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Since public opinion from social media has a growing impact and supervision on trial, risk assessment on public opinion is
increasingly important in refined trial management. However, the tremendous amount of public opinion and the insufficient
historical logs of trial procedures bring challenges to risk assessment on public opinion. To address this, we propose an adaptive
multifactor risk assessment framework on public opinion with fuzzy numbers. Initially, we establish a multilayer indicator
model for assessing the risk of public opinion (POR) with multilayer analysis and decision methods. Then, we explore the
association rules hidden in the process logs to update the indicator model periodically. Moreover, we design a public opinion
analysis module for indicator evaluation, including analysis in public opinion sentiment, hot search, and social media coverage
to deal with big data on social media. Especially, the public opinion sentiment is classified by topic-based BiLSTM (T-BiLSTM),
which is more accurate. Finally, the fuzzy number similarity is employed to determine POR’s level in the nine-level risk system.
Experimental results validate the efficiency of our framework when assessing the POR.

1. Introduction

Serious and complicated cases bring severe challenges to trial
management nowadays. Some of them have raised much
attention due to their case type, related parties, and well-
known judges. Simultaneously, people are used to expressing
their opinions for the concerned cases on platforms such as
Facebook, WeChat, Weibo, and Twitter. A mass of public
opinion has both positive and negative impacts on trial pro-
cedures. Hence, public opinion assessment and supervision
are crucial for credible trials. Actually, public opinion in
social media has its characteristics, such as mass amount, fast
propagation, and chaotic content. Furthermore, the mass
data in social media reveals the inherent information we are
concerned about. After analyzing multisource public opinion
comprehensively, we could figure out its propagation mode
to make POR’s warning come earlier. Therefore, POR assess-
ment is beneficial for early responding to negative public
opinions and improving the court’s initiative ability. There
are two main tasks while accomplishing the task. One is to

handle public opinion with big data theory, and the other is
to conduct the risk assessment with insufficient historical
data.

For the explosive comments that emerge on social media,
sentiment analysis has become a research hotspot. Besides,
sentiment analysis on comments about hot cases plays a vital
role in promoting trial management. Thus, it is crucial to
carry out an efficient analysis and supervision method for
comments about cases. So far, research on machine
learning-based sentiment analysis has a lot of achievements,
such as KNN [1], maximum entropy [2], SVM [3], and Bayes
[4]. Nowadays, with the rapid development and outstanding
performance of deep learning, many researchers concentrate
on methods with CNN [5], RNN [6], and LSTM [7] to
improve the classification accuracy and have significant
progress.

For risk assessment, due to insufficient historical data,
together with the fuzziness and uncertainty of risks,
researchers adopt a fuzzy set theory to analyze the risk [8].
Singh et al. [9] propose an assessment framework for risk
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analysis of food disaster based on fuzzy similarity, and they
quantitatively calculate the risk level of targets separately.
The fuzzy similarity-based method performs well with a
quantitative risk assessment for trial cases.

However, there still exists some challenges to achieve the
assessment of POR. Firstly, there is no suitable indicator
model for this task. An efficient assessment relies on fine-
grained indicators and objective weights for indicators, and
it remains unsolved. Secondly, comments about cases in the
trial on social media have many characteristics that are hard
to analyze. Hence, it remains much work to ensure the accu-
racy of sentiment classification for the specific use. Thirdly,
how to evaluate risks quantitatively is not easy but crucial.

To address these issues, this paper implements a Risk
Assessment framework on Public Opinion for Trial manage-
ment (RAPOT). The framework provides a fine-grained risk
assessment based on fuzzy numbers. By computing fuzzy
number similarities, the framework decides its risk level in
the nine-level assessment system. Our main contributions
in this paper are as follows:

(i) Fine-Grained Risk Rating System. We employ
fuzzy number similarities to achieve risk assess-
ment with little historical data in trial procedure
management. At first, a multilayer risk indicator
model is established based on the analytic hierar-
chy process (AHP) method and extended tech-
nique for order preference by similarity to an
ideal solution (extended TOPSIS) method. The
model contains a fine-grained indicator layer,
and each one contains a risk indicator and its
impact factor. When assessing the risks, we trans-
form both impact factors and indicator values into
fuzzy numbers. Then, we aggregate the fuzzy
numbers into one and rank the integrated one in
the nine-level assessment system

