
Research Article
Applying Deep Learning Technologies to Evaluate the Patent
Quality with the Collaborative Training

Xindong You ,1 Jiaqi Liu,1 Zhe Wang,1 Zhaonan Liu,1 Xueqiang Lv ,1

and Jung Yoon Kim 2

1Beijing Key Laboratory of Internet Culture Digital Dissemination, Beijing Information Science and Technology University,
Beijing, China
2Department of Game Media, College of Future Industry, Gachon University, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea

Correspondence should be addressed to Xueqiang Lv; icddtxyx@163.com and Jung Yoon Kim; kjyoon@gachon.ac.kr

Received 13 May 2021; Revised 20 August 2021; Accepted 14 September 2021; Published 21 October 2021

Academic Editor: Yu Yinyu

Copyright © 2021 Xindong You et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the country vigorously promotes the development of science and technology and tries to enhance independent innovation
capabilities, more and more attention is paid on the protection of technology ownership. In recent years, China has developed
rapidly in many scientific and technological fields, and the number of patent applications increased year by year. However,
various patent quality problems including immature patent technology and low patent authorization rate appear. The
indicators of patent quantification and quality evaluation are studied in this paper. First, we quantify the patent quality
evaluation indicators and combine the content of the patent text to build a patent evaluation model. US patents with patent
grade labels are used for training with multitask learning technology. Second, the evaluation model is transferred from the
English patents to the Chinese patents, in which the active learning technology and transfer learning technology are used to
minimize the work of manual labeling. Finally, a Chinese patent quality evaluation model based on collaborative training was
designed and implemented. Methods used in this experiment have notably improved the prediction effect of the model and
achieved a better migration effect. A large number of experimental results show that the Chinese patent quality evaluation
model has achieved good evaluation results. This research uses deep learning and natural language processing technology to
carry out research on patent quality evaluation models from different perspectives, to provide patent decision support for
related companies, and to point out research directions for research institutions and patent inventors.

1. Introduction

Since the 18th CPC National Congress, the cause of intel-
lectual property has entered a new era of vigorous devel-
opment driven by policies. Patent applications are
trending year by year. As of 2020, the State Intellectual
Property Office has authorized a total of 530,291 disclosed
invention patents, an increase of 18% over 2019. Accord-
ing to data published by the State Intellectual Property,
in 2020, 683,000 invention patent applications were dis-
covered; a total of 217,000 invention patents were autho-
rized. In order to implement the guiding ideology and
effectively promote my country’s transformation from a
country of intellectual property rights to a country of cre-

ativity, from the pursuit of quantity to the improvement of
quality, recently, the National Intellectual Property “Notice
on Further Strictly Regulating Judges’ Applicants for
Understanding” (Guo) Fabaozi 2021 No. 1 during the pro-
ject verbally promoted the improvement of patent quality,
strengthened quality orientation, and strengthened the
standardization and supervision of patent transactions.
How to quickly, automatically, fairly, press, openly, and
scientifically evaluate the quality and value of patents will
become a problem that needs to be resolved.

Patent and other intellectual property intangible assets
have become an important force in national development,
with the development of intellectual property-related tech-
nologies at home and abroad and the improvement of their
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status in the economic field. In recent years, the patent
pledge financing project has gradually taken shape, which
has provided a great boost to the growth of small and
medium-sized enterprises. In 2020, the total amount of
national patent and trademark pledge financing reached
218 billion yuan, an increase of 43.9% year on year. This
fully demonstrates that there is a huge demand for patent
value evaluation in China and the world, and it is increas-
ingly not negligible in the fields of science and society.
While strengthening innovation, my country should also
promote the transformation of scientific and technological
achievements. Therefore, in recent years, with the coun-
try’s high requirements on the speed and efficiency of
the transformation of the results of authorized national
invention patents, how to objectively and automatically
evaluate the value of massive Chinese patents has become
a hot research topic and a scientific problem that needs to
be solved urgently.

Many scholars have been exploring the construction of
models based on quantitative indicators and automatic qual-
ity assessment. However, there are still the following short-
comings in the evaluation of Chinese patent quality:

(1) The Chinese patent quality evaluation index system
is not sound enough and difficult to quantify: in cur-
rent research, on the one hand, most of the evalua-
tion indexes of patent quality are still at the
theoretical stage, which is far from practical applica-
tions; on the other hand, the system is not sound
more index dimensions should be considered.
Important factors affecting patent quality: the con-
tent of the patent text itself, the knowledge informa-
tion mined in the patent text, and the domain
knowledge information mined are not included in
the existing patent quality evaluation indicator
system

(2) The difficulty of quantification of the Chinese patent
quality evaluation index system and the lack of data
make it impossible to implement automatic evalua-
tion: there is no relevant research on the automatic
evaluation model of Chinese patent quality in China.
On the one hand, due to the aforementioned rea-
sons, most of the Chinese patent quality evaluation
indexes are still stuck at the theoretical level; it can-
not be quantified, and thus cannot support the auto-
matic evaluation of Chinese patents. On the other
hand, due to the lack of data on Chinese patent qual-
ity levels, it is impossible to construct a data-driven
automatic model of Chinese patent quality

In order to make the most of effective role of patent
quality assessment and identify high-quality patents, it is
urgent to adopt certain technical means to make this process
easier. Faced with the three common problems in the field of
patent quality evaluation, this article mainly uses data min-
ing and natural language processing technology to extract
indicators from a large number of patent information data
of different dimensions and uses deep learning methods to
predict patent quality. In addition, multitask learning

method is used to improve the accuracy of patent quality
evaluation and prediction. The constructed patent quality
evaluation model (PQE-MT) can automatically evaluate
the quality of patents with a high accuracy rate (83.9%), sav-
ing a lot of valuable manpower and material resources.
Regarding the lack of data labeling of Chinese patents, a
large number of US patents with patent quality grade are
used to construct basic training data. Therefore, a Chinese
patent evaluation method based on transfer learning and
active learning method is proposed in this paper. Then, the
model is divided into two feature spaces, Chinese and
English, and a network model is trained on these two fea-
tures, respectively, to form collaborative training. The results
of the evaluation show that the article method achieved a
good migratory effect, with micro-F1 reaching 74%.

2. Related Work

2.1. Related Work of Patent Quality Index Quantification. In
recent years, scholars have begun to summarize existing
indicators from different dimensions and propose a more
comprehensive evaluation system. Li et al. (2007) [1] sum-
marized the technology cycle, technical scope, scientific rel-
evance, and claims item number as for the professional
indicators. On the other hand, the number of patent applica-
tions, patents home race number amount, and patents sur-
vival time is summarized as a comprehensive index and
litigation. Through the above indicators, comparisons are
made in terms of time, difficulty, and cost. Jin et al. (2011)
[2] constructed a patent attribute network to optimize the
prediction effect of algorithms from the aspects of patent
content standardization, innovation, technology relevance,
market value, patent inventors, and patentees. Han and
Sohn (2015) [3] predicted the remaining effective time of
the patent by constructing the similarity feature between
the patent abstract and the claims and combining it with
14 other quantitative indicators. The article began to com-
bine the text features of patents with patent attributes to
make predictions. Yang et al. (2016) [4] broaden the patent
quality impact indicator choice from the patent field correla-
tion and life cycle stages. Leng and Zhai (2017) [5] con-
structed patent quality evaluation indicators, used the
analytic hierarchy process to obtain the importance of the
indicators to obtain the corresponding weight results, and
used the comprehensive fuzzy evaluation algorithm to eval-
uate the patents in the medical field. In this article, different
indicators are weighted to make them more targeted. Li
(2018) [6] quantified patent quality evaluation indicators
from the three dimensions of technology, law, and economy.
The technical dimension mainly uses dependence, novelty,
monopoly, and maturity; the economic dimension uses pat-
ent revenue and market evaluation, patent survival time, and
other indicators; the legal dimension refers to factors such as
patent legal status and litigation conditions. Finally, a com-
prehensive evaluation of the patent value is carried out in
three dimensions. The above article explained and elabo-
rated the patent quality impact indicators at the theoretical
level, taking into account indicators of different dimensions
and different levels, but some indicators are poor in

2 Wireless Communications and Mobile Computing



availability and difficult to express using algorithms. Meng
(2018) [7] conducted a comparative analysis of patent data,
combined with traditional patent quality evaluation
methods, and quantified patent evaluation indicators in
hierarchical levels, set up technical, economic, and legal
levels, and further subdivided them into 14 different levels.
At two levels, the weights of indicators at different levels
are calculated through rough sets, and the final evaluation
is performed through cloud models. The article summarizes
the advantages and disadvantages of different indicator sys-
tems and summarizes the indicators, but the data discretiza-
tion process and cloud model limit the generalization ability
of the method. In general, the abovementioned scholars have
put forward numerous patent quality evaluation indicators
at the theoretical and application levels, and the topic opti-
mizes and summarizes related indicators and further
includes multiple dimensions from time, quantity, technol-
ogy, law, inventor and agent, and text content. Quantify
indicators, compare, and select key indicators as input to
the patent quality evaluation model.

