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In sensing systems, nodes must be able to rapidly detect whether a signal from a primary transmitter is present in a certain
spectrum. However, traditional energy-detection algorithms are poorly adapted to treating noisy signals. In this paper, we
investigate how rapid energy detection and detection sensitivity are related to detection duration and average power fluctuation
in noise. The results indicate that detection performance and detection sensitivity decrease quickly with increasing average
power fluctuation in noise and are worse in situations with low signal-to-noise ratio. First, we present a dynamic threshold
algorithm based on energy detection to suppress the influence of noise fluctuation and improve the sensing sensitivity. Then, we
present a new energy-detection algorithm based on cooperation between nodes. Simulations show that the proposed scheme
improves the resistance to average power fluctuation in noise for short detection timescales and provides sensitive detection that
improves with increasing numbers of cooperative detectors. In other words, the proposed scheme enhances the ability to
overcome noise and improves spectrum sensing performance.

1. Introduction

Spectrum sensing for cognitive radio involves a cognitive
user that can detect signals in real time and provide feedback
when an authorized user sends a signal. Spectrum sensing
strongly affects the accuracy of communication between the
authorized user and the cognitive user, and a good spectrum
sensing algorithm is robust against noise (i.e., produces min-
imal disruption of authorized users). Therefore, which sens-
ing scheme to use in situations with a low signal-to-noise
ratio (SNR) is an important topic [1, 2]. Most programs
now are based on energy detection, which is sensitive to
noise, so small fluctuations in noise power may cause a sharp
decline in energy detection. Most energy-detection schemes
are based on constant noise power [3–8], although some
research is available on nonconstant noise power [9–15]. In
fact, constant noise power [3–8] is not possible because of
background noise, which includes thermal noise, quantiza-
tion noise, noise due to power leakage through nonideal fil-

ters [16], interference between authorized users, and
cognitive interference between users and other components
[17, 18]. Thus, noise on detection timescales cannot be con-
stant; instead, the average noise power fluctuates.

In this paper, we study the relationship between average
power fluctuation in noise, detection sensitivity, and detec-
tion duration. With zero average power fluctuation in noise,
a given detection performance is achieved in theory when the
noise power is constant, provided sufficiently long detection
time and that the signal can be detected by cognitive radio
at low SNR. Thus, a second user provides high detection sen-
sitivity. However, with nonzero average power fluctuation in
noise, even given sufficiently long detection duration, the
ability of the cognitive user to detect the SNR is limited and
the detection sensitivity decreases dramatically. If the SNR
detected by the cognitive user is below the detection sensitiv-
ity, no authorized users will be detected in the given band,
even if blessed with an infinitely long detection time. In this
case, the cognitive user inevitably interferes with the signals
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of the authorized users. The average power fluctuation in
noise decreases the detection performance and detection sen-
sitivity, so a sensing scheme is required that is robust against
fluctuations in noise. Toward this end, we present herein a
cooperative spectrum sensing algorithm that provides
increased sensing performance as the number of collabora-
tive users increases. The algorithm improves robustness
against noise fluctuations while providing the same detection
performance, thereby improving the detection sensitivity.

2. Energy-Detection Model

Assume that the signal is independent of the noise and that
random processes are stationary and ergodic unless other-
wise specified. The problem of signal detection in additive
Gaussian noise can be formulated as a binary hypothesis-
testing problem with the following hypotheses:

H 0 : Y nð Þ =W nð Þ, n = 1, 2,⋯,N ,
H 1 : Y nð Þ = X nð Þ +W nð Þ, n = 1, 2,⋯,N ,

(
ð1Þ

where YðnÞ, XðnÞ, and WðnÞ are the signal received at the
cognitive radio nodes, the transmitted signal at the primary
nodes, and white noise samples, respectively; H 1 (H 0) indi-
cate that the licensed user is present (not present). Noise
samples WðnÞ come from an additive white Gaussian noise
process with power spectral density σ2n, [i.e., WðnÞ ∼N ð0,
σ2nÞ.].