(ii) Adaptive Indicator Model. Considering that the sys-
tem logs accumulated during trial processing con-
tain many latent association rules of the
procedures, we propose the RApriori algorithm to
explore the association rules. These latent rules are
updated to the indicator model for improving the
applicability and robustness of the model

(iii) Efficient Comment Sentiment Analysis. We define
three kinds of input sources and submodules for
indicator evaluation. Significantly, the sentiment of
public opinion is classified based on topics. The sen-
timent analysis that we propose consists of single-
pass-based topic clustering and T-BiLSTM-based
sentiment analysis. Sentiment analysis for topics is
precise and more comprehensive. Besides, our
framework has extensive indicators such as the
topic’s heat and coverage of media

(iv) Experimental Evaluations. To demonstrate the per-
formance of RAPOT, we conduct a case study with
three cases that are paid much attention recently.
The results illustrate that our framework is applica-

ble and efficient in practical cases with a reasonable
assessment level

The rest of this paper is structured as follows. We talk
about the related work in Section 2. The RAPOT framework
is described in Section 3. In Section 4, we illustrate the exper-
imental results, and we conclude the paper in Section 5.

2. Related Work

Due to the fuzziness and uncertainty of risks, researchers
adopt a fuzzy set theory to analyze the risk. The theory of
fuzzy numbers has been widely applied in risk analysis [10],
approximate reasoning [11], and risk pattern recognition
[12]. For risk analysis, the existing methods can be divided
into the fuzzy ranking-based [13], fuzzy inference-based
[14, 15], fuzzy matrix-based [16, 17], and fuzzy number
similarity-based [9] risk assessment models. Zhang et al.
[13] figure out the risky area based on a water security evalu-
ation framework by comparing the risk of related areas.
Hence, the qualitative analysis measures the risk level com-
paratively. Nevertheless, in the trial, the POR of the two cases
cannot be compared at the same pace. Karasan et al. [14] pro-
pose the safety and critical effect analysis (SCEA). Further-
more, it adopts Pythagorean fuzzy sets [18] to provide a
comprehensive risk assessment. However, fuzzy inference-
based methods are usually used in industry and are not suit-
able for trial applications. Can et al. [16] present a three-stage
fuzzy risk matrix-based risk assessment and dynamically
combine multicriteria decision-making with fuzzy logic.
Though fuzzy matrix-based methods can reduce risk ties
[19] efficiently, they still provide a qualitative assessment that
is not precise enough. As for similarity-based method, Khor-
shidi and Nikfalazar [20] present an improved method to
compute the degree of similarity between generalized fuzzy
numbers. The proposed method has been used for fuzzy risk
analysis, and it could determine each manufacturer’s risk
level. In summary, the similarity-based model is suitable for
the quantitative risk assessment for an individual object. At
the same time, risks in the trial process management system
(TPMS) are quite fuzzy and uncertain in fact. Besides, the
historical data have not been digitalized well. So we adopt a
fuzzy number similarity-based model to achieve risk
assessment.

The existing fuzzy number similarity-based methods
always have three main modules. They are the risk indicator
model, risk aggregation, and risk level determination. Among
them, fuzzy number similarity calculation is important for
risk level determination precisely. Referring to fuzzy number
similarities, researchers have defined various features of gen-
eralized fuzzy number (GFN) to distinguish the numbers,
such as the center of gravity (COG) [21], the area [20], and
the radius of gyration [22]. Then, researchers adopt geomet-
ric distance, Hausdorff distance [23], and so on to measure
the similarity of the feature values. Xu et al. [24] present a
COG-based method while with a limitation that two different
fuzzy numbers may have the same COG. To address the lim-
itation, Yong et al. [25] employ ROG of the area to measure
the similarities. Moreover, Chutia and Gogoi [10] expand
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GFN with left height and the right height to further distin-
guish traditional GFNs with the same COG. However, these
two methods still suffer from invalid results. Therefore, we
select a similarity measurement on generalized fuzzy num-
bers to map the integrated fuzzy number into a linguistic
term in the nine-level risk system [26]. The similarity mea-
sure algorithm we employ constrains the similarity of two
fuzzy numbers in the range of ½0, 1�, with fewer invalid results
and at the same time has a high distinguishability.

