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With the rapid development of science and technology, unmanned technology has been widely used in many fields. One of the most
important applications is in the field of civil and military UAVs. In the field of military UAVs (unmanned aerial vehicles), UAVs
usually have to complete a series of tasks. In this series of tasks, there are often some key tasks. Key tasks play an important role,
which is highly related to the feasibility of the whole action or task; mission failure sometimes causes incalculable damage.
When assigning tasks to UAVs, it is necessary to ensure the accurate implementation of key tasks, so as to ensure the orderly
implementation of the overall task. This paper not only successfully solved the previous problems but also comprehensively
considered the minimization of resource consumption and the maximization of task revenue in the process of UAV task
allocation. On the basis of considering the key system, considering the constraints and multiobjective problems in the UAV task
allocation process, the violence allocation algorithm, constraint optimization evolutionary algorithm, PSO algorithm, and greedy
algorithm combined with a constraint evolutionary algorithm are improved and optimized; it has been proven that they can
solve the above difficulties. At the same time, several comparison experiments have been carried out; the performance and
conclusion of the above four algorithms in the “limited” UAV task allocation scheme are analyzed in the experimental part.

1. Introduction

An unmanned aerial vehicle (UAV) is an important part of
an unmanned system. The traditional unmanned system also
includes a ground control platform and communication
system between UAV and ground. A military unmanned
combat system adds a mission system to the traditional
unmanned combat system. The construction of the whole
combat system is mission centred, because in the unmanned
combat system, there is no need to consider the personal
safety, human physiology, environment, time, and other fac-
tors that will limit human activities. The unmanned combat
system will focus more on the operation itself and improve
the operational efficiency and capability of the system as
much as possible [1]. With the shift of the combat centre
from human to task, researchers were focusing more on the
tasks. The effective planning and reasonable allocation of
tasks have become a research hotspot. In recent years,

researchers domestically and internationally have made a
lot of attempts and experiments on task allocation, among
which the use of BDD [2], brute-force method, genetic algo-
rithm [3], particle swarm optimization algorithm [4], ant
colony algorithm [5], and Hungarian algorithm [6] have
made remarkable achievements.

Eun and Bang used the genetic algorithm to solve the task
allocation and path planning problem of UAV [3]. Fei et al.
used the ant colony algorithm to solve the cooperative multi-
task assignment problem (CMTAP) of the unmanned aerial
vehicle (UAV) [5]. The Hungarian algorithm was proposed
for task allocation. Fang et al. studied the communication
and information collection of the underwater unmanned
aerial vehicle (AUV) [7, 8]. Zhu et al. proposed an integrated
biologically inspired self-organizing map (SOM) algorithm
for task assignment and path planning of an autonomous
underwater vehicle (AUV) system in 3-D underwater
environments with objective avoidance [9]. Amorim et al.
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assessed a swarm-GAP-based solution for the task allocation
problem in dynamic scenarios [10].

With the rapid development of task allocation technol-
ogy, researchers began to move from the overall task alloca-
tion to the specific tasks [11]. In the researches and
experiments, they have paid more attention to the task itself,
the combat action and process. An event-based mission plan-
ning scheme has been proposed, which fully considered the
problems of cooperative operation in the process of UAV
cluster operation. In the process of UAV cooperative opera-
tion, each UAV has its own task, which helps to achieve the
overall goal of the task. Some of these UAVs carry a decisive
role in the mission; they have a higher income and a greater
role in promoting the mission and even directly determine
the feasibility of the whole mission. The failure of these mis-
sions is a devastating blow to the entire operational plan. The
researchers have tried to apply the binary decision diagram to
the reliability modelling of task allocation; they tried to use a
binary decision diagram [2] to predict the success probability
of the whole UAV group to execute the mission together. If
an emergency occurs, or the success probability of the overall
task is too low, the task allocation scheme will be reconfi-
gured and modified; this is to ensure the smooth progress
of the whole task planning process and the implementation
of the scheme.

It is not difficult to find that the previous research content
is biased to two aspects. One is to optimize the allocation of
the overall task and maximize the use of resources and time
in the whole allocation process, but it lacks the consideration
of the task itself and the measurement of the feasibility of the
whole operation plan. However, in real combat, it may often
consume a lot of resources and time for a specific target task,
because it plays a decisive role in the whole task. On the other
hand, the whole planning process is too biased towards the
stability of the whole task planning system and the task
process, which ensures the orderly progress of tasks as far
as possible and lacks the thinking of some nonkey tasks.
The revenue accumulation of these nonkey tasks may not
be underestimated for the whole combat mission. Because
of the problems in the front, it leads to the research ideas of
this paper. This paper attempts to improve the original task
method, on the premise of ensuring the maximum revenue,
and takes the stability of the system into account to ensure
the smooth implementation of key tasks. Finally, it can real-
ize the smooth implementation of the whole operation plan,
the inevitable implementation of key tasks, and the maximi-
zation of nonkey task benefits.