We assume no deterministic knowledge about the signal
XðnÞ other than the average power of the signal. In this case,
the optimal detector is an energy detector or a radiometer
[11], and the test statistic is given by

D Yð Þ = 1
N

〠
N−1

n=0
Y2 nð Þ ≷

H 1

H 0

γ, ð2Þ

where DðYÞ is the decision variable, γ is the decision thresh-
old, and N is the number of samples. If the noise variance is
known with zero noise uncertainty, the central limit theorem
gives the following approximations [9, 11]:

D Yð Þ H 0j ∼N σ2n,
2
N
σ4n

� �
,

D Yð Þ H 1j ∼N P + σ2
n,

2
N

P + σ2n
� �2� �

,

8>>><
>>>:

ð3Þ

where P = ð∑N
n=1jXðnÞj2Þ/N is the average signal power and

σ2n is the noise variance.

3. Energy Detection with Single Node

With these approximations, one obtains the following detec-
tion probability PD and false alarm probability PFA [9, 11]:

PD = prob D Yð Þ > γ H 1jð Þ =Q
γ − P + σ2n
� �

ffiffiffiffiffiffiffiffi
2/N

p
P + σ2nð Þ

 !
, ð4Þ

PFA = prob D Yð Þ > γ H 0jð Þ =Q
γ − σ2nffiffiffiffiffiffiffiffi
2/N

p
σ2n

 !
, ð5Þ

whereQð⋅Þ is the standard Gaussian complementary cumula-
tive distribution function and PD, PFA, and PMD are the detec-
tion probability, false alarm probability, andmissed detection
probability, respectively.

The relationship between target variables (i.e., detec-
tion probability PD, false alarm probability PFA, missed
detection probability PMD, and sample number N , with
the latter giving the detection duration) is deduced for a
given SNR.

To simplify the problem, we discuss the energy-detection
algorithm based on the average noise power without uncer-
tainty. Using Eqs. (4) and (5) to eliminate the decision-
threshold variable γ gives

N = 2 Q−1 PFAð Þ −Q−1 PDð Þ 1 + SNRð Þ� �2SNR−2, ð6Þ

where Q−1ð⋅Þ is the inverse standard Gaussian complemen-
tary cumulative distribution function, and SNR = P/σ2n is
the signal-to-noise ratio.

Now consider the case with uncertainty in the noise
model. The variance of noise with uncertainty can be
included in a single interval σ2 ∈ ½σ2

n/ρ, ρσ2
n�, where ρ is the

noise uncertainty factor and ρ is close to 1; that is, ρ > 1
and ρ ≈ 1. Thus, Eqs. (4) and (5) take the form

PD = min
σ2∈ σ2n/ρ,ρσ2n½ �

Q
γ − P + σ2� �
ffiffiffiffiffiffiffiffi
2/N

p
P + σ2ð Þ

 !
=Q

γ − P + σ2n/ρ
� �

ffiffiffiffiffiffiffiffi
2/N

p
P + σ2n/ρð Þ

 !
,

ð7Þ

PFA = max
σ2∈ σ2n/ρ,ρσ2n½ �

Q
γ − σ2ffiffiffiffiffiffiffiffi
2/N

p
σ2

� �
=Q

γ − ρσ2
nffiffiffiffiffiffiffiffi

2/N
p

ρσ2
n

 !
: ð8Þ

By eliminating γ, we get the following expression involv-
ing PD, PFA, N , ρ, and SNR:

N = 2 ρQ−1 PFAð Þ − 1
ρ
+ SNR

� �
Q−1 PDð Þ

	 
2
⋅ SNR − ρ −

1
ρ

� �	 
−2
:

ð9Þ

Comparing Eq. (9) with Eq. (6) and using the property of
Q−1ð⋅Þ and ρ ≈ 1, we find almost no contribution to the whole
expression for a tiny change of ρ. However, the second half
[i.e., SNR−2or ½SNR − ðρ − 1/ρÞ�−2] must be discussed and
compared. When ρ ≈ 1, then SNR−2 ≈ ½SNR − ðρ − 1/ρÞ�−2,
and Eq. (9) gives approximately the same result as Eq. (6).
When ρ is larger (e.g., ρ = 1:05), then ðρ − 1/ρÞ = 0:0976 ≈
0:1. Given SNR = 0:1, then ½SNR − ðρ − 1/ρÞ�−2 ≈ 0 and Eq.,
substituting into Eq. (9) gives N →∞. In other words, only
an infinite detection duration can complete detection, which
is impracticable. A tiny fluctuation of average noise power
causes a significant drop in performance, especially with a
lower SNR.
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Figure 1 shows the numerical results from Eqs. (6) and
(9). The parameters are SNR = 0:14 (i.e., snr = 10 lg ðSNRÞ
≈ −8:5 dB), false alarm probability PFA ∈ ð0, 0:5Þ, detection
duration N = 500, and noise uncertainty factor ρ = 1:00,
1:03, and 1:05.

