ cost in small-scaled task.

10 Wireless Communications and Mobile Computing

scale tasks. The cost consumption of the four algo-
rithms is illustrated in Figure 5. The curves of four
algorithms are gradually increasing with the increase
in the number of tasks, but the curve of the IWC
algorithm is relatively flat, although the average cost
is numerically lower than the other three algorithms,
but the overall difference between the four algo-
rithms is small. Figure 6 shows the completion time
of the four algorithms. It is found from the figure
that as the number of tasks increases, the time con-
sumption of the four algorithms becomes larger,
but the overall four algorithms are not much differ-
ent. However, the IWC algorithm has certain advan-
tages in terms of time. Figure 7 shows the
comparison of the load values of the four algorithms.

From the curve in the figure, the load value curves of
the four algorithms are basically consistent. This
shows that the four algorithms have similar effects
on the load.

(4) Comparison of the number of large-scaled tasks.
Figures 8–10 show the cost, time consumption, and
load comparison of the four algorithms for large-
scale tasks. Figure 8 shows the cost of the four algo-
rithms. Along with the increasing number of tasks,
the curves of the four algorithms are gradually
increasing, and the cost of ACO, PSO, and WOA
algorithms is not much different. The cost curve of
the IWC algorithm is obviously better than that of
the other three algorithms. IWC is reduced by
52.94%, 47.06%, and 45.88% compared with ACO,

100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ad

Number of Task

ACO
WOA

PSO
IWC

Figure 7: Load comparison of the four algorithms’ cost in small-scaled task.

3000 4000 5000 6000 7000 8000 9000 10000
0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ec
on

m
ic

 co
st

Number of Task

ACO
WOA

PSO
IWC

Figure 8: Cost comparison of four algorithms under large-scale tasks.

11Wireless Communications and Mobile Computing

PSO, and WOA, respectively, which shows that the
IWC algorithm can effectively reduce the task cost.
Figure 9 shows the completion time of the four
algorithms. It is found from the figure that as the
number of tasks increases, the time consumption
of the four algorithms becomes larger, and IWC
is better than ACO, PSO, and WOA. And the time
spent was reduced by 39.29%, 32.14%, and 30%,
respectively. This shows that there is a certain
advantage in terms of time completion. Figure 10
shows the comparison of the load values of the
four algorithms. From the figure, the load values
of the four algorithms will be slightly different with
the increasing number of tasks, but the overall dif-
ference is not large.

From the comparison of the above three experiments,
the IWC algorithm proposed in this paper has obvious
advantages in task cost and completion time and is more
suitable for task scheduling under cloud computing. How-
ever, the effect on the memory load value is not very obvi-
ous, which shows that the IWC algorithm has more room
for server memory optimization.

7. Conclusion

This article introduces a WOA-based task scheduling
method in cloud computing task scheduling, mainly to
improve the effect of task scheduling under cloud comput-
ing. In order to further improve the scheduling performance

3000 4000 5000 6000 7000 8000 9000 10000
4

6

8

10

12

14

16

18

20

Ti
m

e c
on

su
m

pt
io

n

Number of Task

ACO
WOA

PSO
IWC

Figure 9: Time comparison of four algorithms under large-scale tasks.

3000 4000 5000 6000 7000 8000 9000 10000
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Lo
ad

Number of Task

ACO
WOA

PSO
IWC

Figure 10: Load comparison of four algorithms under large-scale tasks.

12 Wireless Communications and Mobile Computing

based on the WOA algorithm, on the basis of the WOA
algorithm, two optimization strategies of the IWC algorithm
are proposed. The experimental results show that compared
with some commonly used metaheuristic algorithms, it can
be used in system load and system resource utilization. In
terms of cost, the efficiency of cloud computing systems is
greatly improved. In future work, in order to obtain better
convergence speed and accuracy in task scheduling, we will
consider proposing more advanced strategies to further
improve the balance between exploration and development
in the IWC method. At the same time, to reduce the sched-
uling cost and time of this method in the face of a large
number of virtual machine workloads, we will use some
more advanced features to extend the proposed performance
model and method. Our long-term goal is to develop a cloud
computing efficient scheduling system suitable for various
task workloads.

Data Availability

Regarding the data, you can directly Email to me.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[2] I. M. Ibrahim, “Task scheduling algorithms in cloud comput-
ing: a review,” Turkish Journal of Computer and Mathematics
Education, vol. 12, no. 4, pp. 1041–1053, 2021.

[3] M. Cusumano, “Cloud computing and SaaS as new computing
platforms,” Communications of the ACM, vol. 53, no. 4,
pp. 27–29, 2010.

[4] P. Kumar and A. Verma, “Scheduling using improved genetic
algorithm in cloud computing for independent tasks,” in Pro-
ceedings of the International Conference on Advances in Com-
puting, Communications and Informatics - ICACCI '12,
pp. 137–142, ACM New York, 2012.

[5] G. B. H. Bindu, K. Ramani, and C. S. Bindu, “Energy aware
multi objective genetic algorithm for task scheduling in cloud
computing,” International Journal of Internet Protocol Tech-
nology, vol. 11, no. 4, pp. 242–249, 2018.

