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In recent years, the Internet of Things (IoT) has developed rapidly after the era of computers and smart phones, which is expected
to be applied to cities to improve the quality of life and realize the intelligence of smart cities. In particular, with the outbreak of
coronavirus disease 2019 (COVID-19) last year, in order to reduce contact, some IoT devices, such as robots, unmanned aerial
vehicles (UAVs), and unmanned vehicles, have played a great role in temperature monitoring, goods delivery, and so on. In this
paper, we study the real-time task allocation problem of heterogeneous UAVs searching and delivering goods in the city.
Considering the resource requirement of task and resource constraints of the UAV, when the resource of a single UAV cannot
meet the requirement of the task, we propose a method of forming a UAV coalition based on contract net protocol. We analyze
the coalition formation problem from two aspects: mission completion time and UAV’s energy consumption. Firstly, the
mathematical model is established according to the optimization objective and condition constraints. Then, according to the
established mathematical model, different coalition formation algorithms are proposed. To minimize the mission completion
time, we propose a two-stage coalition formation algorithm. Aiming at minimizing the UAV’s energy consumption, it is
transformed into a zero-one integer programming problem, which can be solved by the existing solver. Then, considering both
mission completion time and energy consumption, we propose a coalition formation algorithm based on a resource tree. Finally,
we design some simulation experiments and compare with the task allocation algorithm based on resource welfare. The
simulation results show that our proposed algorithms are feasible and effective.

1. Introduction

We are stepping into the era of IoT from the information age
with computers and smart phones. In particular, with the
development of the fifth-generation (5G) technology, 5G net-
work not only brings us faster network speed, more impor-
tantly, but it also promotes the faster arrival of the IoT era
and lays the foundation for the development of IoT applica-
tions [1–5], such as smart home, smart agriculture, and smart
city. Wearable equipments, smart cars, and UAVs are also
members of the extended family in the next generation of
wireless networks. Among them, UAVs have attracted more
and more attention due to its own advantages such as low
cost, strong maneuverability, and no risk of casualties. It

can be used for surveillance and reconnaissance [6], commu-
nication relay [7], and detection and localization [8]. During
the COVID-19 epidemic, in order to reduce contact and ease
the pressure of material transportation, Shunfeng UAV was
used to transport medical and epidemic prevention mate-
rials, such as protective clothing, gloves, and masks. Due to
the increasingly complex mission environment and the
increasing difficulty of the mission, using a single UAV to
perform the mission has low efficiency and poor robustness.
Therefore, multiple UAVs cooperative mission execution has
become a main way of applying the UAV [9, 10].

In the multi-UAVs cooperative search and prosecute
mission, a key problem is the mission planning of multiple
UAVs, that is, to allocate task and plan path for multiple
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UAVs under multiple constraints, so as to maximize the sys-
tem efficiency [11]. According to the hierarchical control
method [12], this problem can be divided into two subprob-
lems: task allocation and path planning, but these two sub-
problems are coupled with each other [13]. To get the task
allocation scheme, it is necessary to obtain the path cost of
each UAV, and the accurate path cost depends on the result
of task allocation [14]. Task allocation is the basis of mission
planning, and it will affect the quality of mission completion.

At present, some scholars at home and abroad have done
a lot of research on the problem of multi-UAVs task alloca-
tion. Gerkey et al. [15] categorized multiagents task alloca-
tion along with three scenarios: (1) each agent can execute
only one task at a time or multiple tasks simultaneously, (2)
each task requires multiple agents or only one agent to pros-
ecute it, and (3) only the current allocation or both the cur-
rent and future allocation are considered. In this paper, our
problem belongs to the multiagents-multitasks instantaneous
assignment problem, because the UAV can perform target
search and prosecute simultaneously, and the target execu-
tion may require multiple UAVs. There also have been lots
of algorithms to solve the multi-UAVs task allocation prob-
lem, which can be divided into two types: centralized and dis-
tributed. The centralized algorithm is that a control center is
responsible for collecting mission information, performing
calculation, and obtaining an appropriate task allocation
scheme. The UAVs act on orders, without any independent
decision-making. The advantage of a centralized algorithm
is that it can guarantee better global optimality, but if some
unexpected situations are encountered during task execution,
the task may fail, such as integer linear programming algo-
rithm, graph theory, genetic algorithm [16], and particle
swarm optimization algorithm [17]. Compared with central-
ized task allocation, the distributed algorithm is more flexi-
ble. Its decision-maker is not a control center, but the UAV
itself. Multiple UAVs together form an intelligent body,
which can communicate with each other. Each UAV can per-
form independent calculation, autonomous analysis, and
decision-making, such as auction algorithm [18], consensus
theory, and contract network algorithm [19].