The performance curve marked with triangles (⊳) corre-
sponds to constant average power of noise and does not con-
sider noise uncertainty. The curves marked with open circles
(○) and asterisks (∗) correspond to an average power fluctu-
ation in noise of ρ = 1:03 and ρ = 1:05, respectively. In
Figure 1, when PFA = 0:1 and ρ = 1:03, then PD ≈ 0:71, so
the sensing is completed within the detection duration N =
500. The detection performance drops significantly to PD ≈
0:5 when PFA = 0:1 and ρ = 1:05, even though the false alarm
probability PFA = 0:5. A detection probability PD ≈ 0:61 is
unacceptable; in this case, the algorithm fails. According to
this analysis, the energy detector is extremely sensitive to
noise uncertainty, especially for low SNR.

4. Average Power Fluctuation in Noise and
Sensing Sensitivity

Comparing Eq. (6) with Eq. (9) shows that when ρ approaches
1, the first half of the two equations only weakly affect the
results. We thus focus on the relationship between the second
half of each equation, SNR−2 and ½SNR − ðρ − 1/ρÞ�−2. When
ρ ≈ 1, SNR−2 ≈ ½SNR − ðρ − 1/ρÞ�−2, and Eqs. (6) and (9) are
almost the same. When ρ is larger, (e.g., ρ = 1:05), ðρ − 1/ρÞ
≈ 0:1. In the low-SNR case (e.g., SNR = 0:1),
½SNR − ðρ − 1/ρÞ�−2 ≈ 0, and N →∞, which indicates an infi-
nite detection duration. This is impossible to realize, especially

in a low-SNR environment, which shows that in cognitive
radio systems, the cognitive performance is strongly influ-
enced by the average power fluctuation in noise and the SNR
with average power fluctuations in noise is closely related to
the detection duration.

We now discuss the relationship between average power
fluctuations in noise, detection length, received SNR, and
sensitivity. We define the detection sensitivity SNRs = ρ − 1/
ρ in Eq. (9); if the SNR for the cognitive radio signal received
satisfies SNR = ðρ − 1/ρÞ ≈ 0, it cannot complete the detec-
tion even if given infinite test duration. Therefore, SNR =
SNRs. Let S = 10 lg ðρ − 1/ρÞ = 10 lg ðSNRsÞ with the SNR
in dB, so the detection sensitivity is the SNR threshold
SNRs. If the SNR received by the cognitive user is less than
SNRs, then the spectrum sensing cannot be completed no
matter how long the sensing time is.

We now discuss the expected detection performance for a
detection probability PD = 0:9 and a false alarm probability
PFA = 0:1. When ρ = 1:000, 10 lg ðρÞ = 0ðdBÞ, and S→ −∞
dB. If ρ = 1:002, 10 lg ðρÞ = 0:0087dB and S ≈ −23:98dB. If
ρ = 1:020, 10 lg ðρÞ = 0:086dB and S ≈ −14:02dB. When ρ =
1:200, 10 lg ðρÞ = 0:7918dB and S ≈ −4:36dB. Figure 2 shows
the detection sensitivity as a function of detection duration
and for several values of average power fluctuation in noise.
Figure 2 shows that when ρ = 1:0, the detection sensitivity
of the spectrum is very high for the cognitive user provided
the detection duration is sufficiently long. The cognitive user
is able to detect low-power signals without subjecting autho-
rized users to interference. When ρ = 1:002, the detection
sensitivity for the cognitive user is −23.98 dB; in other words,
when the cognitive user has a SNR below −23.98 dB, it may
declare that this band contains no authorized users if the
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Figure 1: Plot of PD vs:PFA for ρ = ½1:00, 1:03, 1:05�.
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cognitive users occupying the spectrum at this time cause
interference with the authorized users. When ρ = 1:020, the
sensitivity is −14.02 dB; that is, when the SNR of the second
user received is less than −14.02 dB, the cognitive user
decides that this band can be dynamically accessed. If ρ =
1:200, the sensitivity of detection is −4.36 dB, that is, when
the SNR of the second user received is less than −4.36 dB,
the cognitive user considers that this band is idle. Thus, the
detection sensitivity of the cognitive user declines as the aver-
age power fluctuation in the noise increases, especially in sit-
uations with low SNR. Given a big undulation such as
ρ = 1:200, the spectral-sensing sensitivity is greater than
−4.36 dB, which is fatal for cognitive radio. As noted in Refs.
[9, 12], the sensitivity of cognitive radio detection may be up
to −22 dB for the Advanced Television Systems Committee
authorization system.