2.2. Related Work on Patent Quality Assessing. In terms of
patent quality evaluation models, scholars gradually began
to apply neural networks to patent quality evaluation. Chen
and Chang (2009) [8] extracted indicators from medical pat-
ents in the United States, trained deep learning network
models, and predicted the market value of patents. Trappey
et al. (2011) [9] used the principal component analysis algo-
rithm to obtain the impact factors of different indicators and
used them as the input parameters of the backpropagation
neural network model to judge the patent quality. As a pre-
liminary screening scheme, the proposed patent quality eval-
uation method can automatically and effectively evaluate the
quality of patents and save the time spent by domain experts
on research and development of high-value patents. Wang
(2012) [10] and others used indicators such as the actual
benefits of patents as input parameters of the algorithm to
construct a decision tree for prediction. First, use the ana-
lytic hierarchy process to get the value of the patent, then
use the decision tree to get the risk of the patent, and com-
bine the two to get the patent status. Zhao et al. (2013)
[11] extract numerical indicators such as the number of pat-
ent citations and use decision trees, SVM, and deep learning
methods to predict patent quality. Articles consider a variety
of impact indicators progress in different model experi-
ments; however, due to the use of only numeric attributes,
the experimental structure is greatly restricted. Wu et al.
(2016) [12] use the self-organizing mapping (SOM) method
to cluster the patents to be tested with related patents pub-
lished in the same field and perform nonlinear space trans-
formation through kernel principal component analysis
(KPCA), using SVM established a patent quality classifica-
tion model, and proposed the somo-kpca-svm model to pre-
dict patent quality. The classification method proposed in
the article can effectively display the analysis results, but
the correctness of the results lacks the reference to the actual
categories. Qiu et al. (2017) [13] use CART to extract evalu-
ation indicators, optimize input parameter items, reduce
model scale, and improve fitting effect. This method pro-

vides practical methods and theoretical support for the selec-
tion of patent indicators. The article uses classification
regression trees to solve the patent evaluation problem, but
the indicators used in the article are all basic patent attri-
butes, and many influencing factors have not been fully con-
sidered. The above three articles did not take into account
the textual content of the patent, so that the prediction
model lacks vital influencing factors. Lin (2018) [14] applied
neural networks to the quality evaluation research of patents
and proposed the DLPQE model. The model is composed of
two-part vector of the attribute representation structure
ANE composed of the patent citation network and the text
sequence feature represented by the convolutional neural
network connected with the attention mechanism. The arti-
cle proposes for the first time that the deep learning method
is used for patent document analysis, taking into account
different indicators and text content, but due to lack of the
deep quantification of patent indicators, the convolutional
neural network will lose the time series characteristics of
the text. The subject combines quantitative indicators with
text content and applies multitask learning to the patent
quality evaluation model for the first time.

2.3. Related Work on Transfer Learning and Active Learning.
Since data labeling is very time-consuming and labour-
intensive, high-quality labeling data is scarce. The learning
of transfer attracted increasing attention from the academy.
Banea et al. (2008) [15] proposed a method of learning to
transfer to a foreign language because of the numerous
English entry data in this document, and a corpus of English
data is used to generate the source domain data set of the
target language through automatic translation, which dem-
onstrates the feasibility of using automatic translation for
learning to transfer through languages. Pan and Yang
(2009) [16] propose transferring domains with sufficient
training data to domains with similar data distribution and
avoiding costly data annotation tasks via knowledge migra-
tion to greatly improve the learning effect and discuss trans-
fer learning and domain adaptation, sample selection, the
relationship between deviation, and other related machine
learning technologies. Xu and Yang (2011) [17] use transfer
learning and multitask learning to extract and transfer useful
knowledge from auxiliary domain data. Weiss et al. (2016)
[18] introduced the latest developments in the field of bio-
logical information and explained the information on learn-
ing and transfer solutions and discussed possible future
research work. Transfer learning solution has nothing to
do with the size of the data. Yosinski et al. (2017) [19] con-
ducted research on the transferability of deep neural net-
works. Perform finetune experiments layer by layer in
different layers to explore network transferability. Note that
adding an end-to-end to the deep migration network will
improve the effectiveness and overcome better data differ-
ences. Migration of the number of layers of the network
can speed up learning and network optimization, general
characteristics of the low-level network learning, and the
high-level network learning field feature.

In order to make the model conform to the data distribu-
tion characteristics of the target area, a small number of
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materials still need to be marked. Active learning can predict
the results and select samples according to the model, and it
is most helpful to improve the model. Thompson et al.
(1999) [20] use active learning to try to select the most useful
example as training data for transfer learning. Experimental
results show that skilled learning can significantly reduce the
number of samples labeled when the algorithm achieves the
same effect. Tong and Koller (2001) [21] use pool-based
active learning. The algorithm does not need a randomly
selected training group and can request samples for mark-
ing. The new algorithm of support vector machine is used
for active learning, which provides a theoretical basis for
the concept usage algorithm of space version. Experimental
results show that the use of the active learning method in
the article can significantly reduce the need for labeled sam-
ples. Active learning, literature reviews, and less labelled
training examples were introduced by Settles (2009) [22].
Discuss the query plan and analyze the experience and the-
oretical evidence of active learning. Li et al. (2016) [23] pro-
pose an active multigrade multilabel learning based on the
minimum SVM classification range to take the minimum
SVM classification distance as the confidence of the selected
example, effectively reduce the number of sample annota-
tions, and improve classification performance. Zhou et al.
(2017) [24] propose the impact of active and transfer learn-
ing, data expansion, fault selection, continuous information
extraction, and other methods on remote data and diagnosis.
According to Zhu and Bento (2017) [25], GAN is used for
active learning, and an object-oriented learning model
GAN and a learning algorithm for motion value samples
are given. Konyushkova (2017) [26] tried to transform active
learning into a regression problem and dealt with the over-
fitting of previous query schemes. The experimental results
show that the order reduction of data points is feasible in
multivariable finite element analysis.

2.4. Related Work on Collaborative Training. After the trans-
fer learning and active learning are used to promote the
model to adapt to the feature distribution of the new data
set, since the patent data has two views in Chinese and
English, the experiment is carried out collaborative training
in the remaining unlabeled sample set, making full use of
the different learning features of the model on the two views.
Features enhance the overall effect of the model. Blum and
Mitchell (1998) [27] first tried collaborative training on
web content prediction, learning from different views
according to the model, using feature differences in different
views to predict the labeled samples, and selecting high-
confidence data as algorithms in other views training data.
Wan (2009) [28], according to the feature difference between
Chinese and English bilinguals, combined English data sets
with a large number of emotional labels and unlabeled Chi-
nese data, using machine translation technology to translate
each other, training models for the two languages separately,
and predicting based on the model the probability of each
category of the sample is obtained, and the sample with high
confidence is obtained as the training data of other models
to achieve the purpose of bilingual collaborative training.
Guo et al. (2012) [29] first proposed the use of graph-

based confidence estimation semisupervised collaborative
training algorithm, which improved the speed of collabora-
tive training in obtaining the data to be labeled to a certain
extent. According to the information of the sample itself,
the probability of the category of the unlabeled sample is cal-
culated, and the confidence of the unlabeled data is esti-
mated by a multiclassifier, which improves the effect of the
collaborative classification algorithm, and proves the effec-
tiveness of the algorithm on the UCI data set. Qiao et al.
(2018) [30] use a collaborative training method on the neu-
ral network model to divide the sample features into multi-
ple different views and fit the corresponding network
parameters in different views. Experiments found that differ-
ent models learned different characteristics of the data. The
characteristics learned by different models are generally
complementary. Gong and Lv (2019) [31] jointly use active
learning, density peak clustering, and collaborative training
to increase the amount of information in the data to be
labeled and to a certain extent alleviate the mislabeling of
fuzzy samples. Huang and Huang (2019) [32] use collabora-
tive training for machine translation technology to improve
the translation effect of the model. The experimental com-
parison shows that after the use of collaborative training,
the results of machine translation are more accurate. When
there are fewer labeled samples, there are still better results
and translation quality. This topic makes full use of the
unique Chinese-English bilingual features of the research
and applies collaborative training to the Chinese patent
quality evaluation model.

3. Patent Quality Evaluation Model

This paper uses transfer learning and active learning
methods based on the PQE-MT model built with English
patent data, further proposes a cross-language transfer of
patent quality evaluation model based on active learning
data expansion, and transfers the original model to Chinese
patents. Finally, cooperative training is carried out. We will
introduce the model from these three parts.