3. Framework of Risk Assessment of
Public Opinion

In this section, we discuss the critical issues while assessing
the POR. Firstly, we present the risk indicator model in Sec-
tions 3.1 and 3.2. Secondly, we talk about evaluating risk indi-
cators and the public opinion sentiment analysis in Section
3.3. Then, we explain the fuzzy number similarity-based risk
assessment method in Section 3.4.

Figure 1 is the framework of our RAPOT. It includes a
risk indicator model, indicator evaluation module, and risk
aggregation module. In the beginning, a multilayer indicator
model is built to define the fine-grained risk indicators with
corresponding impact factors, and the model is dynamically
updated by exploring new association rules on system logs.
Then, the indicator evaluation module figures out the indica-
tor values based on process data, data from the public opin-
ion analysis module, and the other systems. The indicator
aggregation module is aimed at deciding the risk level with
the impact factors and the risk probabilities.

3.1. Risk Indicator Model Initialization. To overcome the dif-
ficulty of lacking historical data, we employ AHP and
extended TOPSIS to construct an initialized risk indicator
model. The hierarchy model defines amounts of risk indica-
tors along with their impact factors. Figure 2 describes the
procedures for building our indicator model. First, a hierar-
chy structure is built, and an evaluation dataset for risk indi-
cators is collected based on AHP. Then, an evaluation matrix
for the risk indicators is constructed based on the collected

dataset. We adopt extended TOPSIS to analyze the evalua-
tion dataset to calculate the impact factors of the indicators.
Our model construction method combines AHP and
extended TOPSIS to work out a group of accurate impact fac-
tors with limited historical data.

3.1.1. Hierarchical Structure Determination. AHP is an effi-
cient multilayer analysis and decision method [27, 28]. It first
composes the decision problem into a hierarchy of subprob-
lems that each one can be treated independently. Once the
hierarchy is built, the expert group evaluates the elements
in the same layer by comparing them to each other according
to their impact on the father element. Table 1 shows the 1-9
scales used to evaluate each element’s impact factor. The
APH transforms the evaluations to numerical values that
can be calculated over the decision problem’s entire range.
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Finally, a priority is derived for each element in the hierarchy
by iteratively verifying the comparison matrix’s consistency
after adjusting the priorities each time.

At first, we refer to expertise, existing laws, regulations,
and the classical hot cases and form the set of risks as R = f
r1, r2,⋯, rNg, whereN is the number of risks. Then, the hier-
archical structure is established based on AHP. As shown in
Figure 3, our risk indicator model consists of three layers:

(i) Objective Layer (OL). Risk assessment of public
opinion for trial management is the objective of
our work. We need to figure out the impacts of pub-
lic opinion on the trial procedure

(ii) Criteria Layer (CL). The elements in this layer are
the judge, the parties involved, the case, and the pub-
lic opinion. The expert group defines the elements
referring to the existing documents

(iii) Indicator Layer (IL). This layer contains the indica-
tors which would impact the trial procedure by pub-
lic opinion. Each indicator belongs to their father
elements in the criteria layer

After that, an evaluation dataset is collected to gain the
indicators’ impact factors, and the impact factor represents
the indicator’s weight when integrating the POR. To evaluate
the impact factor accurately, the expert compares the risk
indicators with pairs to complete a comparison matrix as

Δ =

δ11 ⋯ δ1N

⋮ ⋱ ⋮

δN1 ⋯ δNN

2
664

3
775, ð1Þ

where δij is the comparison value of ri and r j. The expert
assigns the value δ according to Table 1. Then, the consis-
tency of Δ has to be verified by

CI =
λ − n
n − 1

, ð2Þ

where λ is the maximum eigenvalue of Δ and n is the dimen-
sion of the matrix. The consistency is complete when CI = 0
and decreases with CI increasing. Then, AHP uses a random

consistency indicator RI to define a refined CR which is

CR =
CI
RI

: ð3Þ

When CR < 0:1, the matrix Δ is consistent and RI is a
predefined dictionary [29]. If the validation fails, the expert
has to adjust the comparison matrix until the validation
comes to success.