Average power fluctuation in noise reduces the sensing
sensitivity, rapidly reduces the detection accuracy, and
results in the cognitive user interfering with the authorized
users. Motivated by this, we present a dynamic threshold
algorithm based on energy detection to suppress the influ-
ence of noise fluctuation and improve the sensing
sensitivity.

Let ρ represent the average power fluctuation in noise,
and let the average power σ2 ∈ ½σ2n/ρ, ρσ2

n�. PD and PFA are
then

PD = min
γ′∈ γ/ρ′ ,ρ′γ½ �

min
σ2∈ σ2n/ρ,ρσ2

n½ �
Q

γ′ − P + σ2� �
ffiffiffiffiffiffiffiffi
2/N

p
P + σ2ð Þ

 !
=Q

γ/ρ′ − P + σ2n/ρ
� �

ffiffiffiffiffiffiffiffi
2/N

p
P + σ2

n/ρð Þ

 !
,

ð10Þ

PFA = max
γ′∈ γ/ρ′ ,ρ′γ½ �

max
σ2∈ σ2n/ρ,ρσ2n½ �

Q
γ′ − σ2ffiffiffiffiffiffiffiffi
2/N

p
σ2

 !
=Q

ρ′γ − ρσ2
nffiffiffiffiffiffiffiffi

2/N
p

ρσ2
n

 !
:

ð11Þ

Eliminating γ yields

N =
2 ρ/ρ′
� �

Q−1 PFAð Þ − ρ′ 1/ρ + SNRð ÞQ−1 PDð Þ
h i2

ρ′SNR + ρ′/ρ − ρ/ρ′
� �2 : ð12Þ

We next discuss the relationship between the dynamic
threshold factor, the average power fluctuation in noise,
and the received SNR. In Eq. (12), the denominator

ðρ′SNR + ρ′/ρ − ρ/ρ′Þ−2 takes the form

ρ′SNR −
ρ

ρ′
−
ρ′
ρ

 !
> 0, ð13Þ

so

ρ′2 > ρ

SNR + 1/ρ , ð14Þ

ρ′ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ

SNR + 1/ρ

r
: ð15Þ

We now compare Eq. (12) with Eq. (6) and focus on

½ρ′2SNR + ðρ′2 − 1Þ�−2 and SNR−2. When ρ′ ≈ 1, then

SNR−2 ≈ ½ρ′2SNR + ðρ′2 − 1Þ�−2, so Eqs. (10) and (6) are

almost identical. If ρ′ is larger (e.g., ρ′ = 1:050), then ðρ′2
− 1Þ = 0:1025 ≈ 0:1 in the case of low SNR and supposing

SNR = 0:1, so ½ρ′2SNR + ðρ′2 − 1Þ�−2 ≈ 22 and SNR−2 = 100.
If the detection probability equals the false alarm probability,
the detection duration obtained from Eq. (12) is less than the
result of Eq. (6) by almost an order of magnitude. Therefore,
given equal detection performance, the scheme of the
dynamic threshold clearly shortens the detection duration.
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Figure 2: Plot of SNRðdBÞvs:lg ðNÞ.
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In other words, if the detection duration is the same, sensing
with the dynamic threshold is significantly better than sens-
ing with the traditional energy-sensing scheme.

We now discuss the relation between dynamic threshold
factor, detection sensitivity, and received SNR. To facilitate
the analysis, we assume a detection probability PD = 0:9 and
a false alarm probability PFA = 0:1. In this section, the average
noise power is constant at ρ = 1:000 [i.e., 10 lg ðρÞ = 0:0dB]
and we discuss how the dynamic threshold factor relates to
the detection sensitivity S, the detection duration N, and

½ρ′2SNR + ðρ′2 − 1Þ�−2. Given SNR = 0:1, when the dynamic
threshold factor ρ′ = 1:002, 1.020, and 1.050, then

½ρ′2SNR + ðρ′2 − 1Þ�−2 ≈ 92, 48, and 22, respectively. This
conclusion increases with the value of ρ′,
½ρ′2SNR + ðρ′2 − 1Þ�−2 gradually decreases, and the detection
duration N gradually shortens, but the detection sensitivity
remains essentially the same. In theory, these cases can detect
any low-power signal (see Figure 3).