3.1. Patent Quality Evaluation Model Based on Multitask
Learning. We first proposed the PQE-MT_USA model to
predict the quality of US patents and selected the best-
performing model structure through the comparison of dif-
ferent algorithms to facilitate the migration to Chinese pat-
ents in subsequent research. The related technologies
involved in this part of the content are as follows, among
which Word2vec and Bert are used for vector representation
of text content to extract more semantic information; LSTM
is used for learning the long-term dependence of the
sequence, and Bi-LSTM also considers the information of
the article context; CRF can improve the effect of named
entity recognition based on the dependence of label results;
multitask learning combines named entity recognition tasks
with patent quality level prediction tasks to speed up model
training and improve model fitting effects; TextCNN is used
as comparison experiment of the effect of product neural
network and recurrent neural network in this research.
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3.1.1. Construction and Quantification of Patent Quality
Evaluation Indicators. Due to the lack of systematic and fair
evaluation grades and evaluation methods for Chinese pat-
ents for a long time, there is no clear quality grade. Grading
the quality of patents requires professional knowledge and
analysis of a large number of related patents, making it dif-
ficult to obtain the labels of Chinese patent data, and there
is no reference scale for the evaluation process. Through
research, it is found that the US patent has a patent quality
grade, and the patent quality grade is recognized by scholars.
Therefore, the experiment selected US patents in the field of
new energy as the research object.

The experiment analyzes the information contained in the
patent and specifically removes redundant information (such
as patent application number: a numerical combination of
other patent information) and overly complex information
(such as patent specification: the text of the detailed descrip-
tion of the patent). Part, the content is tens of thousands of
words, most of the content is the detailed introduction of the
patent, which contains less effective information, and most
of the main information exists in the abstract and claims of
the patent and image information (patent drawing: prototype
of the patent). As shown in the figure, this experiment mainly
conducts research in the direction of natural language process-
ing, focusing on patented text and numerical data. Part of the
image information will not be considered for the time being.

The original attribute information obtained after screen-
ing is shown in Table 1 based on the attributes of these exist-
ing patents, and the experiment will quantify patent quality
evaluation indicators in multiple dimensions and directions.

The experiment carried out in-depth processing of the
above data items, mainly quantified and combined the fol-
lowing dimensions, including time dimension, quantity
dimension, technical dimension, legal dimension, inventor,
and agent dimension, and obtained related to patent quality
quantitative indicators. And Figure 1 shows the division of
some related attributes in different dimensions.

(1) Time Dimension. The experiment will process the
various time attributes of the patent and convert it
into computable numerical data. In the end, indica-
tors such as the time from patent application to pub-
lication, the time from application to approval, the
time from publication to approval, the survival time,
and the remaining time to termination are obtained

(2) Quantity Dimension. The change in the number of
patent applications in a certain field shows the devel-
opment trend of patents to a large extent. The
increase in the number of patent applications means
good prospects, and the decline in the number of
patent applications indicates that this field is gradu-
ally being replaced

(3) Technical Dimension. CPC is the joint patent classi-
fication, and IPC is the international patent classifi-
cation. Both have different partitions for different
parts in detail, but the overall structure is similar.
Each level is a more detailed classification of the pre-
vious level

(4) Legal Dimension. Different legal status indicates the
degree of importance the assignee of the patent
attaches to the patent, including survival, revocation,
withdrawal, reissue, and termination. Since the pat-
ent right was granted, the assignee has to pay a cer-
tain fee every year to maintain the validity of the
patent, and the fee increases year by year. When
the patent cannot satisfy the interests of the assignee,
the assignee will stop paying the fees, resulting in the
cancellation of the patent

(5) The Dimensions of Inventor and Assignee. A good
inventor and assignee means a good patent. We get
the sum of the number of patents invented by all
inventors in the field; the average number of inven-
tion patents per inventor in the field, etc. In addition
to the same indicators as the inventor, the patent
assignee also extracts whether the assignees of previ-
ous and future generations have changed, the type of
organization, and so on. The assignee involves differ-
ent organizations, including companies, research
institutes, universities, colleges, foundations, and
individuals

(6) Combined Indicators. We combine the feature of dif-
ferent dimensions to get combination indexes. Such
as the proportion of patent survival, withdrawal
and expiration of inventors, the number of patents
in different technical fields and different years, and
so on. The following is a list of the combination
indexes of the assignment. In a specific patent agent
and a specific field, Num_Application means the
experimental definition: the number of patents
applied; Num_Approval means the number of pat-
ent approved, Q_2 means the number of IPC and
CPC, Q_3 means the size of patent family, and Q_
4 means the average patent quotation rate. There
are the following quantitative indexes.

Research Focusi =
Num Applicationfiled

∑filedn
i=filed1Num Applicationi

, ð1Þ

Q1 =
Num Approval
Num Application

, ð2Þ

Strength = NumApply ∗ 〠
4

i=1
Qi, ð3Þ

Technical Portioni =
Strengthinventor

∑inventorn
i=inventor1Strengthi

: ð4Þ

In addition, the experiment adds long text description
type attributes. On the one hand, the experiment takes
the publication time of the patent as the node, uses the
TF-IDF algorithm to calculate the text similarity of other
patents before and after the node, and selects the top 50
with the highest similarity as the result of the similarity
before and after the publication of the patent. The smaller
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the similarity result before the node, the more novel the
patent; the greater the similarity result after the publica-
tion time node is, it indicates that the patent is ground-
breaking and has been used for reference by other
related patents, as well as the number of technical ele-
ments (field terms) in the main claim and the positive
words (can, enable, so as to, etc.). On the other hand,
the patent name, patent abstract, and patent claims are
input into the sequence model to participate in the final
prediction.

The PQE-MT_USA model mainly involves two parts: a
quantitative index model and a sequence model. The
sequence model uses a multitask learning structure. Next,
we will introduce the model from these two parts.

3.1.2. Patent Quality Evaluation Model Based on
Quantitative Indicators. The patent quality evaluation model
mainly includes input, index quantification, fully connected
layer, softmax layer, and output. Its structure is shown in
Figure 2.

Table 1: Filtered patent raw data information.

Attributes Value

Patent title Automated electric vehicle charging system and method

Quality grade 6

Legal status Alive

Country of origin US

Agent Interim Design Inc.

Inventor Haddad; Joseph C.; Elizabethtown; Lysak; Daniel B.; state college

Application date 2016.01.29

Public day 2016.05.26

Approval date 2018.10.23

Expiry date 2032.04.25

IPC H02J-007/00; B60L-011/18

CPC B60L11/1835; B60L53/14; B60L53/35; Y04S30/12; Y04S30/14

International patent
documentation center
Number of families

6

Number of ordinary families 5

Cited by other patents 3

Number of cited patents 4

Number of references 0

Cited by other documents 0

Abstract
A system and method for charging an electric vehicle include identifying vehicle information

corresponding…

Claims
A system for charging an electric vehicle, comprising: a camera configured to acquire an electronic

image of the electric vehicle…

Time dimension

Agent
.
.
.

.

.

.

Combined Indicators

Construction and
quantification

of patent quality
evaluation indicator

Quantity
dimension

Technical
dimension

Legal
dimension

The dimensions of
inventor and

assignee
Longtext

description
type

Legal
statusIPC In-

ventor

Application date,
public day,

approval date,
expiry date

Cited by other patents,
number of cited patents,

number of references
cited by other

documents

CPC

Figure 1: Construction and quantification of patent quality evaluation indicator.
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First, we enter the initial patent attributes, including
legal status and number of citations. According to relevant
rules, 15 initial indicators and 117 quantitative indicators
in different dimensions are constructed, which together con-
stitute 132 indicators. We combine the patent text with 132
indicators into a fully connected layer composed of 512-128-
32 nodes. Finally, multiple classifications are performed
through the softmax layer to predict the patent quality level.
Patent quality levels are divided into eight categories. Take
the “Dynamic power supply management system for electric
vehicle” patent as an example, its legal status is “Alive,” the
number of citations is “4,” and other patent attributes and
132 evaluation indicators are combined to finally get its pat-
ent quality grade prediction result. The result is 8.

3.1.3. Multitask Learning Model

(1) Task 1: Text Classification Model. This task preprocesses
the title, abstract, and claims of the patent and predicts the
quality of the patent through the deep learning model
described below. The detailed structure of the text classifica-
tion model is as follows.

The model takes the three parts of patent title, abstract,
and claims as input and first performs text processing on
it, including splicing the input items, removing stop words,
removing special symbols, converting to lowercase, and con-
verting to word roots. The experiment uses Word2vec and
Bert as the initial vector representation of words. The proc-
essed data is fine-tuned in Bert to obtain the word vector of a
specific field as a word embedding. Next, through the Bi-
LSTM layer, fusing the attention mechanism, LSTM can

learn long-term dependencies, and after bidirectional splic-
ing, it can effectively use the context information of the text
to dig out more hidden features.