Most of the work cited above have some common
assumptions: (1) the UAVs are homogeneous and have suffi-
cient resource, (2) the requirement and location of targets are
all known beforehand, and (3) each task can be fulfilled by a
single UAV. However, in the real mission environment, these
assumptions may not be satisfied. For example, due to the
limitation of technology and its size, the type and amount
of resources that UAV can carry are limited. Due to the
weather or equipment limitation, we cannot obtain target
information in advance through some means such as radar
or satellite. The execution of the target may require multiple
UAVs at the same time, and it happens that a single UAV has
insufficient resources to prosecute target. Therefore, in this
paper, we study the real-time task allocation problem of het-
erogeneous UAVs with limited resources. We analyze it from
two aspects: mission completion time and energy consump-
tion, and propose a task allocation algorithm using contract
network algorithm and resource tree. The main contribu-
tions of this paper are summarized as follows:

(1) We introduce a theoretical model for the propulsion
energy consumption of fixed-wing UAVs. Then,
two special energy consumption models are derived,
namely, uniform linear motion and uniform circular
motion. Through this model, we can accurately cal-
culate the energy consumption of UAV to prosecute
the target, instead of using Euclidean distance to rep-
resent the cost. Even if the task distance is the same, if
the UAV heading angle is different, the energy con-
sumption to complete the task may be different

(2) Considering the turning constraint of the UAV, we
introduce the Dubins curve to plan the flight path
for the UAV. Combined with the derived UAV
energy consumption model, we can calculate the mis-
sion time and energy consumption, which is close to
the real flight environment

(3) We analyze the task allocation problem from two
aspects of mission time and energy consumption
and establish mathematical models under different
objectives. For minimizing mission time, we propose
a two-stage task allocation algorithm. We transform
the task allocation problem into zero-one integer
programming to minimize energy consumption.
Considering both, we use the linear weighted sum
method to transform it into a single objective optimi-
zation problem and propose a solution algorithm
using a resource tree

The rest of the paper is organized as follows. Section 2
describes the related works of online task allocation. Section
3 introduces the problem formulation. In Section 4, Dubins
curve is presented, and the UAV energy consumption model
is derived. Section 5 describes the coalition formation algo-
rithm. Simulation results are shown in Section 6. Lastly, we
conclude the paper in Section 7.

2. Related Works

In this paper, we consider the task allocation problem of het-
erogeneous UAVs online cooperative target search and pros-
ecute. In our scenario, UAVs are heterogeneous, carrying
different types and quantities of material resources which will
be depleted with use. The targets are of various types, and
each target requires multiple types and amounts of material
resource. When the UAV detects a target, a single UAV
may have insufficient resources to distribute. At this time, it
is necessary to form a subteam of UAVs, which is also called
the coalition formation game [20]. This subteam is called a
coalition, and each UAV in the coalition is called a coalition
member. The UAV that detects the target is regarded as a
coalition leader.

The coalition formation problem is an NP-hard combi-
natorial optimization problem, and it is computationally
intensive. Because the UAVs are always moving, the algo-
rithm needs to have low computational complexity and give
a feasible coalition formation result in a short time. Mana-
thara et al. [21] proposed a distributed polynomial time coa-
lition formation algorithm (PTCFA). The algorithm first
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sorts the candidate UAVs according to their time to reach the
target, selects the minimum time coalition, and then removes
the unnecessary members in turn. Sujit et al. [22] considered
the influence of time-varying communication network on the
formation process of UAV coalition. Zhu et al. [23] consid-
ered the influence of communication constraints and built a
multinode dynamic network model for modern aerial com-
bat based on the concept of “time to live” (TTL) to identify
the potential coalition members in a dynamic network and
realized coalition formation using the improved PSO algo-
rithm. When multiple UAVs perform a search and attack
mission, the search and attack tasks are coupled, and their
strategies jointly determine the performance of the mission.
Therefore, for a given task allocation strategy, it is necessary
to design an effective search strategy. George et al. [24] pro-
posed three different search strategies: random search strat-
egy, lanes-based search strategy, and grid-based search
strategy. Kim et al. [25], inspired by the concept of social wel-
fare in economics, proposed a distributed coalition formation
algorithm based on resource welfare, which realized a bal-
anced resource consumption among UAV. Ma et al. [26]
proposed an improved multiobjective genetic algorithm
(VC-NSGA-II) to form the task coalition by adding validity
check and correction rules and used clustering algorithm
and VC-NSGA-II algorithm to solve the coalition problem
with large task volume. However, the objective function in
the above-cited literature only considers the maximum target
profit and does not consider UAV’s cost, which usually leads
to a large number of UAVs in the coalition, thus increasing
the price of our UAV group. Yan et al. [27] considered both
the target benefit and UAV’s cost in the system function and
proposed a distributed particle swarm optimization algo-
rithm to plan flyable and safe Pythagorean hodograph curve
trajectories for UAVs to achieve simultaneous arrival. How-
ever, they used path length as the UAV’s cost and did not
establish an accurate fuel consumption model of UAV.

If a UAV coalition is assigned to distribute medical mate-
rials, they should reach the target at the same time, thus
reducing the waiting time of the staff. Currently, for the
simultaneous arrival problem, there are two main ways to
solve it. The first method is to plan the path for each UAV
and, then, achieve simultaneous arrival by adjusting the
speed [28]. This method is easy to cause speed saturation.
The second method is to plan an equal length flight path
for each UAV, and each UAV flies at the same speed, such
as directly planning an equal length flight path [29], short
flight path, and maneuver [30]. In this paper, we use the sec-
ond method to achieve simultaneous arrival.