Comparing Eq. (12) with Eq. (9), one gets

ðρ′SNR + ρ′/ρ − ρ/ρ′Þ−2 ≈ SNR and ðρ′SNR + ρ′/ρ − ρ/ρ′Þ−2
≫ ½SNR − ðρ − 1/ρÞ�−2 for low SNR. Therefore, with the
dynamic threshold detection scheme, the same detection perfor-
mance may be achieved with a significantly shorter detection
duration.

We now assume PD = 0:9 and PFA = 0:1. As discussed in
Section 3, the detection sensitivity S is about −14.02dB when
ρ = 1:020 and ρ′ = 1:000. This section introduces the dynamic
threshold algorithm based on energy detection. Let Sd be the
detection sensitivity and keep ρ = 1:020 unchanged. We dis-
cuss how Sd is related to ρ′/ρ − ρ/ρ′ with different dynamic
threshold factors. If ρ′ = 1:020, then Sd = 10 lg ðρ′/ρ − ρ/ρ′Þ
→ −∞dB, and the degradation of the detection performance
caused by the average power fluctuation in the noise can be
eliminated. If ρ′ = 1:015dB, then Sd ≈ −20:08dB, so Sd − S =
−6:06dB and the detection sensitivity increases by about
6.06dB. If ρ′ = 1:010, then Sd ≈ −17:05dB and Sd − S = −
3:03dB, and the sensing sensitivity increases by about
3.03dB. If ρ′ = 1:000, then Sd ≈ −14:02dB, which is equivalent
to the result with no dynamic threshold, so the detection sen-
sitivity is unchanged, as shown in Figure 4.

5. Multinode Cooperative Sensing Scheme

References [14, 15] show that cooperation can improve com-
munication quality, and collaborative spectrum sensing is
also discussed in Refs. [7, 8], which show that multiuser col-
laboration benefits spectrum sensing.

We formulate a binary hypothesis testing problem for
user j based on the following hypotheses:

H 0 : Y j nð Þ =Wj nð Þ, n = 1, 2,⋯,N ,
H 1 : Y j nð Þ = Xj nð Þ +Wj nð Þ, n = 1, 2,⋯,N ,

ð16Þ

where XjðnÞ and WjðnÞ are the transmitted signals at the
primary nodes and the white noise samples, respectively,

and they are independently and identically distributed
with respect to each other. If the noise variance is known
and there is no noise uncertainty, the central limit theo-
rem gives the following approximations:

D Y j

� �
H 0j ∼N σ2n,

2
N
σ4n

� �
,

D Y j

� �
H 1j ∼N P + σ2n,

2
N

P + σ2n
� �2� �

,

8>>><
>>>:

ð17Þ

where P is the signal power and σ2n is the noise variance,
supposing M cognitive radio users collaborate and each
is independent of the others. Denoting the weighting fac-
tor by ωj, the received signal can be expressed as the
sum of the signals received by M users:

Y = 〠
M

j=1
ωjY j: ð18Þ

Therefore, the sensing model of for multiuser coopera-
tion can be expressed as follows:

D Yð Þ H 0j ∼N 〠
M

j=1
ωjσ

2
n,

2
N
〠
M

j=1
ω2
jσ

4
n

 !
,

D Yð Þ H 1j ∼N 〠
M

j=1
ωj Pj + σ2n
� �

, 2
N
〠
M

j=1
ω2
j Pj + σ2n
� �2 !

