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In recent years, indoor positioning systems (IPS) are increasingly very important for a smart factory, and the Lora positioning
system based on round-trip time (RTT) has been developed. This paper introduces the ranging characterization, RTT
measurement, and position estimation method. In particular, a particle filter localization method-aided Lora pseudorange fitting
correction is designed to solve the problem of indoor positioning; the cumulative distribution function (CDF) criteria are used
to measure the quality of the estimated location in comparison to the ground truth location; when the positioning error on the x
-axis threshold is 0.2m and 0.6m, the CDF with pseudorange correction is 61% and 99%, which are higher than the 32% and
85% without pseudorange correction. When the positioning error on the y-axis threshold is 0.2m and 0.6m, the CDF with
pseudorange correction is 71% and 99.9%, which are higher than the 52% and 94.8% without pseudorange correction.

1. Introduction

Indoor positioning systems are increasingly very important
for a smart factory, such as finding the location of workers,
goods, or vehicles [1–4]. However, the Global Positioning
System (GPS) is unable to provide the indoor positioning ser-
vice, which is commonly used for outdoor positioning. The
research on indoor positioning technologies has been con-
ducted for more than three decades, such as Radio Frequency
Identification (RFID) [5, 6], WiFi [7, 8], Ultra Wide Band
(UWB) [9–11], Pseudolite [12–14], Bluetooth [15], and Iner-
tial Navigation System (INS), but they may not be suitable for
Internet of Things (IoT) applications in terms of cost, appli-
cation mode, and terminal power consumption.

With the continuous progress of sensor and Internet of
Things [16, 17] technologies, increasing attention has been
paid to IPS using Lora WAN. Semtech has developed a Lora
positioning system based on round-trip time [18], which is
called the SX1280 transceiver. The SX1280 transceiver family

provides ultra-long-range communication in the 2.4GHz
band with a time-of-flight functionality; its radio is fully
compliant with all worldwide 2.4GHz radio regulations
including EN 300440, FCC CFR 47 Part 15 [19], and the Jap-
anese ARIB STD-T66 [20]. Very small wearable products to
track and localize assets in logistic chains and people for
safety can easily be designed thanks to the high level of inte-
gration and the ultralow current consumption which allows
the use of miniaturized batteries.

But the most difficult challenge for Lora indoor position-
ing is the ranging error caused by multipath in the indoor
environment. Liang et al. carry out the study focused on the
indoor propagation of the Lora signal, and the main contri-
bution of this work is to measure the round-trip time and
packet delivery ratio by changing send power, payload
length, and air rate in a multilevel building from the 1st floor
to the 12th floor [21]. Huynh and Brennan verify the UWB
transmission characteristics of an indoor RTT signal by gen-
erating synthetic received signals using ray tracing plus
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Rayleigh distributed random multipath clusters as well as
random amplitude and delay factors [22]. Staniec and Kowal
describe outcomes of measurement campaigns during which
the Lora performance was tested against a heavy multipath
propagation and a controlled [23], Lora configurational
space is divided into three distinct sensitivity regions: in the
white region, it is immune to both interference andmultipath
propagation; in the light-grey region, it is only immune to the
multipath phenomenon but sensitive to interference; and in
the dark grey region, Lora is vulnerable to both phenomena.

On the other hand, location based on a filtering algorithm
is the only effective solution currently known, and the Bayes-
ian filtering algorithm occupies an important role. In the
early days, the Kalman filter positioning algorithm is mainly
used to solve the problem achieving efficient state estimation
for linear Gaussian systems [24]. Moreover, to deal with
unwanted errors and nonlinear distortions, particle filter
(PF) is applied as a nonparametric filter to location, which
is recursive implementations of Monte Carlo-based statistical
processing [25–27] and performs well in localization effi-
ciency, stability, and accuracy.

In the following sections, a Lora indoor positioning sys-
tem is introduced, which overcomes the problem of long dis-
tance, low power consumption, and low cost. The main
contributions and research content of this paper are as fol-
lows: Firstly, a Lora-aided particle filter localization method
is designed to solve the problem of indoor positioning. Sec-
ondly, numerous experiments were carried out with real Lora
RTT measurement data to evaluate the performance of the
proposed approach; we used the CDF criteria to measure
the quality of the estimated location in comparison to the
ground truth location. The results show that the indoor posi-
tioning accuracy is improved obviously with the help of the
piecewise fitting correction method. At the same time, the
Lora indoor positioning system can achieve a positioning
accuracy of 1m under the condition of LOS.