In this paper, we study the task allocation problem of het-
erogeneous UAVs cooperative real-time target search and
material distribution. Considering the UAV resource con-
straints and target resource requirements, when the resource
of a single UAV cannot meet the target requirements, we use
a way of forming a UAV coalition to complete material trans-
portation. Then, for the coalition formation problem, we
study it from three aspects: minimizing mission completion
time, minimizing UAV energy consumption, and minimiz-
ing mission completion time and UAV energy consumption.
In order to accurately calculate the UAV energy consump-

tion, we derive the energy consumption model of the fixed-
wing UAV based on the aerodynamic theory. To minimize
the mission completion time, we propose a two-stage coali-
tion formation method. For the goal of minimizing UAV
energy consumption, we express the coalition formation
problem as a zero-one integer programming problem and,
then, use the solver to solve it. Then, considering both the
mission completion time and UAV energy consumption,
we use the linear weighted sum method to transform it into
a single objective optimization problem and solve it using a
resource tree.

3. System Model

Consider a search and prosecute mission in an unknown
environment, for N heterogeneous fixed-wing UAVs carry-
ing a variety of limited material resources, such as masks,
protective clothing, and thermometers. The requirement
and location of all targets are unknown beforehand. The
UAVs first perform the target search task. When the target
is found, according to the target’s resource requirements, a
suitable UAV coalition is assigned to distribute the required
materials as shown in Figure 1. To simplify the problem, we
make the following assumptions:

(1) The UAV’s take-off and landing process are not
considered

(2) The UAVs fly at different altitudes to avoid collision

(3) In the process of task allocation, due to the high data
transmission rate and low latency characteristics of
the next generation-enabled IoT, we consider that
the network communication topology remains
unchanged

(4) The velocity of the UAVs is constant and equal

3.1. Targets and UAVs. Assuming that T = fT 1,T 2,⋯,
T Lg are L targets in the mission region, the location and
resource requirement are unknown at the beginning. There
are Q different material resources in total. The resource
requirement of target T l is expressed as a vector:

rTl = rT l
1 , rT l

2 ,⋯, rT l
Q

� �⊤
, l = 1, 2,⋯, L, ð1Þ

where rTl
q , q = 1, 2,⋯,Q denotes the quantity of q-type

resource required by T l.
Let U = fU1,U2,⋯,UNg be the set of N heterogeneous

UAVs. Each UAV carries different material resources, which
is written as a vector:

rUn = rUn
1 , rUn

2 ,⋯, rUn
Q

� �⊤
, n = 1, 2,⋯,N , ð2Þ

where rUn
q , q = 1, 2,⋯,Q denotes the quantity of q-type

resources carried by Un.
It is assumed that multiple UAVs use random search

strategy [24] to perform search task in the mission area,
and their sense range is limited, denoted as Rs. Regardless
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of the take-off and landing process of UAVs, each UAV is
considered as flying in a two-dimensional plane. The kine-
matics model of UAV Un is expressed as follows:

_xn

_yn

_φn

2
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3
775 =

cos φn 0
sin φn 0
0 1

2
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3
775 Vn

ωn

" #
, ð3Þ

where (xn, yn) is the coordinates of Un, φn represents the
UAV’s heading angle, and ωn and Vn are the UAV’s turn rate
and speed, respectively.

3.2. Objective Function and Constraints. In this paper, we
study the task allocation problem of multiple UAVs cooper-
ative real-time target search and material resources distribu-
tion and analyze it from two aspects: mission completion
time and UAV energy consumption. Consider a scenario
where the UAV Un detects target T l, but cannot meet the
material requirements of T l, then U acts as a leader and
broadcasts T l’s location and required resource information.
All the N UAVs have the required resources and respond
to Un, denoted as set A. Let Dl

n = fDl
1,Dl

2,⋯,Dl
Ng and εln

= fεl1, εl2,⋯, εlNg represent the arrival time and energy con-
sumption to T l for the N UAVs, respectively. The set I A
represents a subset of candidate coalition A, and ΠA is all
nonempty subsets of A. The objective function is as follows:

(1) Minimum mission time

min 〠
L

j=1
TT j , ð4Þ

where TT j represents the execution time of the target T j.
Since the location and resource requirements of each target
are unknown, task allocation is an online and real-time pro-
cess. Therefore, in this paper, we adopt a greedy strategy to
minimize the mission completion time, that is, minimize
the completion time of each target. For the target T l, the
objective function can be expressed as follows:

minIA∈ΠA
maxn∈IAD

l
n: ð5Þ

(2) Minimum energy consumption

min 〠
L

j=1
εT j , ð6Þ

where εT j is the UAV’s energy consumption of prosecut-
ing the target T j. Similarly, we use a greedy strategy and
achieve objective (6) by minimizing the energy consumption
of each target. For the targetT l, the objective function can be
written as follows:

min 〠
∣I A∣

j=1
εlj, ð7Þ

where jI Aj represents the number of UAVs in set I A
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Figure 1: In the unexplored area, red triangles denote UAVs and
blue squares denote targets.
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Figure 2: Dubins longest and shortest path.
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Figure 4: Sequence of actions in the process of coalition formation.