:

8>>>>><
>>>>>:

ð19Þ

In expression (19), Pj = 1/N∑N
n=1X

2
j ðnÞ, ωj = SNR j/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
i=1SNR2

i

q
, and ∑M

j=1ω
2
j = 1, so

PD = Pr D Yð Þ H 1j > γð Þ = 1 − PMD =Q
γ − ∑M

j=1ωj Pj + σ2n
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑M

j=1ω
2
j Pj + σ2

n

� �2/Nq
0
B@

1
CA,

ð20Þ

PFA = Pr D Yð Þ H 0j > γð Þ =Q
γ −∑M

j=1ωjσ
2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
j=1ω

2
jσ

4
n/N

q
0
B@

1
CA: ð21Þ

Eliminating γ gives the following expression involving
PD, PFA, N , ωj, M, and SNR j:

N = 2

ffiffiffiffiffiffiffiffiffiffiffi
〠
M

j=1
ω2
j

vuut Q−1 PFAð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
M

j=1
ω2
j 1 + SNR j

� �2
vuut Q−1 PDð Þ

2
4

3
5
2

⋅ 〠
M

j=1
ωjSNR j

 !−2

:

ð22Þ

Now consider the case with uncertainty in the noise
model. The variance of noise with uncertainty can be
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included in a single interval σ2 ∈ ½σ2n/ρ, ρσ2
n�, where ρ is

the noise uncertainty factor and the value of ρis close to
1 (i.e., ρ > 1 and ρ ≈ 1), so

PD = Pr D Yð Þ H 1j > γð Þ = min
σ2∈ σ2n/ρ,ρσ2n½ �

Q
γ −∑M

j=1ωj Pj + σ2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑M

j=1ω
2
j Pj + σ2
� �2/Nq

0
B@

1
CA

=Q
γ −∑M

j=1ωj Pj + σ2n/ρ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑M

j=1ω
2
j Pj + σ2n/ρ
� �2/Nq

0
B@

1
CA,

ð23Þ

PFA = Pr D Yð Þ H 0j > γð Þ = max
σ2∈ σ2n/ρ,ρσ2n½ �

Q
γ −∑M

j=1ωjσ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2∑M
j=1ω

2
jσ4/N

q
0
B@

1
CA

=Q
γ −∑M

j=1ωjρσ
2
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2∑M
j=1ω

2
jρ2σ

4
n/N

q
0
B@

1
CA:

ð24Þ
Eliminating γ gives the following expression involving

PD, PFA, N , ωj, M, and SNR j:

N = 2 ρ

ffiffiffiffiffiffiffiffiffiffiffi
〠
M
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Figure 5 shows the results of a sensing simulation of a
single node and multiple nodes. The parameters are SNR
∈ ð−20, 10Þ dB, false alarm probability PFA = 0:01, detec-
tion duration N = 500, and average power uncertainty in
noise ρ = 1:00 and ρ = 1:05, respectively.

Figure 5 shows the receiver operating characteristic
(ROC) curves corresponding to constant average noise
power and average power fluctuation in noise. The curves
marked with triangles (△), open circles (∘), and asterisks (∗
) are for single-node sensing, double-node sensing, and
four-node sensing, respectively. Given equal average power
fluctuation in noise, energy detection is significantly better
with the multinode collaborative detection scheme than with
the single-node detection scheme. The detection perfor-
mance improves with the number of collaborative nodes.
For a given detection performance, the multinode scheme
detects a lower SNR than the single-node scheme. Figure 5
shows that the same scheme with SNR = 0dB results in a
decrease of 0.16 dB for single-node detection, 0.14 dB for
double-node detection, and 0.09 dB for four-node detection.
Therefore, the resistance to noise improves, and the perfor-
mance degradation caused by the average power uncertainty
in the noise may be eliminated by increasing the number of
cooperative nodes. Multinode collaborative schemes can thus
improve the sensing performance in cognitive radio sensing
systems.

6. Conclusions

Traditional energy-detection schemes are sensitive to the
average power uncertainty in the noise. In this paper, we
investigate how energy-detection performance and detection
sensitivity are related to detection duration and average
power fluctuation in noise for short-duration signal sensing.
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Figure 5: Plot of PDvs:SNR for N = 500, ρ = ½1:00, 1:05�.
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Detection performance and detection sensitivity drop rapidly
with increasing average power fluctuation in noise and is
worse for the situation with a low signal-to-noise ratio. We
therefore propose a new energy-detection algorithm based
on cooperation between nodes. Noise creates a larger uncer-
tainty for a short-duration detection, and the deterioration in
detection performance caused by uncertainty due to average
noise power can be eliminated by increasing the number of
cooperating nodes to a certain level. Simulations show that
the proposed scheme improves resistance to average power
fluctuation in noise and allows for good detection perfor-
mance provided sufficient cooperative nodes are used. In
other words, the proposed scheme makes the detection
robust against noise and improves the capacity of spectrum
sensing.
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