The Bi-LSTM in this model is equivalent to inputting the
sequence into a forward LSTM and a back-end LSTM,
respectively, and the output result is used as the result. The
structure of LSTM is shown in Figure 3. Taking the title part
of the patent text “Test system for battery management sys-
tem” as an example, the basic unit of LSTM is used to
encode the text. First, input the word vector “Test” and pass
through the forget gate, memory gate, and output gate. The
calculation generates a new hidden state ht (test) corre-
sponding to it. The calculation process of the three gates is
as follows:

f t = σg Wf xt +U f ht−1 + bf
� �

, ð5Þ

it = σg Wixt +Uiht−1 + bið Þ, ð6Þ

ot = σg Woxt +Uoht−1 + boð Þ, ð7Þ

ct = f t ∘ ct−1 + itσc Wcxt +Ucht−1 + bcð Þ, ð8Þ

ht = ot ∘ σh ctð Þ: ð9Þ
Among them, xt is the input of LSTM, f t is the forget

gate, it is the input gate, ot is the output gate, ht is the hidden
gate, ct is the cell state,W, U , and b are the matrices in train-
ing and the network learning calculation element value, and
σ is the sigmoid function, which ensures that the output
result is between 0-1, which is used to control the proportion
of information passing.

The second word vector “system” and the hidden state
ht−1 ðtestÞ output at the previous moment are used as new
inputs. After three gate calculations again, the updated hid-
den state ht ðsystemÞ, ht ðsystemÞ is obtained. Contains informa-
tion about the characters entered in the preceding text.
Repeat the above coding process until the end of the patent
text.

When the input sequence is very long, it is difficult for
the model to learn a reasonable vector representation. The
attention mechanism [33] retains the intermediate results
of the LSTM encoder on the input sequence, selectively
learns the input and associates it with the output sequence,
so that the model focuses on the words that are considered
more important in the input sequence. Then, through a fully
connected layer network composed of 512, 128, and 32
nodes, the softmax layer is used for multiclassification to
predict and output the patent quality level. The specific
structure is shown in Figure 4.

(2) Task 2 (NER Task): Sequence Labeling Model. This task is
used to identify the terms in the patent text. The first few
layers of the model are the same as task 1. Here, we focus
on the CRF layer and the output layer.

In the NER task, the decoding layer usually uses the con-
ditional random field (CRF) model to perform label
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inference on the entire character sequence in turn. The
decoding process is as follows.

For an input sequence, the input vector is obtained after
embedding to the LSTM, and the score on the label corre-
sponding to each word is obtained after the linear layer is
applied. According to the label transition matrix T , we can
get the score of the label at the previous moment as yi and
the label at the next moment as yi+1, namely, T½yi, yi+1�.
For a sequence x, if the length of the sequence x is n and
there are m possible labels, then there are a total of mn pos-
sible labeling results. We can use the LSTM + CRF model to

calculate the score (y) of each possible annotation result, and
then use softmax to normalize to find the probability of a
certain annotation result, and choose the one with the largest
probability as the annotation result. The specific calculation
process is as follows:

ϕt y′, y ∣ x
� �

= exp wT
y ′ ,yht + by ′ ,y

� �
, ð10Þ

p y ∣ x ; θð Þ =
Qn

t=1ϕt yt−1, yt ∣ xð Þ
∑y ′∈Y xð Þ

Qn
t=1ϕt yt−1′ , yt′ ∣ x

� � : ð11Þ

Among them, wðy’,yÞ and bðy’,yÞ are the training parame-

ters of the label pair ðy’, yÞ, ht represents the output of the
coding layer at time t, θ represents the model parameters,
Y ðxÞ represents all possible tag sequences corresponding to
the character sequence x. In the tag reasoning process,
CRF needs to find the tag sequence y^∗ that maximizes
the conditional probability given the input sequence x:

y∗ = argmaxy∈Y xð Þ
p y ∣ x ; θð Þ: ð12Þ

The search problem of the tag sequence y ∗ can be solved
efficiently using the Viterbi algorithm.

The experiment defines the label space as fB, I, E,Og. “B
” indicates that the element is the beginning of a domain
term, “I” indicates that the element is the middle part of a
domain term, “E” indicates that the element is the end of a
domain term, and “O” indicates that this element does not
belong to the domain term part. The CRF layer can deter-
mine the domain terms in the sequence data according to
the label sequence output by the model. In the final output,
each element is marked as a label in fB, I, E,Og. Take the
patent text of “Test system for battery management system”
as an example, the sequence length is 6, there are four possi-
ble tags for BIEO, and a total of 64 possible tagging results,
including y = ðOOOBIEÞ, y = ðBEOOBIÞ,⋯, after the calcu-
lation (OOBIE) marked the highest score, that is to identify
“battery management system” as a patent term. The specific
structure of the model is shown in Figure 5.

The experiment considers that the two tasks overlap
greatly, and the domain terms in the text sequence are the
part that has a greater impact on the patent level. The
sequence labeling task backpropagates to update the param-
eters, which is conducive to the model to obtain a better
sequence representation and pay more attention to the
learning of domain terms. The two tasks together form a
multitask learning structure, which promotes each other
and simplifies the overall task complexity and prediction
time. Take the patent text of “Automated electric vehicle”
as an example, its specific structure is shown in Figure 6.

This figure combines the previous two models. The left
side is the sequence model part of multitask learning, and
the right side is the quantitative index model part. The
PQE_MT_USA model is obtained after the two parts of vec-
tors are spliced to predict the final result and used for subse-
quent migration training of Chinese patents.

tanh
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Figure 3: LSTM structure diagram.
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3.2. Patent Quality Evaluation Model Based on Transfer
Learning. If the model PQE_MT_USA trained by the US
patent is directly applied to the Chinese patent, the predicted
patent rating result will have a large error. The reason is that
if you use traditional machine learning methods, you need
the data to obey the same distribution and sufficient labeled
data. On the issue of labeling data, the process of labeling
data consumes a lot of manpower and time costs; on the
issue of data distribution, on the one hand, there are cultural
differences in the writing process of Chinese and English
patents. On the other hand, there are differences in the dis-
tribution of various attributes and quantitative indicators
of Chinese and US patents. By comparing Chinese and
American patent data, it is found that the inventors, attor-
neys, IPC classification numbers, and CPC classification
numbers of Chinese and American patents have the same
expression. Although the inventors and agents of the Chi-
nese and American patents belong to two different sets, the
experiment quantifies the indicators based on the overall sit-
uation in the field, and the training model will not be
affected by the specific values. The differences in patents
between the two countries are mainly reflected in the follow-
ing four aspects: (1) the legal status of patents is different; (2)
there are differences in the distribution of patents between
the two countries in the following 6 attributes: number of
cited patents, number of citations by other patents, number
of common families, number of citations by other docu-
ments, number of references, and international patent docu-

mentation center; (3) the patent origination level is different;
and (4) the content of the text type is different, including the
title, abstract, and claims of the patent. The writing language
of the US patent is English, and the Chinese is Chinese. In
terms of related indicators, US patents are generally higher
than Chinese patents.

Because the US patent has the patent strength label
required for experimentation, the Chinese patent has the
contradiction between a large amount of data and a small
amount of labeling. At the same time, the impact of various
attributes and indicators on patent strength has the same
trend, with only the difference in feature distribution. Trans-
fer learning breaks the same distribution assumption of tra-
ditional machine learning and can adapt to the requirements
of experiments well.

Transfer learning mainly involves domains and tasks.
Given a labeled source domain, that is, an English patent text
with a large number of labeled data sets: Ds = fxi, yigni=1, and
an unmarked target domain, that is, the Chinese patent text
without data annotation: Dt = fxjgn+mj=n+1. The data distribu-

tion of these two fields PðxsÞ and PðxsÞ are different, PðxsÞ
≠ PðxtÞ [34]. The purpose of transfer learning is to use the
knowledge of Ds to learn the knowledge (label) of the target
domain Dt . That is to say, the process of transfer learning is
to transfer knowledge from the source domain to the target
domain, complete the model update, and predict the target
domain label. Transfer learning can be divided into different
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types, and there are many classification methods. This article
mainly uses the model-based transfer learning method, that
is, based on the self-adaptation of model parameters to find
new parameters θ, and the transfer of parameters makes the
model better at the target work on the domain to minimize
its loss. The calculation formula is as follows:

min 1
n
〠
n

i=1
L xsi , y

s
i , θð Þ: ð13Þ

The experiment uses US patents as a domain of origin
and Chinese patents as a reference domain. It is impossible
to transfer directly between the different languages. This
concerns the problem of the classification of texts in the
cross language. The experiment uses automatic translation
to translate the text of Chinese and English patents and
marks the patent levels of some Chinese patents. The model
adapts to the distribution of indices and to the linguistic
characteristics of Chinese patents. Figure 7 shows the trans-
fer learning process.

To put it simply, taking the patent text in the field of new
energy vehicles used in the experiment as an example, the
process of transfer learning is to first translate the English

patent text in the United States (source domain data) into
Chinese patent text (target domain data) and use it as the
input of the PQE_MT_USA model mentioned in the previ-
ous section is vectorized using Bert, and the model is
retrained through the Bi-LSTM encoding layer and CRF
decoding layer. The initial parameters are the final parame-
ters obtained by PQE_MT_USA training English text. After
the training is completed, new parameters suitable for the
Chinese patent grade prediction model are obtained, and
then other Chinese patent texts (target domain data) are
tested and adjusted to obtain the transferred parameters.