Input: potential coalition members P ðUn,T lÞ and their earliest arrival time DðUn,T lÞ
Output: coalition CðUn,T lÞ
1: Initialize:
2: Sort the set P ðUn,T lÞ in ascending order according to arrival time DðUn,T lÞ.
3: ½Dsorted,P sorted� = sortðDðUn,T lÞ,P ðUn,T lÞÞ
4: CðUn,T lÞ =∅ and rCðUn ,T lÞ = 0
5: fori = 1 to jP ðUn,T lÞjdo
6: Uk ⟵P sorted

i
7: Append Uk to CðUn,T lÞ
8: rCðUn ,T lÞ ⟵ rCðUn ,T lÞ + rUk

9: ifrCðUn ,T lÞ
q ≥ rT l

q ,  q = 1, 2,⋯,Qthen
10: break
11: else
12: continue
13: end if
14: end for

15: ifrCðUn ,T lÞ
q ≥ rT l

q , q = 1, 2,⋯,Qthen
16: Select the last member from CðUn,T lÞ as the root of the tree, denote as nc
17: nc = rUnc

18: j = 1
19: whilenc < rT ldo
20: j = j + 1
21: Select a member from CðUn,T lÞ except for the current node and its parent, all grandparents, and left brother nodes, and
add it to the tree, denote as nj

22: np is nj 's parent node

23: nj = rUnj + rUnp

24: nc = nj

25: end while
26: CðUn,T lÞ =∅
27: Append current node, its parent node, and all grandparent nodes to CðUn,T lÞ
28: returnCðUn,T lÞ
29: else
30: return No feasible coalition
31: end if

Algorithm 1: The two-stage coalition formation algorithm.
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and εlj is the energy consumption of the jth UAV in I A to
prosecute T l.

(3) Minimum mission time and energy consumption

If only the mission time is considered, the UAV that is
closest to the target will be given priority every time. There
may be a situation in which UAVs that are closer to the target
have fewer remaining resources, so in order to meet the target
resource requirements, a lot of UAVs will be needed, result-
ing in greater energy consumption. Similarly, if only the
UAV’s energy consumption is considered, the mission com-
pletion time cannot be guaranteed. In order to maximize the
system utility, we consider both mission time and energy
consumption and use the linear weighted sum method to
transform the multiobjectives optimization problem into a
single objective. The objective function is as follows:

min 〠
L

j=1
ω · TT j + 1 − ωð Þ · εT j

� �
, ð8Þ

where ωð0 ≤ ω ≤ 1Þ is the weight coefficient. Similarly, we
achieve objective (8) by minimizing the utility of each target.
That is,

minIA∈ΠA
ω ⋅maxn∈IAD

l
n + 1 − ωð Þ ⋅ 〠

I Aj j

j=1
εlj

 !
: ð9Þ

In the calculation process, the dimension of time and
energy consumption is different, so it is not easy to compare
them. Therefore, we convert the target execution time into
the energy consumption of the corresponding UAV, namely,

minIA∈ΠA
ω ⋅ εlτ + 1 − ωð Þ ⋅ 〠

∣I A∣

j=1
εlj

 !
, ð10Þ

where

τ = argmaxn∈I A
Dl

n, ð11Þ

represents the UAV that arrives at Tl the latest in candi-
date coalition I A.

To successfully complete the task, the total resource of
the candidate coalition IA should be greater than the Tl’s
demand, namely,

〠
∣I A∣

n=1
rUn
q

 !
≥ rTl

q , q = 1, 2,⋯,Q: ð12Þ

4. Path Planning and Energy
Consumption Model

In this paper, although we study the task allocation problem
of multi-UAVs, in order to accurately calculate the UAV’s
flight time and energy consumption, we also consider the
path planning of UAV. We model the UAV as a Dubins
model and derive the calculation formula of the UAV’s
energy consumption.

4.1. Dubins Curve. Dubins [31] considered the influence of
the vehicle’s minimum turning radius and used a geometric
method to give the vehicle’s shortest path formula between
any two points (including coordinates and directions). It is
composed of the maximum curvature arc and straight line
segment, which is also called the Dubins path. As shown in
Figure 2, assuming that the UAV’s initial position, flight
direction, and the target location are known, there are two
Dubins paths that can reach the target, namely, the shortest
path (SP) and the longest path (LP). SP has the shortest dis-
tance to reach the target. If we use the SP to plan the path for
the UAV, when the distance between the UAV and the target
is less than the minimum turning radius, the UAV will be
unable to reach the target. Compared with SP, LP has a lon-
ger path length, but it will not fail to reach the target. There-
fore, in this paper, we use the LP. Its length calculation
method can refer to literature [32].