[6] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, and
R. Rastogi, “Load balancing of nodes in cloud using ant colony
optimization,” in 2012 UKSim 14th international conference on
computer modelling and simulation, pp. 3–8, Cambridge, UK,
2012.

[7] A. A. A. Ari, I. Damakoa, C. Titouna, N. Labraoui, and
A. Gueroui, “Efficient and scalable ACO-based task scheduling
for green cloud computing environment,” in 2017 IEEE Inter-
national Conference on Smart Cloud (SmartCloud), pp. 66–71,
New York, NY, USA, 2017.

[8] N. Kumar and S. K. Sharma, “Inertia weight controlled PSO
for task scheduling in cloud computing,” in 2018 International
Conference on Computing, Power and Communication Tech-
nologies (GUCON), pp. 155–160, IEEE, Greater Noida, India,
2018.

[9] H. Saleh, H. Nashaat, W. Saber, and H. M. Harb, “IPSO task
scheduling algorithm for large scale data in cloud computing
environment,” IEEE Access, vol. 7, pp. 5412–5420, 2019.

[10] S. S. Kim, J. H. Byeon, H. Liu, A. Abraham, and S. McLoone,
“Optimal job scheduling in grid computing using efficient
binary artificial bee colony optimization,” Soft Computing,
vol. 17, no. 5, pp. 867–882, 2013.

[11] N. J. Kansal and I. Chana, “Artificial bee colony based energy-
aware resource utilization technique for cloud computing,”
Concurrency and Computation: Practice and Experience,
vol. 27, no. 5, pp. 1207–1225, 2015.

[12] P. Kaur and M. Shikha, “Resource provisioning and work flow
scheduling in clouds using augmented shuffled frog leaping
algorithm,” Journal of Parallel and Distributed Computing,
vol. 101, pp. 41–50, 2017.

[13] X. Chen and D. Long, “Task scheduling of cloud computing
using integrated particle swarm algorithm and ant colony
algorithm,” Cluster Computing, vol. 22, S2, pp. 2761–2769,
2019.

[14] M. S. Sanaj and P. M. J. Prathap, “An efficient approach to the
map-reduce framework and genetic algorithm based whale
optimization algorithm for task scheduling in cloud comput-
ing environment,” Materials Today: Proceedings, vol. 37,
pp. 3199–3208, 2021.

[15] W. Jing, C. Zhao, Q.Miao, H. Song, and G. Chen, “QoS-DPSO:
QoS-aware task scheduling for cloud computing system,”
Journal of Network and Systems Management, vol. 29,
no. 1, pp. 1–29, 2021.

[16] J. Yang, B. Jiang, Z. Lv, and K. K. R. Choo, “A task scheduling
algorithm considering game theory designed for energy man-
agement in cloud computing,” Future Generation Computer
Systems, vol. 105, pp. 985–992, 2020.

[17] Aanchal, S. Kumar, O. Kaiwartya, and A. H. Abdullah, “Green
computing for wireless sensor networks: optimization and
Huffman coding approach,” Peer-to-Peer Networking and
Applications, vol. 10, no. 3, pp. 592–609, 2017.

[18] R. S. Rathore, S. Sangwan, S. Mazumdar et al., “W-GUN: whale
optimization for energy and delay-centric green underwater
networks,” Sensors, vol. 20, no. 5, pp. 1377–1399, 2020.

[19] X. Chen, L. Cheng, C. Liu et al., “A WOA-based optimization
approach for task scheduling in cloud computing systems,”
IEEE Systems Journal, vol. 14, no. 3, pp. 3117–3128, 2020.

[20] S. Mirjalil and A. Lewis, “The whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[21] A. Alireza, “PSO with adaptive mutation and inertia weight
and its application in parameter estimation of dynamic sys-
tems,” Acta Automatica Sinica, vol. 37, no. 5, pp. 541–549,
2011.

[22] R. F. Wang, L. C. Jiao, F. Liu, and S. Y. Yang, “Nature compu-
tation with self-adaptive dynamic control strategy of popula-
tion size,” Journal of Software, vol. 23, no. 7, pp. 1760–1772,
2012.

13Wireless Communications and Mobile Computing

	Cloud Computing Task Scheduling Model Based on Improved Whale Optimization Algorithm
	1. Introduction
	2. Related Work
	3. Cloud Computing Task Scheduling Model
	3.1. Whale Optimization Algorithm
	3.2. Surrounding Prey
	3.3. Bubble Attack
	3.4. Food Searching Stage

	4. Task Scheduling in Cloud Computing Based on Improved Whale Optimization Algorithm
	4.1. Introduce Inertial Weight to Improve Local Search Ability
	4.2. Add Operator and Delete Operator
	4.2.1. Design of Increased Operator

	4.3. Design of Delete Operator
	4.4. Algorithm Flow

	5. Algorithm Complexity Analysis
	6. Experimental Simulation
	7. Conclusion
	Data Availability
	Conflicts of Interest