Through comparative experiments, try to freeze the
parameters of different layers to obtain the best migration
effect. The specific experimental process and results will be
described in detail in the fourth part of the experimental
results and analysis. The final experiment selects the part
shown by the dotted line in Figure 5 to transfer the model
parameters.

Although migration learning requires less data, too little
migration data for larger networks will still cause overfitting
problems in the model. The model needs more migration
samples to make the network model have better generaliza-
tion capabilities. The experiment contains more than
20,000 Chinese patent data. Labeling a large number of data
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samples requires a lot of manpower and material resources.
In the process of transfer learning, which patents should be
selected for labeling has a greater impact on the results of
the transfer. With the same amount of target domain data,
selecting samples that are difficult for the model to choose
has a better effect than selecting samples that can be clearly
classified by the model. The process of letting the model
actively propose which data needs to be labeled is active
learning. Transfer learning reduces the amount of sample
labeling, and active learning improves the quality of labeling
samples.

The proposal of active learning is mainly due to the dif-
ferent amount of information provided by each sample in
the training set for model training, that is, different samples
have different contributions to the improvement of the
model effect. Active learning mainly includes classifiers,
labeled training data sets, unlabeled data sets, query func-
tions used to extract samples with large amounts of informa-
tion in unlabeled data sets, and supervisors who label the
extracted samples.

The experiment selects more efficient and mature
methods based on uncertainty reduction. The main query
functions include methods based on classification uncer-
tainty UðxÞ, classification margin MðxÞ, and classification
entropy HðxÞ. The specific calculation method is shown in
the following equations.

U xð Þ = 1 − P x̂ ∣ xð Þ, ð14Þ

M xð Þ = P x̂1 ∣ xð Þ − P x̂2 ∣ xð Þ, ð15Þ

H xð Þ = −〠
k

pk log pkð Þ: ð16Þ

The experiment uses the most effective method based on
classification margin for multiclassification problems,
namely, the best versus second best (BVSB) strategy [35] to
calculate the uncertainty of the sample. This method calcu-
lates the difference of the category with the highest probabil-
ity among the sample prediction results as a measure of
sample selection. The smaller the difference, the greater is
the uncertainty. Figure 8 lists the two real samples in the
experiment. In contrast, the sample on the right has a
smaller probability difference and greater uncertainty, and

the model is more inclined to select it as the sample to be
labeled.

By analyzing the output value of each category of the two
samples, it is observed that the highest probability of sample
A is category 2, its probability is 0.32, the category with the
highest probability of sample B is category 1, and its proba-
bility is 0.36. Although the final predicted result of sample B
is more probable, it can be observed from the overall proba-
bility of each category that the model is more confusing for
sample B because the difference between the highest cate-
gory probability and the second highest category probability
is smaller, based on classification, the active learning algo-
rithm of margin is good at extracting samples with higher
uncertainty for multiclassification problems.

The following is a detailed introduction to the process of
transfer learning and active learning algorithms based on the
Chinese patent.

First, the English text Patent_USA_En in the source
domain data set is translated into Chinese text Patent_
USA_Ch, the Chinese patent quality evaluation model
PQE-MT_Ch based on the US patent is obtained by Pat-
ent_USA_Ch training, and the frozen model PQE-MT_Ch
does not require a training layer. Next, we use the unlabeled
target domain Chinese patent data set Patent_CHN_Ch as
the training set to continue training the model PQE-MT_

Predictive model

Labeled data

Test

Source
domain data

Transfer learning
algorithm

Target domain
data

Target domain
data

Unlabeled data/a small
amount of

annotated data

Figure 7: Transfer learning flowchart.
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Ch. Then, we use this model to classify and predict the sam-
ple set Patent_CHN_Ch, calculate the probabilities C1 and
C2 of the two categories with the highest predicted probabil-
ity for each sample, and get the set S of 100 samples with the
largest uncertainty, that is, the smallest C1-C2. Then remove
the set S from the sample set Patent_CHN_Ch, manually
mark the samples in the set S, add the marked set S to the
training set, repeat the above training process, and finally
get the migration model PQE-MT-CHN_Ch. This model
comprehensively utilizes transfer learning and active learn-
ing algorithms and is suitable for the English patent quality
assessment of Chinese patents. Figure 9 is a diagram of the
overall process of transfer learning and active learning.

3.3. Patent Quality Evaluation Model Based on Collaborative
Training. In the experiment of the above transfer model, it is
not difficult to find that different languages make the model
have different effects. The following research will start to use
the difference in feature space between Chinese and English
languages, and the different features and knowledge learned
by the models in different languages, resulting in different
prediction effects for different samples, and use bilingual col-
laborative training to improve the prediction results of the
models.

Collaborative training is the mainstream semisupervised
machine learning algorithm. The theoretical basis is by
training classifiers under multiple views; under the existing
small amount of annotated corpus, different features of sam-
ples can be learned according to different classifiers, and a
large amount of category information of data to be anno-
tated can be further obtained, thus, achieving the purpose
of learning by using unlabeled data. The cooperative training
process is similar to clustering hypothesis; on the whole, it
can be explained that the classification model trained by a
small amount of labeled data can only roughly describe the
distribution of data, and it is difficult to accurately divide
most samples. By using a large amount of unlabeled data,
the most accurate data can be found based on the classifica-
tion of the trained model, so that the model can further find
a more accurate classification surface.

In the process of cross-language transfer learning, there
is a language barrier between Chinese and English, and the
feature spaces of the two languages are different, so it is
impossible to transfer the model directly. The experiment
used machine translation to unify the languages of the pat-
ents of the two countries, so the patents of both countries
have two language versions. The experiment hopes to make
full use of both Chinese and English feature spaces to further
improve the prediction effect of the model.

The experiment trains Chinese patent quality evaluation
model PQE_MT_CHN_Ch based on Chinese and Chinese
patent quality evaluation model PQE_MT_CHN_En based
on English. Through mutual supervision of the two models,
a Chinese patent quality evaluation model PQE_MT_CHN_
Co based on collaborative training is obtained.

In the experiment, the collaborative training algorithm
used machine translation to translate the Chinese text of
Chinese annotation data into English text. Train the
Chinese-based Chinese patent quality evaluation model

PQE_MT_CHN_Ch on the Chinese text of the labeled Chi-
nese patent data set. In the same way, the English-based Chi-
nese patent quality evaluation model PQE_MT_CHN_En is
trained on the English text of the labeled Chinese patent data
set. Use these two models to label the unlabeled patent texts
in the corresponding data sets and select high-confidence
data from them to add to the labeled data set collection. Iter-
ate the above training process. Next, the prediction results of
the two evaluation models PQE_MT_CHN_Ch and PQE_
MT_CHN_En are combined according to weights, and
finally, the Chinese patent quality evaluation model PQE_
MT_CHN_Co based on collaborative training is obtained.
The overall flow of the algorithm is shown in Figure 10.
The algorithm ensures that the sample data distribution is
balanced with the real situation by setting the number mi
of the data obtained under each category.

4. Experimental Results and Analysis

4.1. Experimental Corpus. 59147 patents are used in the
experiment, and the number of patents with different grades
is shown in Figure 11. The experiment randomly shuffled
the data set to ensure the uniform distribution of different
label samples. 90% samples (53475) are for training and
10% samples (5942) are for testing. The verification method
chooses k-fold cross-validation for model optimization. The
k − 1/k of the data set is used as the train set, and the rest is
used as the validation set. The result is the average of k times.
The value of k is set to 10.

There are 21611 Chinese patents, of which 308 are in the
United States, which means that the two countries have
applied for 308 patents; at the same time, this led to the for-
mation of a monopoly family belonging to the same patent
family, in order to meet quality standards, corresponding
to Chinese patents. In this paper, 100 Chinese patents with
patent grade are taken as the samples of the final model test,
208-as the original data for migration, and the remaining
21303 Chinese unmarked patents are used as the active
learning pool for data screening, Mark.

All experimental data are random, and the extraction
method is random. In order to ensure the uniform distribu-
tion of different label samples and the accuracy and fairness
of experimental results, this paper involves Google’s
machine translation, and this is the most accurate transla-
tion system at present.