4.2. Energy Consumption Model.We focus on the UAV’s pro-
pulsion energy consumption which is used to maintain aloft
and support its maneuverability. Based on the classic aircraft
consumption model in aerodynamic theory, the required
propulsion energy can be expressed as a function of the loca-
tion pðtÞ for fixed-wing UAVs with a constant altitude [33]:

E p tð Þð Þ = 1
2m v Tð Þk k2 − v 0ð Þk k2� �

+
ðT
0
c1 v tð Þk k3

+
c2 g2 + a tð Þk k2 − aT tð Þv tð Þ� �2/ v tð Þk k2
� �

g2 v tð Þk k dt,

ð13Þ

where

v tð Þ ≜ _p tð Þ, a tð Þ ≜ €p tð Þ, ð14Þ

represent the UAV’s instantaneous velocity and accelera-
tion, respectively, and c1 and c2 denote two parameters
related with aircraft mass, wing area, aircraft shape, air den-
sity, and so on. The parameter g is the acceleration of gravity,

U5

U1 U2 U3 U4

U2 U3 U4 U3 U4 U4

U3 U4 U4 U4

U4

Figure 5: Resource tree.
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andm represents the UAV’s total mass. T is the UAV’s flight
time.

In the Dubins model, the UAV’s flight path consists of
arc and straight line. Therefore, we consider the energy con-
sumption model in two special cases. One is that the UAV
flies along a straight horizontal line at a constant speed V ,
i.e., kaðtÞk = 0 and kvðtÞk = V for all t. (13) can be simplified
as

E Vð Þ = T c1V
3 + c2

V

� �
: ð15Þ

According to formula (15), the relationship between
energy consumption and speed is depicted in Figure 3. As
can be seen from Figure 3, given the required parameters,
we can calculate an optimal speed, which has the lowest
energy consumption.

The other is that the UAV makes uniform circular
motion, i.e., kvðtÞk = V and aΤðtÞvðtÞ = 0 for all t. At any
moment, the UAV’s acceleration direction is always perpen-
dicular to the speed direction. The magnitude of the acceler-
ation is aðtÞ = kaðtÞk =V2/r for all t. Therefore, (13) can be
simplified as

E V , rð Þ = T c1V
3 + c2

g2r2
V3 + c2

V

� �
, ð16Þ

where r denotes the radius of the circular trajectory. We
can find that, compared with uniform linear motion, addi-
tional energy consumption is generated when the UAV’s
flight direction is changed.

5. Coalition Formation

When the UAV finds a target, it decides its next action based
on its current status. As shown in Figure 4, the UAV Un
detects the target T l which requires rT l resource. If Un has
the required resources of T l, it will prosecute T l.

If Un has insufficient resources for the target T l, Un
becomes a coalition leader and broadcasts the requirement
and location of T l to the other UAVs. The UAVs, which
have required resources, will respond to Un with their
resource vector and cost to prosecute T l. After receiving all
the responses, Un uses the coalition formation algorithm to
obtain a suitable coalition for T l. If there is no suitable

Input: potential coalition members CðUn,T lÞ, and their arrival time DðUn,T lÞ, energy consumption εðUn,T lÞ
Output: C l
1: C f =∅, C l =∅, flag = 0
2: Take the target T l as the root node, denote as nc.
3: nc = rT l

4: whileflag == 0do
5: Select a member from CðUn,T lÞ except for the current node and its parent, all grandparents, and left brother nodes, and add it
to the current node, denote as ns.
6: np is ns’s parent node

7: ns = rUnp − rUns

8: ifns ≤ 0then
9: C f ⟵ current node, its parent node, and all grandparent nodes except for the root node
10: flag = 1
11: end if
12: ifflag == 1 and no nodes can be added to this layer then
13: break
14: else
15: flag = 0
16: end if
17: if no nodes can be added to the tree. then
18: break
19: end if
20: end while
21: ifC f ≠∅then
22: C l⟵ select an optimal coalition from C f

23: end if

Algorithm 2: The resource tree-based coalition formation algorithm.

Table 1: The resource of the candidate coalition CðU1,T 1Þ.
UAVs Resource vector

U1 (2,1)⊤

U2 (3,3)⊤

U3 (2,2)⊤

U4 (3,1)⊤

U5 (2,3)⊤
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coalition, U will broadcast a rejection message to all
responders. Otherwise, it broadcasts coalition information
to all the selected UAVs. The selected UAVs will replan their
path to achieve simultaneous arrival to the T l. The rejected
UAVs will continue to perform their original operation.
When forming a coalition, the coalition leader has to solve
an optimization problem which is computationally intensive.
We propose different coalition formation algorithms accord-
ing to different optimization objectives.

5.1. Minimum Mission Time. To achieve the minimum mis-
sion time goal, the coalition leader has to solve the optimiza-
tion problem given by formula (5) and (12). The traditional
exhaustive method is not suitable for real-time task assign-
ment problem because of its large search space and high time
complexity. In this paper, we propose a two-stage mecha-
nism which has low computational complexity. The specific
process is given in Algorithm 1.