The eigenvector of the approved evaluation matrix gives
a sort of risk indicators by their impact factors. For risk
assessment with fuzzy numbers, the expert assigns a linguis-
tic term in LT ={“AbsolutelyLow (AL)”, “VeryLow (VL)”,
“Low (L)”, “FairlyLow (FL)”, “Medium (M)”, “FairlyHigh
(FH)”, “High (H)”, “VeryHigh (VH)”, “AbsoluteHigh
(AH)”} to each risk indicator based on the order.

3.1.2. Impact Factor Calculation. Serval law experts evaluate
the impact factors according to our hierarchical structure
and construct an evaluation dataset. The dataset contains
several evaluation items fl1, l2,⋯, lMg for M experts and lm
is consists of lm1, lm2,⋯, lmN , each item comes from a law
expert for rn in set R. Then, we employ TOPSIS to aggregate
the evaluations of different experts. TOPSIS is a multicriteria
decision analysis method, which identifies weights for each
criterion by calculating the geometric distances from each
alternative to the positive ideal solution and the negative
ideal solution, respectively [30]. When evaluating the risk
indicator’s impact factor, the positive ideal solution is defined
as the lowest impact on cost optimization. Namely, the lower
impact of the risk indicator brings less cost in risk prevention
and control. Hence, we adopt the extended TOPSIS [31] to
calculate the impact factors for the POR assessment designed
for the trial scene.

First, an evaluation matrix with linguistic terms is estab-
lished based on the dataset as

L =

l11 ⋯ l1N

⋮ ⋱ ⋮

lM1 ⋯ lMN

2
664

3
775, ð4Þ

whereM, N are the number of experts and risk indicators. In
the matrix, lmn is given by expert m for the indicator n to
measure the importance of the indicator. And then, lmn is
transformed into a fuzzy number according to Table 2 for
weight fusion of impact. After that, we get an evaluation
matrix with fuzzy numbers.

S =

s11 ⋯ s1N

⋮ ⋱ ⋮

sM1 ⋯ sMN

2
664

3
775, ð5Þ

here smn is a generalized fuzzy number represented as ða, b,
c, d ;wÞ and a, b, c, d,w ∈ R.

Table 1: 1-9 scales of relative importance [29].

Intensity of importance Definition

1 Equal importance

2 Weak

3 Moderate importance

4 Moderate plus

5 Strong importance

6 Strong plus

7 Very strong or demonstrated importance

8 Very, very strong

9 Extreme importance
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In the extended TOPSIS, the positive and negative ideal
solutions are

PIS = s+1 , s
+
2 ,⋯,s+N½ �,

NIS = s−1 , s
−
2 ,⋯,s−N½ �,

ð6Þ

here, s+n and s−n are defined as

s+n =min smnð Þ
s−n =max smnð Þ

(
, ð7Þ

Then, the distance between sm = ½sm1, sm2,⋯,smN � and the
positive ideal solution PIS is calcuated as

d+ = d sm, PISð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

n=1
〠

4

j=1
 smnj − s+nj
� �2vuut : ð8Þ

Similarly, the geometric distance between sm and the neg-
ative ideal solution NIS is

d− = d sm, NISð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
N

n=1
〠

4

j=1
 smnj − s−nj
� �2vuut , ð9Þ

here smn = ðsmn1, smn2, smn3, smn4 ;wÞ, s+n = ðs+n1, s+n2, s+n3, s+n4 ;wÞ
, and s−n = ðs−n1, s−n2, s−n3, s−n4 ;wÞ are generalized fuzzy numbers.
After that, we obtain the weight of each alternative sm by nor-
malizing the distance ratios as

λm =∐
2

d+m − d−m
�� ��

 !
: ð10Þ

Finally, the impact factor of indicator n is calculated by
weighted summing the alternatives as