4.2. Experimental Settings. The accuracy, recall, f 1-score,
accuracy, microaveraging, and macroaveraging used in the
text classification evaluation are used for evaluation. The cal-
culation process is as equations (17)–(26). For category C,
the classification results can be divided into the following
situations:

(1) The original type C is classified as type C, and the
quantity is recorded as a

(2) The original non-C category is classified as C cate-
gory, and the quantity is recorded as b
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(3) Originally C is classified as non-C, and the quantity
is recorded as c

(4) The original non-C category is classified as non-C
category, and the quantity is recorded as d

P =
a

a + b
× 100%, ð17Þ

R = a
a + c

× 100%, ð18Þ

F =
2 × P × R
P + R

× 100%, ð19Þ

A =
a + d

a + b + c + d
× 100%, ð20Þ
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MicroP =
∑n

i=1ai
∑n

i=1ai +∑n
i=1bi

, ð21Þ

MicroR =
∑n

i=1ai
∑n

i=1ai +∑n
i=1ci

, ð22Þ

MicroF1 =
2 ∗MicroP ∗MicroR
MicroP +MicroR

, ð23Þ

MacroP =
1
n
〠
n

i=1
Pi, ð24Þ

MacroR =
1
n
〠
n

i=1
Ri, ð25Þ

MacroF1 =
2 ∗MacroP ∗MacroR
MacroP +MacroR

: ð26Þ

4.3. Experimental Results and Analysis of Patent Quality
Evaluation Model

4.3.1. Experimental Results and Analysis of Patent Quality
Evaluation Model Based on Multitask Learning. The experi-
ment tested 15 initial patent indexes, 117 quantified indexes,
and 132 indexes combined with the two, respectively. The
results are shown in Table 2. The results show that both
the initial attributes of patents and the quantitative index
parameters in the experiment have influence on the evalua-
tion of patent quality, but the evaluation effect is still poor
and cannot meet the final demand. It will be combined with
sequence model tasks to improve the effect.

The experimental sequence model and multitask learn-
ing model (PQE-MT) training results are shown in
Table 3. For readability, the model is defined as follows:

(i) Model_1. word2vec as the embedded layer of the
model connects with Bi-LSTM

(ii) Model_2. On the basis of Model_1, attention mech-
anism is added to form patent quality evaluation
model

(iii) Model_3. On the basis of Model_1, using the Bert
after fine-tuning by all patent text data instead of
word2vec

(iv) Model_4. On the basis of Model_2, CRF is added to
identify patent terms, forming a patent quality eval-
uation model based on multitask learning

(v) Model_5. On the basis of Model_3, CRF is added to
identify patent terms, forming a patent quality eval-
uation model based on multitask learning

(vi) PQE_MT_USA. Model_5 combined with quantita-
tive index model

The detailed results of our proposed PQE_MT_USA
model on different indicators in each category are shown
in Table 4.

Through the analysis of the experimental results, it can
be concluded that

(i) Model_2, which uses word2vec as embedding layer
and Bi-LSTM as sequence layer, can achieve
58.25% accuracy on train set, 56.52% accuracy on
validation set, and 55.22% accuracy on test set

(ii) After adding the attention mechanism, the accuracy
of the model is improved by nearly 2 percentage
points, which proves the effectiveness of attention
mechanism

(iii) After replacing the embedding layer with BERT, the
accuracy of the model has been greatly improved,
but the generalization ability has slightly decreased

(iv) After using the sequence model based on multitask
learning, the effect of model is further optimized
and the evaluation effect is further improved.
Although multitask learning increases the scale of
the model, but the training time of the model does
not significantly increase because two tasks share
learning parameters, only more 4128 parameters
are trained. Each epoch in word2vec and BERT
models only increases 54 s and 62 s, indicating that
the model has better usability

(v) The final model combines features of two parts and
achieves good results in classification tasks. The
accuracy of train set, validation set, and test set is
87.29%, 82.29%, and 83.90%, respectively. It shows
that two parts of the model in this paper have an
important impact on the evaluation of patent
quality
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Table 2: Accuracy of initial patent attributes and quantitative
index models.

Model input (size) Train Dev Test

Initial index (15) 0.4809 0.4811 0.4813

Quantitative indicators (117) 0.6292 0.6248 0.6156

Combine (132) 0.6604 0.6609 0.6555
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(vi) The model has a good effect on a large number of
categories, but a little worse effect on a small num-
ber of categories, and the result is positively corre-
lated with the size of the categories as a whole

4.3.2. Experimental Results and Analysis of Patent Quality
Evaluation Model Based on Multitask Learning. Different
layers of the neural network model usually learn the charac-
teristics of different levels of the sample. “Visualizing and
Understanding Convolutional Networks” [36, 37] visualizes
the layers of CNN and shows the above theory more clearly.
The bottom layer 1 and 2 of the model network can usually
learn the basic color and edge features of the object; the third
layer of the model network generally learns the texture fea-
tures of the object; the fourth layer that continues upward
can learn local features, such as wheels; the top level learns
more discernible overall characteristics.

For the image training model, the results of each net-
work layer are easy to observe. In contrast, the knowledge
learned by the text training sequence model is difficult to
clearly display, but the above rules are also met on the whole.
The underlying structure of the network learns the text the
part-of-speech and word-sense characteristics of the word;
high-level results learn semantic and syntactic characteris-
tics. In response to this phenomenon, experiments try to
perform transfer learning in different layers of the model
and compare the optimal transfer part.

In the process of transfer learning, the bottom part of the
model is usually kept intact to reduce the risk of model over-

fitting. At the same time, for the model in this article, the
corpus is first converted into the same language through
machine translation. In this process, there is usually no
major change in part of speech and word meaning. Due to
the differences in culture and writing habits, the migration
part is closer to semantics, context, and syntax. At the same
time, it meets the requirements of coping with the high-level
migration of the network model. The detailed information of
each layer of the model PQE_MT_USA is shown in Table 5.

According to the structural characteristics of the net-
work model, the experiment gradually freezes at the bottom
of the network, compares the results of different parts of the
migration, and obtains the final·migration part. Since only
308 Chinese patents have American patents, they have qual-
ity ratings. Take the English data migration results as an
example to show and use a total of 308 Chinese patent sam-
ples to translate into English text and then perform model
migration. Use 100 of them as a test set to compare the
effects of different models. Actually, the Chinese patent data
used for migration are only 208 articles. The experimental
results, respectively, enumerate the microaverage and
macroaverages of the accuracy, recall, and F1 value on the
training set and the test set. The results are shown in Table 6.

It can be seen from the experimental results that as the
low-level parameters of the network gradually freeze, the
indicators of the training set show a downward trend, and
the indicators of the test set, especially the macroaverage,
have a process of first increasing and then decreasing. The
main reason for this phenomenon is that the new data set

Table 3: Results of models.

Model
Text classification NER Time

s/epochTrain Val Test Train Val Test

Model_1 0.5825 0.5652 0.5522 N/A N/A N/A 1420

Model_2 0.6026 0.5805 0.5734 N/A N/A N/A 1526

Model_3 0.6373 0.5910 0.5962 N/A N/A N/A 1922

Model_4 0.6326 0.6054 0.6024 0.8461 0.8457 0.8490 1580

Model_5 0.6890 0.6253 0.6220 0.8541 0.8584 0.8566 1984

PQE_MT_USA 0.8729 0.8292 0.8390 0.8689 0.8795 0.8788 2310

Table 4: Results of PQE_MT.

Category
Train set Test set

Precision Recall F1 Support Precision Recall F1 Support

1 0.98 0.99 0.98 19967 0.96 0.98 0.97 2232

2 0.93 0.92 0.92 10743 0.89 0.87 0.88 1227

3 0.93 0.87 0.90 11534 0.89 0.81 0.85 1209

4 0.77 0.82 0.80 5330 0.65 0.72 0.68 626

5 0.58 0.80 0.67 2502 0.53 0.65 0.58 293

6 0.54 0.50 0.52 1087 0.48 0.36 0.41 113

7 0.53 0.67 0.60 1382 0.44 0.59 0.50 144

8 0.69 0.74 0.72 930 0.57 0.53 0.55 98

Micro 0.89 0.90 0.89 53475 0.84 0.85 0.84 5942

Macro 0.74 0.79 0.76 53475 0.67 0.69 0.68 5942
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is small. The larger the migration part of the network during
the migration process, the better the fitting effect in the
training set, but the problem of overfitting occurs. In the
end, the experiment freezes the training of the parameters
of the 0-2 layers and selects the 3-14 layers of the network
for migration. According to the parameter items in
Table 6, freezing the underlying model training can reduce
a large number of parameter updates, which improves the
model effect and reduces the migration time.

In addition, only the English text of the Chinese patent
has experimented with training data, and the patent of
model migration was not used. Results of the two experi-
ments are shown in Tables 7 and 8.

From the comparison of Tables 7 and 8, it can be verified
that the transfer learning has a certain degree of improve-
ment in each indicator of the model. Due to the lack of train-
ing samples in normal supervised learning, the entire TEM
model has two obvious problems: first, model TEM poor
forecast results in categories with a small number of samples.
The results of the accuracy, collection, and f value of the
main measurement indicators in category 7 and category 8
were all 0; second, the capacity to generalize the model is
very poor, and the problem of overadaptation is obvious.
The test set is about 35% lower than the training set in both
micro and macroaverages. Comparing results after forward-
ing learning results in both problems improved. For a few
categories of samples, the model has better adaptation, the
gap between the microaverage indicators is reduced to 17%
on the training set and the test set, and the three indicators
of the macroaverage, respectively, reduce to 10%, 16%, and

15%. These two problems have been solved to some extent
thanks to the model having learned how the relevant charac-
teristics affect the results of a large number of US patents.
Although the distribution of characteristics is different, the
overall trend is approximately the same. The model adapts
even more to changes in several Chinese patent indicators
based on the trend initially learned. Although the model
has improved, the effect still cannot meet the final require-
ments for patent assessment. Hope to improve the model
effect by increasing migration data.