2. Background and Related Work

2.1. Lora RTTMeasurement. In this paper, we focus on one of
the latest techniques called the RTT scheme-based ranging
and localization [28–30], which can give accurate measure-
ments by the time stamp from the initiator (Lora_A) to the
responder (Lora_B) with nanosecond resolution. Figure 1
shows the RTT measurement illustration; the pseudorange
measurement can be built as

ρAB = RAB + tr A − ts B, ð1Þ

ρBA = RBA + tr B − ts A, ð2Þ

where ρAB or ρBA is the pseudorange measurement between
Lora_A and Lora_B, RAB or RBA is the geometric range
between Lora_A and Lora_B, tr A is the clock offset of
Lora_A at the receiving time, ts A is the clock offset of
Lora_A at the transmitting time, tr B is the clock offset of
Lora_B at the receiving time, and ts B is the clock offset of
Lora_B at the transmitting time.

If the clock characteristics of Lora_A and Lora_B are sta-
ble, tr A = ts A and tr B = ts B at the adjacent time of receiving
and transmitting. The time-of-flight (ToF) measurements
can be written as

Tround = ρAB + Treply + ρBA = RAB + RBA + tr B

− ts A + tr A − ts B + Treply = RAB + RBA + Treply,
ð3Þ

where Tround is the time-of-flight (ToF) measurements of
Lora_A from Tx_A to Rx_A, T reply is the time difference of
Lora_B between Rx_B and Tx_B.

The geometric distance can be calculated by

RAB =
Tround‐Treply
� �

2 : ð4Þ

The pseudorange measurement can be built as

RAB =
Tround‐Treply
� �

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA − xBð Þ2 + yA − yBð Þ2 + zA − zBð Þ2

q
+ ε,

ð5Þ
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Figure 1: RTT measurement illustration.
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Figure 2: Position estimation by four distance measurements.
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where xA, yA, and zA are the transmitting antenna coordi-
nates of Lora_A; xB, yB, and zB are the transmitting antenna
coordinates of Lora_B; and ε is measurement error.

2.2. Position Estimation. Four distance measurements of Lora
transceivers whose positions are known are used to deter-
mine the three-dimensional coordinates of an unknown
position [31], as shown in Figure 2. The position of user

(xu, yu, zu) can be calculated by

R1u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − xuð Þ2 + y1 − yuð Þ2 + z1 − zuð Þ2

q
+ ε1u,

R2u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − xuð Þ2 + y2 − yuð Þ2 + z2 − zuð Þ2

q
+ ε2u,

R3u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − xuð Þ2 + y3 − yuð Þ2 + z3 − zuð Þ2

q
+ ε3u,

R4u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − xuð Þ2 + y4 − yuð Þ2 + z4 − zuð Þ2

q
+ ε4u,

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where Riu is the pseudorange measurement ofAPi, i is the AP
index, and u is the user index, (xi, yi, zi) are the locations of
APi, and εiu is the measurement error of APi.

The geometric distance can be calculated by

Riu =
xu − xið Þxu + yu − yið Þyu + zu − zið Þzuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi − xuð Þ2 + yi − yuð Þ2 + zi − zuð Þ2
q

+ εiu = eix, eiy, eiz
h i xu

yu

zu

2
6664

3
7775 + εiu,

ð7Þ

where ½eix, eiy, eiz� is called a geometry matrix.
The observation equations of Lora RTT can be expressed

as the following matrix form:

R1u

R2u

⋮

R4u

2
666664

3
777775
=

e1x

e2x
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e4x
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������������
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e1z

e2z

e3z

e4z

2
6666664

3
7777775

xu

yu

zu

2
664

3
775 +

ε1u

ε2u

⋮

ε4u

2
666664

3
777775
: ð8Þ

The matrix on the right-hand side of Equation (8) is
defined as A and ε, and the two-column vectors on the left-
hand side are defined as b. Equation (8) can be written as

b = AX + ε: ð9Þ

If an initial value X0 is used for the solution-updating
process, the Newton-Raphson method is described

Table 1: Relationship between ranging error, clock error, and flight time.