In the first stage, we decide on a minimum time coalition
which satisfies the target resource requirements. Then, we
build a resource tree to prune some unnecessary UAVs to
achieve the minimum coalition size. Suppose that Un has
detected T l but has insufficient resources. Therefore, Un
broadcasts the information of T l to other UAVs. After
receiving all the responses, Un sorts the responders in
ascending order of their cost, i.e., the earliest arrival time to
T l (line 2 in Algorithm 1). Starting with the first UAV after
sorting, only one UAV is taken at a time until the require-
ment of T l is met (line 3-14 in Algorithm 1). After the above
step, if there has a feasible coalition, its time must be mini-
mum to prosecute T l. Then, for the obtained minimum time
coalitionCðUn,T lÞ, we build a resource tree to remove some
members whose resources are not necessary. Since the
resource of the last member of CðUn,T lÞ is necessary, we
take it as the root node. Then, we select a member from Cð
Un,T lÞ and add it to the current node. The value of new
node is its resource vector plus the value of its parent node.
This process is repeated until the value of the current node
meets the target demand. The final coalition is made up of
the current node, its parent node, and all grandfather nodes.
To illustrate the pruning process, we give a hypothetical
example as shown in Figure 5 where the selected minimum
time coalition CðUn,T lÞ is fU1,U2,U3,U4,U5g.

5.2. Minimum Energy Consumption. Due to the limitation of
UAV's size and technology, its energy is limited. Therefore,

T1
{1:(5,3)}

U1
{2:(3,2)}

U2
{3:(2,0)}

U3
{4:(3,1)}

U4
{5:(2,2)}

U5
{6:(3,0)}

U2
{7:(0,−1)}

U3
{8:(1,0)}

U4
{9:(0,1)}

U5
{10:(1,−1)}

U3
{11:(0,−2)}

U4
{12:(−1,−1)}

U5
{13:(0,−3)}

U4
{14:(0,0)}

U5
{15:(1,−2)}

U5
{16:(0,−1)}

Figure 6: Resource tree of the target T 1.

Table 2: Initial information of UAVs.

UAVs Location (m) Heading angle (°) Resource

UAV 1 (500, 2500) 30 (2,1)

UAV 2 (0, 0) 60 (1,1)

UAV 3 (1000, 2000) 300 (3,2)

UAV 4 (3000, 2500) 270 (2,3)

UAV 5 (2000, 1500) 30 (2,2)

UAV 6 (2000, 500) 60 (2,2)

Table 3: Initial information of targets.

Targets Location (m) Resource requirement

Target 1 (1500, 1500) (4,2)

Target 2 (2000, 2000) (3,3)

Table 4: Control parameters.

Parameters Value

V 50m/s

Rmin 50m

Rs 500m

ω 0.4

c1 9:26 × 10−4

c2 2250

U1

y
 (m

)

x (m)

4000

3500

3000

2500

2000

1500

1000

500

–500

–500 500 1000 1500 2000 2500 3000 3500 4000

0

0

U3 T2

T1

U4

U5

U6
U2

Target
UAV

Figure 7: An illustration of initial location of UAVs and targets.
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in order to maximize the efficiency of the UAV team, we need
to consider the UAV’s energy consumption when assigning
tasks. To minimize the UAV’s energy consumption, we
model the task allocation problem as a zero-one integer pro-
gramming problem. Assuming that the UAV Un is a coali-
tion leader for the target T l and the set of candidate
coalition members is CðUn,T lÞ = fU1,U2,⋯,UNg. We
first define the following binary variable:

xi =
1 if theUAVUi is selected,
0 otherwise:

(
ð17Þ

Then, a general scheme of the zero-one integer linear
programming formulation of the task allocation problem

can be expressed as follows:

min 〠
C Un ,T lð Þj j

i=1
xiε

l
i, ð18Þ

s:t: 〠
C Un ,T lð Þj j

i=1
rUi
q xi

 !
≥ rT l

q , q = 1, 2,⋯,Q, ð19Þ

xi ∈ 0, 1f g,∀i ∈ 1, 2,⋯, C Un,T lð Þj jf g, ð20Þ
where (19) is the resource constraint, which is used to

ensure that the selected UAVs meet the target resource
requirement. jCðUn,T lÞj represents the number of the
UAV in the set CðUn,T lÞ. εli is the energy consumption of
the ith UAV in the set CðUn,T lÞ to prosecute T l.

5.3. Minimum Mission Time and Energy Consumption. Con-
sidering both the mission time and energy consumption, the
coalition leader needs to tackle the optimization problem
(10). Meanwhile, the number of UAVs in the coalition also
needs to be considered, because it implicitly assists in fast
completing mission. To solve it, we develop a resource tree
and use it to get a suitable task allocation solution in an
acceptable time.