ŝn =
∑M

m=1λm⊗ smn

∑M
m=1λm

: ð11Þ

3.2. Risk Indicator Model Update. Considering that the trial
process is strict and complicated, POR’s initial indicator
model can be hardly applicable to the POR assessment con-
tinuously. Also, the system logs accumulated during trial
processing contain many latent association rules of the pro-
cedures. Figure 4 shows a fragment of the trial process, each
block is a process node, and each ellipse represents the risk
confirmation. Therefore, we propose a reversed Apriori
(RApriori) algorithm to explore the association rules hide
in the system logs. The association rule we want to search is
defined as ½ei,⋯, ej, ct�, here ei represents a failed rule check
in the process node i and ct is a risk confirmation node. By
investigating the practical TPMS, we figure out the process
nodes are arranged in a single sequence. According to it, we
optimize the classical Apriori by ordering the nodes and
extending the association set in reverse. The details of the
proposed RApriori are shown in Algorithm 1.

In the algorithm, we assign numerical codes to both pro-
cess nodes and risk confirm nodes based on their sequence in
trial. Firstly, the search of latent association rules always
starts from a frequent risk confirm node ct and set it as the
root of the tree T we show in Figure 5. Secondly, the frequent
process nodes whose numerical codes less than ct are
reversely sorted in a candidate list ½eq, ep,⋯,ei�. Thirdly, we
join each item in the list with ct to form a set separately, such
as fct , eqg, and then check the corresponding support score

Table 2: The transform from linguistic terms to the fuzzy numbers
[26].

Lingustic terms Generalized fuzzy numbers

AbsolutelyLow (0.0, 0.0, 0.0, 0.0; 1.0)

VeryLow (0.0, 0.0, 0.02, 0.07; 1.0)

Low (0.04, 0.1, 0.18, 0.23; 1.0)

FairlyLow (0.17, 0.22, 0.36, 0.42; 1.0)

Medium (0.32, 0.41, 0.58, 0.65; 1.0)

FairlyHigh (0.58, 0.63, 0.80, 0.86; 1.0)

High (0.72, 0.78, 0.92, 0.97; 1.0)

VeryHigh (0.93, 0.98, 1.0, 1.0; 1.0)

AbsolutelyHigh (1.0, 1.0, 1.0, 1.0; 1.0)
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Figure 3: The indicator model for the POR.

5Wireless Communications and Mobile Computing



to create layer 2. The support score is defined as

support Að Þ = count Að Þ
Dj j , ð12Þ

where A is a set and jDj is the amount of the logs. Fourthly,
the tree moves to the next layer by orderly combining a set
in the current layer with items in the candidate list that are
less than the minimum node in the set. Then, iteratively
increase the height of T until there is no more satisfied new
set. At last, we calculate the support score of the satisfied sets
and work out the association rules. The support score is
defined as

support ei,⋯, ej
� �

⇒ ct
� 	

=
count ei,⋯, ej, ct

� �� 	
count ei,⋯, ej

� �� 	 : ð13Þ

The RApriori method is executed regularly, and the
searched association rules are added to update the indicator
model of POR. The experimental results show that our algo-
rithm decreases the computational complexity significantly.

3.3. Risk Indicator Evaluation and Public Opinion Analysis.
Besides the indicator factor, we have to calculate the proba-
bility of indicator occurrence, which we call the indicator
value. The data sources of value computing can be divided
into three categories: (1) social media, (2) manual input,

and (3) document analysis. For indicator C3.1, the judge can
report the POR during the trial. As for C1.2, C1.4, C2.1, and
C3.3, the indicator values are determined by the other subsys-
tems in the TPMS, for instance, the case division system.
Apart from them, the values of indicators C1.1, C1.3, C2.2,
and C3.2 are inferred from the social media analysis module.
Figure 6 illustrates the structure of our module for social
media analysis. It is composed of three parts listed as follows:

(i) Analysis in Public Opinion Sentiment. This part
explores how people are interested in the case and
how intensely they discuss the related topics. If the
public cares much about the case and shows negative
sentiment in their expressions, the indicator value
will be large. On the contrary, the indicator value
will come near zero

(ii) Analysis in Hot Search. The judge or the parties fre-
quently searched in social media is an important
indicator that this case may have the POT during
the trial

(iii) Analysis in Media Coverage. If the media in our
maintained important-media list has taken part in
the related topic, this case’s media coverage will
increase. The POT level increases with the coverage
reaching a threshold

In this section, we mainly describe the public opinion
sentiment based on topics. The comments collected from
social media related to the case are divided into some topics
to address this. Then, the texts and the related topics are
fed into a neural network to train a classifier used to analyze
the sentiment. The details are as follows.