Clock error Treply + RAB

� �
0.1 ppm 0.5 ppm 5 ppm 25 ppm

1.5 μs 1:5 × 10−4 ns 7:5 × 10−4 ns 7:5 × 10−3 ns 3:75 × 10−2 ns
10 μs 1:5 × 10−3 ns 7:5 × 10−3 ns 7:5 × 10−2 ns 3:75 × 10−1 ns
100 μs 1:5 × 10−2 ns 7:5 × 10−2 ns 7:5 × 10−1 ns 3:75 ns
1000 μs 1:5 × 10−1 ns 7:5 × 10−1 ns 7:5 ns 37:5 ns
10000 μs 1:5 ns 7:5 ns 75 ns 375 ns
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Figure 3: Ranging error under LOS.
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Figure 4: Ranging error under NLOS.
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asX0 = ðxu,0, yu,0, zu,0Þ. The least-squares updated solution
can be represented as

ΔX = ATA
� �−1

ATb + ε: ð10Þ

Then, the position X1 can be updated iteratively accord-
ing to

X1 = X0 + ΔX: ð11Þ

It should be noted that the measurement error is consid-
ered Gaussian white noise, when using the least-squares
method.

3. Ranging Characterization of Lora

3.1. Clock Error. It is supposed that the clock offsets of devices
Lora_A and Lora_B are εA and εB; therefore, the ranging
error will increase with the increase of flight time. The equa-

tion of ranging error is as follows:

εt =
εA − εBð Þ

2 × Treply + RAB

� �
, ð12Þ

where εt is ranging error caused by the clock offsets.
If the clock error of Lora_A and Lora_B is the same,

Equation (12) can be written as

εt = εA × Treply + RAB

� �
: ð13Þ

It is supposed that the distance between the two Lora
nodes is between 10 meters and 5000 meters; then, RAB is
from 3ns to 1500 ns. The clock error of packaged crystal
oscillator (PCO) is generally more than 25 ppm, the temper-
ature compensated crystal oscillator (TCXO) is from 0.5 ppm
to 5ppm, and the oven-controlled crystal oscillator (OCXO)
may be less than 0.1 ppm. According to the above parame-
ters, we estimate the influence of clock error on Lora ranging
accuracy, as shown in Table 1. It can be found that TCXO
and OCXO are best used as the clock of the Lora positioning
system.
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Figure 5: Probability characterization: (a) histogram with a distribution fit and (b) normal probability plot.
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Figure 6: Piecewise linear fitting correction.
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Figure 7: Simulation conditions of geometry distribution.
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3.2. Ranging Accuracy and Characterization. The reflection
of the indoor environment to the Lora positioning signal is
very serious, for example, irregular room structure, walking
people, tables and chairs, and glass. Because of signal inter-
ference and multipath effect, Lora’s ranging error may be
non-Gaussian distribution. We collect the ranging data of
Lora under different conditions such as line-of-sight (LOS),
non-line-of-sight (NLOS), and human occlusion, which is
compared with the real distance to analyze the ranging
characterization.

Three sets of ranging data are collected under the LOS
condition; the ranging error of Lora is shown in Figure 3.
The average error is -0.61m, the maximum error is 1.2m,
and the minimum error is -5.24m. It can be found that the
ranging error of LOS has a linear trend, which can be cor-
rected by the polynomial fitting method.

Similarly, three sets of ranging data are collected under
the NLOS condition, such as using people’s bodies to block
Lora’s antenna; the ranging error of Lora is shown in
Figure 4. The average error is -0.01m, the maximum error
is 8.6m, and the minimum error is -3.32m. It can be found
that the ranging error of NLOS is much worse than that of
LOS; therefore, it is better to use the Lora indoor positioning
system under the condition of LOS.

In order to analyze the distribution characteristics of Lora
ranging error, the six groups of data collected above are com-
bined, as shown in Figure 5. Figure 5(a) shows the histogram
with a distribution fit, and Figure 5(b) is the normal probabil-
ity plot. It can be concluded that the probability distribution
of Lora ranging error is non-Gaussian white noise. Therefore,
it is necessary to use nonlinear filter to solve the location
problem.