The detailed process is shown in Algorithm 2. Similarly,
we assume that the UAV Un detects the target T l and has
insufficient resource. CðUn,T lÞ is the candidate UAV set
for T l. Firstly, we initialize a cell structure C f to be empty,
which stores some feasible coalitions that meet the T l’s
resource requirement. Then, we take T l as the root node of
the tree. When we add a new node, we select a UAV from
CðUn,T lÞ except for the current node and its parent, grand-
father, and left brother nodes and, then, add it to the current
node. The value of the new node is the value of its parent
node minus its resource vector. If the value of the new node
is less than 0, the current node, its parent node, and all grand-
father nodes except the root node form a feasible coalition. If
the first feasible coalition is found, the process ends when
there is no node that can be added to the current layer. Oth-
erwise, the above process is repeated. Then,Un selects a opti-
mal coalition from C f based on (10).

We give a simple example to better understand Algo-
rithm 5.3. Assuming that U1 has detected T 1 and the set of
candidate UAV is CðU1,T 1Þ = fU1,U2,U3,U4,U5g. Their
resource vector is given in Table 1, and the resource
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Figure 8: The trajectories of U3 and U5.
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Figure 9: The trajectories of U1 and U4.

Table 5: The initial information of the UAVs.

UAVs Location (m) Heading angle (°) Resource

UAV 1 (500, 2500) 30 (2,2)

UAV 2 (0, 0) 60 (3,1)

UAV 3 (1000, 2000) 300 (2,1)

UAV 4 (1000, 1000) 60 (1,2)

UAV 5 (2000, 2000) 30 (4,1)

UAV 6 (2000, 1500) 60 (2,1)
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requirement ofT 1 is rT 1 = ð5, 3Þ⊤. According toAlgorithm 2,
the final result is shown in Figure 6. f1 : ð5, 3Þg represents a
key-value pair, where the key is the number of a tree node,
and the value is the value of its parent node minus its
resource vector. The value of the root node T 1 is its resource

requirement. Since the values of node 7, 11, 12, 13, 14, and 16
are less than 0, the feasible coalition set C f is fðU1,U2Þ, ð
U2,U3Þ, ðU2,U4Þ, ðU2,U5Þ, ðU3,U4Þ, ðU4,U5Þg. The
above process ensures that the size of feasible coalition is
the smallest. Then,U1 selects an optimal coalition C1 among
C f based on (10).

6. Simulation Results

In this section, three groups of numerical simulation are car-
ried out to evaluate the performance of our proposed algo-
rithms. In the first example, we give a general scenario to
illustrate the entire search and prosecute process. In the sec-
ond example, we show the difference between the proposed
three coalition formation algorithms. Finally, we show the
effects of changing the number of UAVs on the mission com-
pletion time and energy consumption through the Monte
Carlo simulation. In addition, we compare our proposed
algorithms with the task allocation algorithm based on
resource welfare [25].

6.1. General Scenario. Considering a general scenario with six
UAVs and two targets in a bounded region 3200m × 3200m,
we analyze the whole process of heterogeneous UAVs coop-
erative target search and execution. If the UAV flies out of the
mission area, it will take the minimum turning radius to
return to the mission area. Table 2 shows the initial informa-
tion of each UAV, and Table 3 lists the location and resource
requirement of each target. Note that the UAVs do not have
any information about the location and required resource of
the target at the initial moment. The information of the target
can be obtained only when the UAV detects the target. The
control parameters are shown in Table 4 where V is the flight
speed, Rs denotes the sensor radius of the UAV, and Rmin
denotes the UAV's minimum turning radius. Figure 7 illus-
trates the initial environment.

At the initial moment, all UAVs perform a random
search task along the heading direction. At time t = 0:1s, U5
detects T 1 and T 2. U5 chooses T 1 as the target, because
the resource of U5 cannot meet the resource requirement of
T 1 or T 2, while T 1 is closer toU5. AsU5 does not have suf-
ficient resource to prosecute T 1, U5 becomes a coalition
leader and broadcasts the requirement and location of T 1
to other UAVs. After receiving all the responses, U5 forms
a coalition C1 = ðU3,U5Þ for the target T 1 using our pro-
posed resource tree-based coalition formation algorithm,
which comprehensively considers the target execution time
and energy consumption. Then,U3 andU5 replan their path
based on the Dubins curve to simultaneously arrive at T 1 as

Table 6: Performance comparison of the four algorithms.

Two-stage Zero-one integer programming Resource tree Resource welfare

Coalition members U3,U5,U6ð Þ U4,U5ð Þ U4,U5ð Þ U1,U5ð Þ
Mission time (s) 20.42 20.42 20.42 34.23

Energy consumption ð× 104 JÞ 2.2142 1.7369 1.736 1.7849

Mission planning time (s) 0.13 0.43 0.18 0.15
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Figure 10: Coalition members and its trajectories using the
proposed resource tree-based coalition formation algorithm.
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Figure 11: Coalition members and its trajectories using the
proposed two-stage coalition formation algorithm.
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shown in Figure 8. At time t = 0:2s,U5 detectsT 2.U5 cannot
be a potential coalition member, because it is now in the state
of performing task. However, U5 can still act as a coalition
leader and broadcast the location and resource requirement
of T 2 to other UAVs. After receiving all the responses, U5
forms a coalition C2 = ðU1,U4Þ for T 2. The trajectory of
U1 and U4 is shown in Figure 9. The total mission time
including target search and prosecute is 37.9 s, and the total
energy consumption is 5:4419 × 104 J.