This paper focused on the smooth implementation of key
tasks and the maximization of nonkey task revenue. At the
same time, this paper also considers the constraints between
tasks and UAVs and the optimization of multiobjective prob-
lems. Here, this paper improves and optimizes the four
research algorithms, the violence allocation algorithm, con-
straint optimization evolutionary algorithm [12], PSO algo-
rithm, and greedy algorithm [13] combined with the
constraint evolutionary algorithm, so that the scheme can
adapt to and solve the previous problems. The research
scheme proposed in this paper improves the coding mode
and optimization mode of the former four algorithms. On

the basis of retaining the original efficiency and effect of the
algorithm, it can still solve the research topic efficiently and
quickly. The whole algorithm has better generality, more
practical application of the combat plan, and better certainty
in the process of task allocation. Finally, it is realized, and the
original research results are further improved, which fills the
blank in the research field of taking into account the smooth
implementation of key tasks and maximizing the benefits of
nonkey tasks and promotes the research and development
of UAV combat task allocation.

This paper used forced coding. Before the plan is started,
the key tasks must be put in. This paper will generate a list of
UAVs that can perform key tasks in advance. In the process
of algorithm iteration and solution, key tasks always ensure
that key tasks will not be lost because of the heuristic rules
used in algorithm solution. At the same time, the priority of
tasks is processed in the evaluation function. The execution
of key tasks must be in the highest priority and then consider
the multiobjective problem in task allocation. In the selection
of an algorithm, this paper chooses the brute-force method as
the basic contrast object, which can solve the optimal task
allocation scheme for the reference. In addition, the multiob-
jective constrained optimization evolutionary algorithm was
selected, which has excellent performance in solving the task
allocation problem. The paper tried to improve the evolu-
tionary algorithm and combine it with the greedy algorithm
and found that it can enrich the diversity of the population
and got better global optimal solution. This paper also chose
the particle swarm optimization algorithm; the study found
that the algorithm has a good performance in solving effi-
ciency and solving effect.

The main contributions of this paper are as follows:

(1) A “limited” UAV task allocation scheme is proposed

(2) Four specific task allocation schemes are designed
and compared, and the advantages and disadvantages
of each scheme are obtained

The rest of this paper is arranged as follows. Section 2
introduces the normal description of the concepts and sym-
bol representation of task planning. Four improved and opti-
mized “limited” task allocation schemes are shown in Section
3. Section 4 presents the experimental results and analysis.
Section 5 summarizes the work in this paper and envisions
future work.

2. Related Work and Background

This part will introduce the concept and symbol representa-
tion of basic traditional task allocation. The concept and
other related information of task assignment are based on
an event model. Also, this paper focuses on the concept of
the “limited” task allocation scheme and other related
information.

2.1. Traditional Task Allocation. Traditional task allocation
mainly involves UAV, undifferentiated task, execution
sequence, execution probability, and other key concepts [14].
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(1) Problem model: assume that there aremUAVs and n
tasks globally. Then, an allocation method is solved,
which makes the scheme meet the multiobjective
optimization objectives and the constraints of UAV
task allocation

(2) UAVs: U = fu1 ⋯ uMg, where m is the number of
UAVs. The current position of UAV ui is expressed
as uli = ðx, yÞ (where x, y can be two-dimensional
coordinates or longitude and latitude), and the con-
figured resources are expressed as R = fr1 ⋯ rng,
where ri (real number, i = 1⋯M) is the number of
resources carried by the UAV ui (in order to simplify
the symbolic representation, the ammunition
resources, fuel resources, medical resources, etc. car-
ried by the UAV are converted into resources accord-
ing to the proportion and importance, and usually
the forces are also converted into resources)

(3) Tasks (no distinction between key and nonkey tasks):
MS = fms1 ⋯msNg, where N is the number of tasks,
the position of task msi is expressed as msli = ðx, yÞ
(where x, y can be two-dimensional coordinates or
longitude and latitude), the resource consumed to
execute msi is rci, the time consumed is ti, the effec-
tive time window that can be executed is ½startTi,
endTi�, and the benefit obtained is gaini

(4) Task allocation:
Q

= fπ1 ⋯ πMg, where πiði = 1⋯
MÞ indicates the assignment of task MSI. For exam-
ple, πi =msi ⟶ u1 indicates that taskmsi is assigned
to UAV u1 for execution. For simplicity, it is directly
expressed as πi = 1. If the task msj is not assigned to
any UAV, it is expressed as πj = Null