The piecewise fitting correction method of LOS is used to
correct the Lora ranging value, as shown in Figure 6. The for-
mula of the piecewise fitting correction method can be
expressed as

R
_
= R + f Rð Þ, ð14Þ

f Rð Þ =

a10 + a11 × R, 0 ≤ R ≤ r1,
a20 + a21 × R, r1 < R ≤ r2,

    ⋮

am0 + am1 × R, rm−1 < R ≤ rm,

8>>>>><
>>>>>:

ð15Þ

where R is the pseudorange measurement of Lora, R
_

is the
corrected pseudorange, f ðRÞ is the correction function, a10
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Figure 8: Indoor positioning system composed of four Lora transceivers: (a) HDOP and (b) GDOP in the projection area.
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Figure 9: Indoor positioning system composed of four Lora transceivers: (a) HDOP and (b) GDOP outside the projection area.
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and a11 are the linear correction factors, and rm−1 and rm are
the stages; the above data of LOS are divided into three sec-
tions; that is, m = 3.

3.3. Geometry Factor. The dilution of geometry precision
(GDOP) [32, 33] can be expressed as

cov ΔXð Þ = σ2
ε ⋅ ATA

� �−1
: ð16Þ

If ðATAÞ−1 is defined asH, the diagonal elements ofH are

as follows:

H =
xDOP2

yDOP2

zDOP2

2
664

3
775: ð17Þ

HDOP and GDOP can be defined as

HDOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xDOP2 + yDOP2

q
, ð18Þ

Table 2: Particle filter algorithm.

Process Content

Initialization Let Xi
1 ~ p X0ð Þ, i = 1,⋯,N , and wi

0 = 1/N
Iteration

(1) Measurement update For i = 1,⋯,N , wi
t = 1/ctð Þwi

t−1p Yt/Xi
t

� �
, where the normalization weight is given by ct =∑N

t=1w
i
t−1p Yt/Xi

t

� �
(2) Estimation The filtering density is approximated by p Xt/Ytð Þ ≈∑N

i=1w
i
tδ Xt − Xi

t

� �
,Xt ≈∑N

i=1w
i
tX

i
t

(3) Resampling
Optionally at each time, take N samples with replacement from the set Xi

t ,wi
t

� �N
i=1, where

the probability to take sample i is wi
t and let wi

t = 1/N

(4) Time update
Generate predictions according to the proposal distribution: Xi

t+1 ~ q Xt+1/Xi
t , Yt+1

� �
, and

compensate for the importance weight wi
t+1 =wi

t p Xi
t+1/Xi

t

� �
/q Xi

t+1/Xi
t , Yt+1

� �� �
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Figure 10: Experimental environment of Lora indoor positioning system.
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GDOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xDOP2 + yDOP2 + zDOP2

q
, ð19Þ

where xDOP2 means the dilution of precision (DOP)
for the x-coordinate and yDOP2 means the DOP for
the y-coordinate.

In order to analyze the influence of the geometry factor
on Lora positioning performance, a simulation of geometry
distribution is designed, which is composed of four Lora
transceivers. Suppose the length and width of the room are
40 meters and the height is 3 meters, as shown in Figure 7.
The HDOP of the indoor positioning system is given in
Figures 8(a) and 9(a); the GDOP of the indoor positioning
system is given in Figures 8(b) and 9(b). The results show
that four Lora transceivers can obtain the suitable geometric
distribution in their projection area, whoseHDOP and G
DOP are less than 1.2. However, outside the projection area,
the geometric distribution will deteriorate; HDOP and G
DOP will be greater than 2, which will make the positioning
error more than twice of the ranging error.

4. Methodology Based on Particle Filter

4.1. Recursive Bayesian Estimation. Applied nonlinear filter-
ing is based on discrete-time nonlinear state-space models
relating a hidden state Xt to the observations Yt , denote the
observations at time t by Yt = fy0,⋯, ytg, the Bayesian solu-

tion to compute the posterior distribution is given by

p
Xt

Yt−1

� 	
=
ð
p

Xt

Xt−1

� 	
p

Xt−1
Yt−1

� 	
dXt−1,

p
Xt

Yt

� 	
= p yt/Xtð Þp Xt/Yt−1ð Þ

p yt/Yt−1ð Þ ,

8>>><
>>>:

ð20Þ

where t is the time stamp, xt is the state variable, pðXt‐1/Yt‐1Þ
is the posterior probability distribution of the last moment,
pðXt/Xt‐1Þ is the state transition probability, pðXt/Yt‐1Þ is
the prior probability distribution, pðyt/XtÞ is the likelihood
function, and pðyt/Yt−1Þ is the normalization function.