3.3.1. Input Embedding. Firstly, a short text is split into a
word sequenceW = fw1,w2,⋯,wng which contains n words.
After that, we transform words to vectors by a Word2vec
model [32] and obtain the embedding matrix EW which con-
sists of all word embeddings.

ct

eiejep

ep

eq

eo ej ei ei...

...

Figure 5: The procedures of joinSet operation.

Data Public opinion
analysis

Public opinion
sentimentShort text

Hot searches Hot search

Media coverageConcerned
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Figure 6: The structure of the social media analysis module.

Dossier
transfer

Case
division

Counter
claimService Defence
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Figure 4: A fragment of the trial process.

Require: system logs generate from T1 to T2
Ensure: association rules ½½ei,⋯, ej, ct �,⋯�
1: total = lenðlogsÞ
2: ens = getSupportErrorNodesðlogsÞ
3: cns = getSupportConfirmNodesðlogsÞ
4: fort = 1; t < lenðcnsÞ; t + +do
5: cn = cns½t�
6: rlogs = getRelatedLogsðcnÞ
7: rens = getRelatedErrorNodeðcnÞ
8: cSet = joinSetðcn, rensÞ
9: cSet = getSupportSetðcSet, rlogs, total, sRecordÞ
10: sList = sortðcSetÞ
11: k = 2
12: repeat
13: fSet = unionðcSetÞ
14: cSet = joinSetðcSet, sList, k + 1Þ
15: cSet = getSupportSetðcSet, rlogs, total, sRecordÞ
16: k = k + 1
17: until cSet is empty
18: end for
19: rules = getConfidenceRuleðfSetÞ

Algorithm 1: RApriori
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3.3.2. Topic Clustering. Single-pass clustering [33] with the
cosine similarity is employed to literately partition m short
texts into k clusters, the topics can be represented as T = f
t1, t2,⋯,tkg, and t is a set of some keywords. The similarity
is calculated as

dist si, sj
� 	

=
si · sj
sij j sj
�� �� ð14Þ

where si and sj are vectors of two short texts. Then, the key-
words in the clusters are detected to be the topics. Moreover,

we get the embedding matrix ET , which contains all keyword
embeddings of a topic through word embedding.

3.3.3. T-BiLSTM-Based Comment Sentiment Analysis. Since
BiLSTM [34] has been proven efficient for sentiment analy-
sis, we propose the T-BiLSTM network to train a text senti-
ment classifier. Figure 7 illustrates the structure of the T-
BiLSTM. On the right side, we employ a BiLSTM layer to
capture the contextual features of the text. On the left side,
we adopt a LSTM layer to explore the contextual features of
the topic. Next, we concatenate the outputs of both sides
and feed it into a softmax layer. The above processes are rep-
resented as

HW = BiLSTM EWð Þ,
HT = LSTM ETð Þ,
H = HW ,HT½ �,

p = softmax W ∗H + bð Þ,

ð15Þ

Softmax

LSTM LSTM LSTM

Topic Short text

LSTM
LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Figure 7: The structure of T-BiLSTM.
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Table 3: The parameters of simulation datasets.

Parameters Value

Count of process nodes 80

Count of confirm nodes 80

Error rate 0.15

Confirm rate 0.15
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where W and b are the weight matrix and bias, respectively.
In addition, we use cross-entropy loss to lead the network
training.

3.3.4. Evaluation of Indicator C1.1. The public opinion senti-
ment for topics is defined as

f i =min max 〠
i=1

M


negi
τ

, 1
 !

, 9
 !