We randomly selected 200 unlabeled Chinese patents
and manually labeled them as data_random and used the
active learning algorithm to obtain the top 200 Chinese pat-
ents with the largest classification margin and labeled them
as data_active_learning. The experiment starts from 0 and
increments each time by 20 on these two data sets, until it
reaches 200. Compare the effects of randomly selected data
and active learning to select data on model migration. The
comparison of the prediction accuracy of the model in the
two cases is shown in Figure 12.

By comparing the two trends, it has been found that
using the active learning method to select data is better than
randomly selected data. The effect of the model that used
active learning to select about 140 data to be labeled is equiv-
alent to the effect of randomly selecting 200 data labels.
Then, the experiment uses active learning to further expand
the labeled data, and active learning can get the most infor-
mative data. And each round obtained the first 200 data with
the largest classification margin for manual labeling. A total
of 2000 samples labeled as new migration data were

Table 5: PQE-MT layer information.

Number of layers Type Output shape Number of parameters

0 Text input layer (None, 200) 0

1 Embedding layer (None, 200, 768) 17999616

2 Bidirectional LSTM_1 (None, 200, 160) 543360

3 Bidirectional LSTM_2 (None, 200, 160) 154240

4 Attention (None, 160) 32400

5 Number input layer (None, 132) 0

6 Concatenate layer (None, 292) 0

7/9/11 Dense layer_1/2/3 (None, 512/128/32) 150016

8/10/12 Dropout layer_1/2/3 (None, 512/128/32) 65664

13 CRF layer (None, 200, 4) 4128

14 Softmax layer (None, 8) 668

Table 6: Final results of different migration parts.

Migration layer
Training set (microavg/macroavg) Test set (microavg/macroavg)

Precision Recall F1-score Precision Recall F1-score
0-14 0.85 0.70 0.85 0.68 0.85 0.69 0.61 0.38 0.60 0.44 0.60 0.41

2-14 0.83 0.70 0.83 0.63 0.83 0.66 0.66 0.43 0.65 0.46 0.65 0.44

3-14 0.82 0.66 0.82 0.65 0.82 0.65 0.66 0.61 0.66 0.54 0.66 0.57

7-14 0.78 0.66 0.77 0.60 0.77 0.63 0.60 0.44 0.60 0.38 0.60 0.41

9-14 0.60 0.43 0.60 0.39 0.60 0.41 0.58 0.44 0.58 0.36 0.58 0.40

11-14 0.53 0.37 0.53 0.34 0.53 0.35 0.52 0.42 0.52 0.35 0.52 0.38
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obtained, the model uses 2-14 levels with the best migration
effect obtained from the experimental comparison as a
migration part, and the result of the migration of 2208 Chi-
nese patent data obtained after active learning is shown in
Table 9. Furthermore, the experiment was conducted in
the same way using the patented English language, and the
results are given in Table 10.

Experimental results in Tables 8 and 9 are compared to
observe the effect of enabled learning on the effect of the data
expansion model. Using the initial data migration model,
micro-F1 values in the training set and in the test set were
83% and 66%, and macro-F1 values were 70 and 57%. After
active learning for data expansion, the values of micro-F1
were 79% and 74% and the macro-F1 values were 68% and

Table 7: Results of training the network using only Chinese patent data.

Category
Training set Test set

Precision Recall F1-score Support Precision Recall F1-score Support

1 0.92 1.00 0.96 61 0.55 0.66 0.60 35

2 0.79 0.70 0.74 33 0.41 0.39 0.40 18

3 0.80 0.82 0.81 49 0.18 0.19 0.19 21

4 0.61 0.69 0.65 29 0.30 0.30 0.30 10

5 0.42 0.65 0.51 17 0.33 0.38 0.35 8

6 1.00 0.80 0.89 5 0.00 0.00 0.00 3

7 0.00 0.00 0.00 9 0.00 0.00 0.00 3

8 0.00 0.00 0.00 5 0.00 0.00 0.00 2

Microavg 0.76 0.76 0.76 208 0.40 0.40 0.40 100

Macroavg 0.57 0.58 0.57 208 0.22 0.24 0.23 100

Table 8: Data transfer learning results of the initial 208 Chinese patent English.

Category
Training set Test set

Precision Recall F1-score Support Precision Recall F1-score Support

1 1.00 0.92 0.96 61 1.00 0.77 0.87 35

2 0.83 0.91 0.87 33 0.54 0.78 0.64 18

3 0.82 0.92 0.87 49 0.78 0.67 0.72 21

4 0.81 0.72 0.76 29 0.20 0.20 0.20 10

5 0.50 0.76 0.60 17 0.35 0.75 0.48 8

6 0.40 0.40 0.40 5 0.33 0.33 0.33 3

7 0.60 0.33 0.43 9 0.67 0.33 0.44 3

8 0.75 0.60 0.67 5 1.00 0.50 0.67 2

Microavg 0.83 0.83 0.83 208 0.66 0.66 0.66 100

Macroavg 0.71 0.70 0.70 208 0.61 0.54 0.57 100
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Figure 12: Comparison of the accuracy of transfer learning between active learning and randomly selected labeled data.
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63%. Due to the increase in the amount of migrated data, the
ability to generalize the model became stronger, and the
effect of the FOI model improved to a certain extent by pro-
viding the test set data.

The results of Table 9 were compared with Table 10, and
the effects of Chinese and English were observed on the
model effect. The model transition effect for English texts
is generally better than Chinese text. The authors believe
that the use of machine translated Chinese data leads to deg-
radation of the initial model effect in the case of using source
models trained by U.S patents due to the limitations of
machine translation techniques, resulting in the final effect
of the transfer model is reduced; the number of Chinese pat-
ent translations used for the target model has a lower overall
influence factor; in addition, the differences in the Chinese
and English writing specifications and feature spaces also
cause difference in model learning effects.

4.3.3. Experimental Results and Analysis of Patent Quality
Evaluation Model Based on Multitask Learning. The article
uses SVM as a classification model and Chinese patent
text as an example to compare and demonstrate the use
of TF-IDF feature vectors and the bag-of-words method
for feature word extraction using mutual information,
information gain, and chi-square, as well as the three

methods to extract feature words take the result of the
union. The SVM classification algorithm based on bag-
of-words is very critical in the selection of feature words.
The experiment uses feature extraction formulas for differ-
ent types of patents to calculate, by manually setting a
threshold as a reference value, and extracting words higher
than this value as the input features of the bag of words
[38]. Table 11 shows the accuracy of algorithm prediction
in different situations.

The experimental results show that the SVM classification
algorithm based on TF-IDF achieves 68% accuracy on the
training set, but in contrast, the prediction result on the test
set is reduced by nearly 10%, showing a trend of overfitting.
Although the bag-of-words method has a lower accuracy in
the training set compared with the TF-IDF method, the accu-
racy in the test set has been greatly improved. Due to the

Table 9: Data transfer learning results of 2208 Chinese patent English text data after active learning expansion.

Category
Training set Test set

Precision Recall F1-score Support Precision Recall F1-score Support

1 0.93 0.96 0.95 676 0.93 0.83 0.88 35

2 0.85 0.71 0.77 404 0.88 0.78 0.82 18

3 0.79 0.85 0.81 506 0.74 0.81 0.77 21

4 0.59 0.77 0.67 258 0.39 0.70 0.50 10

5 0.61 0.64 0.62 154 0.50 0.38 0.43 8

6 0.41 0.54 0.47 69 0.33 0.33 0.33 3

7 0.63 0.54 0.58 87 0.33 0.67 0.45 3

8 0.78 0.37 0.50 54 1.00 0.50 0.67 2

Microavg 0.79 0.80 0.79 2208 0.74 0.74 0.74 100

Macroavg 0.70 0.67 0.68 2208 0.64 0.63 0.63 100

Table 10: Data transfer learning results of 2208 Chinese patent Chinese text data after active learning expansion.

Category
Training set Test set

Precision Recall F1-score Support Precision Recall F1-score Support

1 0.95 0.89 0.92 676 0.87 0.79 0.83 35

2 0.68 0.68 0.68 404 0.51 0.54 0.53 18

3 0.65 0.79 0.71 506 0.52 0.64 0.57 21

4 0.55 0.52 0.53 258 0.45 0.42 0.43 10

5 0.45 0.28 0.34 154 0.36 0.22 0.27 8

6 0.43 0.36 0.39 69 0.33 0.67 0.45 3

7 0.56 0.71 0.48 87 0.33 0.33 0.33 3

8 0.70 0.65 0.67 54 1.00 0.50 0.67 2

Microavg 0.73 0.71 0.72 2208 0.62 0.61 0.61 100

Macroavg 0.61 0.61 0.61 2208 0.55 0.51 0.53 100

Table 11: Forecast accuracy of different algorithms.