4.2. Particle Filter. Supposed that N particles fXi
t ,wi

tgNi=1
from the posterior probability pðXt/YtÞ of the state can be
extracted, where Xi

t is the state of the particle,w
i
t is the weight

of the particle; then,

p
Xt

Yt

� 	
≈ 〠

N

i=1
wi

tδ Xt − Xi
t

� �
, ð21Þ

where δ is the Dirac delta function and N is the number of
particles.
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Figure 11: Static test without pseudorange correction: (a) positioning results, (b) x-axis positioning error, and (c) y-axis positioning error.
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The Sequential Importance Sampling (SIS) method is
used to calculate the weight of particles, which is written as

wi
t =wi

t−1
p Yt/Xi

t

� �
p Xi

t/Xi
t−1

� �
q Xi

t/Xi
t−1, Yt

� � : ð22Þ

The prior probability distribution is used as the impor-
tance density function:

q
Xi
t

Xi
t−1

, Yt

� 	
= p

Xi
t

Xi
t−1

� 	
: ð23Þ

Then, the formula for calculating the weight of particles is

wi
t =wi

t−1p
Yt

Xi
t

� 	
, ð24Þ

where t is time stamp, i is the number of particles, and w is
the weight of particles.

4.3. Particle Filter Implementation. The particle filter algo-
rithm is summarized in Table 2. Firstly, the state parameters
and weights of particles are initialized; secondly, the iterative
process of the particle filter algorithm is divided into four

steps, which includes measurement update, estimation,
resampling, and time update.

5. Experimental Results and Analysis

5.1. Experimental Setup. The performance of the Lora posi-
tioning system is evaluated in a room as shown in
Figure 10; the size of the room is about 25 meters long, 4
meters wide, and 2.5 meters high; and the antenna coordi-
nates of Lora are surveyed precisely with a total station.

5.2. Experimental Results. Figure 11 shows the static test
without pseudorange correction for the Lora positioning sys-
tem, Figure 11(a) is the positioning results, Figure 11(b) is the
x-axis positioning error, and Figure 11(c) is the y-axis posi-
tioning error. The average positioning error is 0.11m in the
x-axis and 0.07m in the y-axis, the maximum positioning
error is 1.25m in the x-axis and 0.59m in the y-axis, and
the standard deviation of the x-axis and y-axis errors is
0.42m and 0.18m, respectively.

Figure 12 shows the static test without pseudorange cor-
rection (the piecewise fitting correction method) for the Lora
positioning system, Figure 12(a) is the positioning results,
Figure 12(b) is the x-axis positioning error, and
Figure 12(c) is the y-axis positioning error. The average posi-
tioning error is 0.01m in the x-axis and 0.07m in the y-axis,
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Figure 12: Static test with pseudorange correction: (a) positioning results, (b) x-axis positioning error, and (c) y-axis positioning error.
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the maximum positioning error is 0.72m in the x-axis and
0.70m in the y-axis, and the standard deviation of the x
-axis and y-axis errors is 0.22m and 0.12m, respectively.

The positioning error in terms of the cumulative distribu-
tion function on the databases with and without pseudorange
correction is shown in Figure 13. When the positioning error
on the x-axis threshold is 0.2m and 0.6m, the CDF with
pseudorange correction is 61% and 99%, which are higher
than the 32% and 85% without pseudorange correction.
When the positioning error on the y-axis threshold is 0.2m
and 0.6m, the CDF with pseudorange correction is 71%
and 99.9%, which are higher than the 52% and 94.8% without
pseudorange correction.

6. Conclusions

The long-distance transmission of Lora wireless technology
makes it possible to be widely used in the smart factory; this
paper proposes Lora RTT measurement for indoor position-
ing, which has two key aspects of innovations: Firstly, a Lora-
aided particle filter localization method is designed to solve
the problem for indoor positioning. Secondly, numerous
experiments were carried out with Lora RTT measurement
data to evaluate the performance of the proposed approach;
we used the CDF criteria to measure the quality of the esti-
mated location in comparison to the truth location. The
results show that the indoor positioning accuracy is
improved obviously with the help of the piecewise fitting cor-
rection method. At the same time, the Lora indoor position-
ing system can achieve a positioning accuracy of 1m under
the condition of LOS. In the future, we will focus on Lora
indoor positioning and pseudorange correction under the
condition of NLOS.
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