: ð16Þ

Here, negi is the number of negative comments in topic ti
, τ is the threshold which is used to testify whether a topic is
discussed widely, and the evaluation of indicator C1.1 is cal-
culated as

v =
N1 × f1 +N2 × f2+⋯+Nk × f k

M


 �
, ð17Þ

where Ni is the count of texts in topic ti, and M is the total
amount of texts in the case.

3.4. Risk Assessment on Public Opinion for Trial
Management. In this section, we describe the fuzzy number
similarity-based risk assessment module which evaluates
the risk level in the nine-level risk system. At first, the risk
indicator evaluations we talk about in Section 3.3 are con-
verted into fuzzy numbers as

Evaluatei =GFNSvi ,1: ð18Þ

Here, vi ∈ ½1, 9� and GFNSm = ðltm, GFNmÞ; ltm is a lin-
guistic term which is in fAL, VL, L, FL, M, FH, H, VH, AHg
, and GFNm is a generalized fuzzy number defined in
Table 2. Since the risk of public opinion has various indica-
tors, the risk assessment module aggregating risk of each
indicator by the weighted average method is

R =
∑N

i=1Impacti ⊗ Evaluatei
∑N

i=1Impacti
: ð19Þ

As Figure 8 shows, the selected method’s similarity drops
smoothly with the distance increases compared with the
other algorithms. The risk level is calculated as

m = argmax
m

Similarity R, GFNmð Þ: ð20Þ

4. Experiment

In this section, we discuss the results of the three experi-
ments: (A) efficiency of algorithm RApriori, (B) efficiency
of the classifier T-BiLSTM, and (C) the case study of the
whole framework RAPOT.

Case 1

AL

VL

L

FL FL FL FL FL FH FH FH FH FH FL FL FL FL FL

MMMMMHHHHHMMMMM

[22] [20] [10] [21] [23] [22] [20] [10]
Similarity measure algorithms

Risk
levels

[21] [23] [22] [20] [10] [21] [23]

L L L L M M M M M L L L L L

VL VL VL VL VL VL VL VL VL... ... ... ... ...

AL AL AL AL AL AL AL AL AL AL AL AL AL AL

Case 2 Case 3

Figure 9: The comparison in results of five similarity measure methods.
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Figure 10: Time costs with different rule lengths.
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Figure 11: Time costs with different rule counts.
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4.1. Efficiency of RApriori. To validate the efficiency of
RApriori, we compare it with the classical Apriori and FP-
Growth. There are three subexperiments in this section: (a)
time costs with different rule lengths, (b) time costs with dif-
ferent rule counts, and (c) time costs with different datasets.
We carry on these experiments on the simulation datasets
generated with the parameters shown in Table 3. In experi-
ment (a), we employ Apriori, FP-Growth, and RApriori to
work out rules with different lengths. Figure 10 shows that
Apriori and FP-Growth’s time costs sharply increase with
more extended rules. In experiment (b), we compare the
three methods for dealing with different counts of rules.
Figure 11 illustrates our method’s time cost grows slower
than the other methods. In experiment (c), we conduct the
three algorithms on three datasets with different data sizes.
Figure 12 shows that our method has a better efficiency than
Apriori and FP-Growth while tolerating data explosion.

4.2. Efficiency of T-BiLSTM. We train the classifier for public
opinion sentiment analysis with the dataset contains 18000
positive comments and 18000 negative comments come from
Weibo. The validating set has 3600 positive items and 3600
negative items. In addition, we compare the T-BiLSTM-
based sentiment classifier with the KNN, maximum entropy,
Bayes, SVM, and traditional BiLSTM. We adopt accuracy,
positive-precision, positive-recall, and Macro-F1 as the eval-
uation metrics that are defined as

Accuracy = T
N
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 = 2 ×
Precision × Recall
Precision + Recall

,

Macro‐F1 = 1
2

F1pos + F1neg
� 	

,

ð21Þ

where T is the number of correct predictions, and N is the
total number of valide samples. For TP and FP, they repre-
sent the amount of the predicted “Positive” samples which
are correct and incorrect, respectively, which are similar to
TN and FN . As for Macro-F1, it is defined as the average
of F1pos and F1neg and is used to evaluate the efficiency of
each classifer comprehensively. Table 4 shows the compari-
son result, and we can see that our T-BiLSTM exceeds the
other methods.