Figures 8 and 9 show that our proposed task allocation
algorithm effectively completes the target search and prose-
cute in an unexplored environment. The proposed resource

tree-based coalition formation algorithm can assign suitable
UAVs for the target.

6.2. Comparison of Four Algorithms. In this example, we con-
sider a simple scenario with one target and six UAVs in a
bounded area. Our goal is to compare the differences between
the four coalition formation algorithms. Table 5 shows the
initial information of all UAVs. The target is located at
(1500, 1500), and resource requirement is rT = ð5, 3Þ⊤. The
control parameters are the same as in Table 4.

We compare the mission time, energy consumption, and
mission planning time which includes coalition formation
time and path planning time. The specific results are shown
in Table 6. The trajectories of coalition member are shown
in Figures 10–12, where the coalition member for minimum
energy consumption is the same as the resource tree-based
coalition formation algorithm.

It can be found from Figures 10–12 that different coali-
tion formation algorithms get different coalitions even if the
target and potential coalition members are the same.
Table 6 shows that the energy consumption of the two-
stage coalition formation algorithm is the highest, because
it only considers the mission time and do not consider the
energy consumption of UAVs when it forms the coalition,
which leads to the increased number of UAVs. The resource
tree-based coalition formation algorithm has the same coali-
tion members as the minimum energy consumption. How-
ever, the resource tree-based algorithm has less mission
planning time, because the solver of the zero-one integer pro-
gramming problem uses the cut plane method which has
intensive computation. Therefore, the resource tree-based
algorithm is more suitable for a real-time task assignment
application. Compared with the resource welfare-based task
allocation algorithm, the resource tree-based algorithm has
less mission time and energy consumption. Because the
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Figure 12: Coalition members and its trajectories using the resource
welfare-based coalition formation algorithm.
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resource welfare-based algorithm chooses U1 instead of U4
as one of the coalition members to achieve a balanced
resource depletion, and U1 is farther from the target than
U4.

6.3. Effects of Varying Number of UAVs. In this example, we
make use of Monte Carlo simulation to illustrate the perfor-
mance. The average mission completion time and energy
consumption are measured and compared by varying the
number of UAVs. The size of the mission area is 5000m ×
5000m. The control parameters are the same as in Table 4.
At the beginning, assume that all the UAVs are located at ð
0, 0Þ, and the resources of the UAVs and targets are ran-
domly generated. The heading angles of UAVs are different.
There are five targets in the mission area. The number of
UAVs varies from 6 to 20. The experimental results are
shown in Figures 12 and 13.

Figure 13 shows the average mission completion time of
four algorithms when the number of UAVs changes. As the
number of UAVs increases, the mission completion time
decreases. Because the increased number of UAVs allows
the resource requirements of the targets to be met as soon
as possible, and the execution of multiple targets can be per-
formed simultaneously. Compared with the resource
welfare-based algorithm, the resource tree-based algorithm
has less mission completion time. However, there is a small
difference in the average mission completion time among
the proposed algorithms.

Figure 14 compares the average energy consumption of
four algorithms when the number of UAVs changes. As the
number of UAVs increases, the energy consumption of
UAVs continues to increase, because more UAVs are dis-
patched to perform mission. The resource welfare-based task
allocation algorithm has the highest energy consumption.
Because it uses an average resource consumption strategy,
and each UAV maintains almost equal resource surplus. As
the number of UAVs increases, multiple UAVs are allocated
to execute the target with more resources, thereby increasing
energy consumption. The energy consumption of the
resource tree-based algorithm is less than the other two pro-
posed algorithms.

7. Conclusions and Future Works

In this paper, we studied the task allocation problem of het-
erogeneous UAVs cooperative real-time target search and
prosecute in an unexplored area. We analyzed it from two
aspects: mission time and energy consumption. According
to different optimization objectives, we established the corre-
sponding model and designed the solution algorithm. For the
minimum mission time objective, we proposed a two-stage
coalition formation algorithm. For the minimum energy con-
sumption objective, we solved it by modeling the problem as
a zero-one integer programming problem and using the
existing solver. For the minimum mission time and energy
consumption objective, we proposed a resource tree-based
algorithm. Through simulation experiments, we verified that
our proposed algorithms is feasible and effective.

In the future, we intend to consider the impact of time-
varying communication network on online task allocation.
The UAVs are always in flight and have limited communica-
tion ranges. Therefore, the coalition is formed in a time-
varying network. It takes some time to transmit and process
the message, which will affect the calculation of the time and
energy consumption of UAV to reach the target.

Data Availability

I will put my experimental code and data on my github as
soon as possible. The hyperlink is https://github.com/lilirm/
Real-Time-Task-Allocation-of-Multiple-Heterogeneous-
Unmanned-Aerial-Vehicles-for-Search-and-Prosecut.
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