Method Threshold Accuracy (train) Accuracy (test)

TF-IDF N/A 0.68 0.60

MI 0.1 0.59 0.53

IG 0.03 0.66 0.61

CHI 3 0.67 0.64

Union N/A 0.71 0.62
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higher dimension of the union set, it is easy to cause overfit-
ting, which reduces the accuracy of the test set. The experi-
ment finally uses the chi-square algorithm for feature
extraction. In addition, the experiment uses the mutual infor-
mation value that can calculate the similarity between the cat-
egories to test different categories. The mutual information
value of category 3 and other categories is selected as the dis-
play. The test results are shown in Figure 13.

It can be observed that the closer the distance between
the samples, the greater the mutual information value. This
result fully demonstrates the effectiveness of the training
set data annotation. Experiments with different numbers of
feature words, the number of feature words with the best
model effect is obtained, and the result is shown in
Figure 14. The figure shows the dimensions of feature words,
and the input of the model is a vector of word bag features
and quantitative indicators.

A comparative analysis of the experimental results shows
that the accuracy of the model in the training set increases as
the dimension of the feature word increases. When the
dimension of the feature word is too high, overfitting prob-
lems will occur. The effect of the model on the test set grad-
ually decreases. Use the 400-dimensional bag-of-words
vector with the best comprehensive results to further test dif-
ferent classification algorithms. The results are shown in
Table 12.

It can be seen that the classification accuracy of Bayesian
and kNN algorithms is poor, and the decision tree algorithm
is not suitable for patent quality evaluation classification due
to the overfitting problem caused by the complexity of the
sample. Finally, SVM is selected as the classification method
for classification.

In the experiment, CHI with better results is selected as
the feature word extraction method. Extract 400-
dimensional bag-of-words vectors, perform SVM classifica-
tion on the text, perform collaborative training with the
migrated deep learning model PQE_MT_CHN at the same
time, and finally compare the prediction effects of the two
methods.

In the experiment, the proposed collaborative training
method was compared with the following benchmark methods:

(i) SVM_Ch. Use the combination of Chinese features
and quantitative indicators as input, and use SVM
for classification. There is no need for text transla-
tion in the process, only the marked data is used

(ii) SVM_En. Use the combination of English features
and quantitative indicators as input and use SVM
for classification. The process requires a Chinese-
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of-words vectors.

Table 12: CHI extracts the classification results of 400-dimensional
bag-of-words vectors combined with quantitative indicators in
different algorithms.

Model
Train Test

Precision Recall F1 Precision Recall F1
Naive Bayes 0.66 0.65 0.65 0.62 0.60 0.61

kNN 0.62 0.58 0.60 0.56 0.54 0.55

SVM 0.70 0.69 0.69 0.64 0.63 0.63

Decision tree 0.74 0.71 0.72 0.59 0.57 0.58
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English translation, and only the marked data is
used

(iii) SVM_Ch+En. Use the combination of Chinese
and English bilingual features and quantitative
indicators as input and use SVM for classification.
The process requires a Chinese-English transla-
tion, and only the marked data is used

(iv) SVM_Co. Use SVM_Ch and SVM_En for collabo-
rative training, and sample prediction is obtained
by weighting the results of the two models. The
process requires translation from Chinese to
English, using unlabeled data for collaborative
training

(v) PQE_MT_CHN_Ch. Use the combination of Chi-
nese features and quantitative indicators as input,
and use Chinese text transfer learning to obtain
the model PQE_MT_CHN for classification. There
is no need for text translation in the process, only
the marked data is used

(vi) PQE_MT_CHN_En. Use the combination of
English features and quantitative indicators as
input and use English text transfer learning to
obtain a model for classification. The process
requires a Chinese-English translation, and only
the marked data is used

(vii) PQE_MT_CHN_ Ch+En. Use the combination of
Chinese and English bilingual features and quanti-
tative indicators as input and use the Chinese and
English bilingual text transfer learning model for
classification. The process requires a Chinese-
English translation, and only the marked data is
used

(viii) PQE_MT_CHN_Co. Use PQE_MT_CHN_Ch and
PQE_MT_CHN_En for collaborative training, and
the sample prediction is obtained by weighting the
results of the two models. The process requires
Chinese-English translation, using unlabeled data
for collaborative training

The results of the above model are shown in Table 13. In
addition, the experiment compares the number of samples

of each category and optimizes the experimental parameters
for the iteration rounds of collaborative training and each
iteration process. The specific results of the model are shown
in Figures 15 and 16. The following text will analyze and
summarize the results of this part.

Experimental results show

(1) From the comparison of the various data in Table 13,
it can be concluded that the Chinese patent quality
evaluation model constructed by the experiment
using transfer learning is better than the best-
performing SVM in traditional machine learning in
the overall transfer effect on the small training set.
It proves the feasibility of using transfer learning in
this field

(2) After combining the Chinese and English features of
the two models, the prediction effect of the training
set has been improved, but due to the lack of training
corpus, certain overfitting problems have occurred,
resulting in the model’s effect on the test set decline.
It further proves the necessity of using collaborative
training instead of splicing Chinese and English
directly

(3) The proportion of each type of data selected in each
iteration of collaborative training has a greater
impact on the improvement of the training effect. It
can be observed from Figure 15 that when the data
proportions of each category are the same, the sam-
ple space of model learning will change, leading to
the reduction of model prediction effect, and the
model is the most stable when the data with the same
proportion of each category in the initial data set is
selected

(4) After using the collaborative training algorithm, the
semisupervised training method further optimizes
the fitting effect of the model on the small training
set, and all the evaluation indicators of the model
are further improved. The PQE_MT_CHN_Co pro-
posed in the article reaches the highest level in all
indicators. Figure 14 can analyze that collaborative
training can improve the effect of both Chinese and
English models at the same time. Initially, the effect

Table 13: Classification results of PQE_MT_CHN_Co and other benchmark models.

Model
Train Test

Precision Recall F1 Precision Recall F1
SVM_Ch 0.70 0.69 0.69 0.64 0.63 0.63

SVM_En 0.66 0.61 0.63 0.60 0.57 0.58

SVM_Ch+En 0.75 0.67 0.71 0.62 0.60 0.61

SVM_Co 0.75 0.70 0.72 0.68 0.67 0.67

PQE_MT_CHN_Ch 0.73 0.71 0.72 0.62 0.61 0.61

PQE_MT_CHN_En 0.79 0.80 0.79 0.74 0.74 0.74

PQE_MT_CHN_ Ch+ En 0.81 0.79 0.80 0.67 0.66 0.66

PQE_MT_CHN_Co 0.84 0.82 0.83 0.78 0.77 0.77
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of the two models is quite different, resulting in a
lower effect of the model’s joint prediction. However,
after multiple rounds of iterations, the prediction
effects of the two models gradually approached,
and the joint prediction effect of the two models is
better than that of one of the models. The micro-F
1 value of the final model reached 83% on the train-
ing set and 77% on the test set. It shows that the
method proposed in the article has improved the
effect of quality evaluation to a certain extent

5. Conclusion and Future Work

Patent quality evaluation model-PQE_MT is proposed in
this paper by quantifying the patent indexes from different
dimensions and taking the long text part of the patent as
one kind of index. The proposed model combines quantita-
tive index model and sequence model based on multitask
learning to predict the quality rating of patent. The advan-
tage of this model is that it combines the numerical attribute

part with the text part of the patent as the evaluation
indexes. Therefore, the feature extracted from the patent is
more comprehensive. In addition, multitask learning is
added to train two tasks together, so that the process of
updating parameters by backpropagation can promote each
other and improve the effectiveness of the model. Compared
with the baseline model, the PQE_MT model improves the
accuracy of English patent quality assessment.

The migration process mainly includes three parts: the
selection of migrant parts, the cross-sectoral transition, and
the use of active learning to enlarge data. The advantage of
this model is to select the data labeled from the maximum
information quantity using the transition learning technol-
ogy and the positive learning and to reduce the time cost
of manual annotation. In the experimental process, the pre-
diction effect of the model gradually improved, and finally,
the Chinese patent quality evaluation model achieved good
accuracy. At the end of the experiment, we compared the
effects of transmission learning between Chinese and
English and found that the results were different and the
model learned different features. In the follow-up task, we
consider two different character models to have different
characteristics that may affect each other to improve differ-
ent results.

In the future, more comprehensive and more meaningful
indexes should be quantified. Patent information such as
patent drawings, patent research and development cycle,
and other internal information of the company are still
unused in the experiment, which may improve the predicted
results and be more convincing. Moreover, we will try differ-
ent data expansion methods or semisupervised algorithms to
improve the effect of the migration process.
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