4.3. Case Study of RAPOT. In this section, we evaluate the
efficiency and applicability of RAPOT with a case study. It
includes three sets of short texts corresponding to three cases;
the size of the three sets are 764, 306, and 156. At first, the risk
indicator model of RAPOT is shown as Figure 3. There are
nine indicators in the aspects of the case, the related parties,
and the judge. Then, we figure out the indicator values for
each case, and the mapped linguistic terms are shown in
Table 5. In the next step, the linguistic terms are turned into

1000 10000 100000

Ti
m

e (
s)

Apriori
FP-Growth
RApriori

Figure 12: Time costs with different dataset.

Table 4: The comparison in accuracy of the five classifiers.

Classifier Acc Precision Recall Macro-F1

T-BiLSTM 0.88 0.90 0.85 0.88

BiLSTM 0.87 0.88 0.86 0.87

ME 0.81 0.82 0.79 0.81

Bayes 0.84 0.81 0.89 0.84

KNN 0.73 0.67 0.90 0.72

SVM 0.80 0.79 0.82 0.80

Table 5: Indicator evaluation for the three cases.

Indicators Impact factors Case 1 Case 2 Case 3

C1.1 VL VL FH FH

C1.2 H AL AL AL

C1.3 H M L VL

C1.4 M AL AH AH

C2.1 H AH AH AL

C2.2 M AH AH AL

C3.1 FH AL AH AL

C3.2 M AL AL AL

C3.3 L AL AL AL

Table 6: The results of fuzzy similarities.

Risk level Case 1 Case 2 Case 3

Absolutely low 0.4970 0.3506 0.5813

Very low 0.5229 0.3412 0.6386

Low 0.6917 0.4318 0.8592

Fairly low 0.9146 0.5872 0.7900

Medium 0.6866 0.7997 0.5561

Fairly high 0.4700 0.7347 0.3880

High 0.3895 0.5955 0.3246

Very high 0.3185 0.4770 0.2712

Absolutely high 0.3108 0.4881 0.2616
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corresponding fuzzy numbers. Then, the impact factors and
evaluations of the indicators are aggregated into a fuzzy num-
ber for each case. Finally, we compute the fuzzy number sim-
ilarities to figure out the risk level.

Table 6lists the similarities. Therefore, the POR of case 1
is fairly low, the POR of case 2 is medium, and the POR of
case 3 is low. Combined with Table 5, case 3 has the least
heat. Meanwhile, the judge and the parties are not unique
identities. Even though the case type is at high risk, without
hot discussion, the POR is low. As for case 1, the public opin-
ion is quite positive, so the risk assessment result is “Fairly-
Low”. Referring to case 2, one of the related parties has
unique identities, and he has attracted much attention on
social media. Nevertheless, media coverage is low, which
illustrates that the issue has not been widespread yet. As we
can see, the RAPOT recognizes the risk of POR successfully
and distinguishes the three cases in risk measurement. To
validate our framework’s efficiency, we compare five similar-
ity measure algorithms. As we can see in Figure 9, the
selected method’s output is the same as the majorities with-
out outliner.

5. Conclusion

The accurate and fine-grained risk assessment on public
opinion in the trial procedure is crucial for refined trial man-
agement. Our framework proposed in this paper provides an
objective and efficient assessment for POR in the trial with-
out using a large amount of historical data, which is quite
lacking, and we propose T-BiLSTM to analyze public senti-
ment opinion based on topics. The method is more compre-
hensive than traditional BiLSTM in practice. The risk
assessment framework for POR consists of three modules:
(1) an adaptive multifactor indicator model for POR assess-
ment, (2) the indicator evaluation module with an accurate
public opinion analysis, and (3) the objective risk ranking
module. The experimental results show the efficiency and
practicability of our framework. In the future, we will work
hard on the considerable amount of processing logs in the
TPMS to further improve our indicator model’s adaptation
and robustness.
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