(5) Execution sequence: Q = fq1 ⋯ qmg, where qiði = 1
⋯mÞ represents the task sequence to be executed by
the UAV ui; for example, q1 =ms2ms4ms1 means that
u1 will execute tasks ms2, ms4, and ms1, respectively

2.2. Task Planning Based on Event Models. In operational
task planning, the superior usually sets the overall opera-
tional objectives and then formulates a series of key
operational tasks according to the battlefield situation
and environment [15]. Finally, it is necessary to plan a
set of operational task execution schemes that can achieve
the overall operational objectives and evaluate the success
probability of the scheme implementation, so as to maxi-
mize the success probability of the overall operational
scheme [16, 17].

(1) Event model: under the premise of a given overall
operational objective and a series of key operational
tasks, how to plan the operational task execution
scheme that can achieve the overall operational
objective and evaluate the probability of successful
implementation of the scheme is important. Assum-
ing that the overall combat target is O (objective)
and the set of key combat tasks is fT1 ⋯ TKg, xiði
= 1⋯ kÞ can be used to represent the basic event

“task Ti successfully executed” and �xi to represent
the basic event “task Ti not successfully executed”.

(2) Binary decision diagram: the binary decision diagram
(BDD) [18] is a kind of directed acyclic graph, which
can accurately evaluate the process of the whole oper-
ation scheme and calculate the success probability of
each allocation scheme. It includes from the root
node to the terminal node (terminal node is 1, which
means the overall combat mission is successfully
completed; terminal node is 0, which means the over-
all combat mission failed). For example, for the Bool-
ean expression f ðx1, x2, x3Þ = x1x2 + x2x3 + x1x3, the
following binary decision graph can be constructed
(Figure 1 shows the decision tree [19], and Figure 2
is transformed from Figure 1 to a decision graph)

(3) The main steps of decision-making are as follows:

(i) Based on the event model, each element of combat
task allocation is represented formally, such as mis-
sion and UAV
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Figure 1: Decision tree.
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Figure 2: Decision chart.
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(ii) According to the battlefield situation, the Boolean
function f of the overall combat target about the
key combat task set is extracted

(iii) The binary decision graph is constructed according
to f

(iv) According to the binary decision diagram, all the
schemes that can achieve the overall goal are
searched

(v) According to the binary decision diagram and the
occurrence probability of each event, the scheme
with the highest success probability is solved

3. “Limited” Task Allocation Scheme

In this paper, the brute-force method, constrained evolution-
ary algorithm, PSO algorithm, constrained evolutionary
algorithm, and greedy algorithm are used for comparative
experiments. The four allocation schemes are composed of
the following main steps: test data generation, algorithm ini-
tialization, algorithm solving, algorithm evaluation, and data
output.

The traditional task planning scheme lacks the thinking
of the task itself and considers all tasks the same random
tasks to solve, so as to maximize the benefits as much as pos-
sible. But there is a lack of assessment of the overall mission
action. It is precise in real combat that the importance of
tasks is different. Some tasks have to be carried out.
Decision-makers should not only consider the simple quan-
titative benefits but also correctly handle the absolutely key
task here. They must be carried out in the process of mission
planning, and only on this basis can the quantitative benefits
of the overall operation be considered.

The latter allocation scheme based on the event model and
binary decision graph also has two obvious disadvantages.

First, only key tasks are considered. The so-called key
tasks are those that have a substantial impact on the success
of the overall goal. But in the actual task planning, in addition
to key tasks, there are many nonkey tasks (the proportion
may be much larger than that of key tasks). Although the
implementation of nonkey tasks will not affect the achieve-

ment of the overall goal, it will increase revenue or reduce
losses. For example, in order to capture area A, it is necessary
to carry out the key task of “annihilating enemy forces.”After
the key task is completed, you can choose to carry out the
nonkey task of “rescuing hostages.” “Hostage rescue” may
not affect the final “capture of area A,” but it will increase
revenue.

Secondly, it only considers the task planning from the
high level and does not consider the time, resources,
forces, losses, benefits, task attributes, and other factors of
specific tasks. It is possible to get a huge set of schemes
through the binary decision graph, and the benefit with
the largest success probability of this set may be small (this
phenomenon usually exists in reality). It is necessary to
consider the selection of schemes from many aspects for
the so-called high risk and high benefit. If the probability
of success is slightly lower, other benefits may increase
significantly.

In view of the problems existing in the previous research
scheme, this paper comprehensively consider the two
research ideas. On the basis of the event-based task allocation
model, this paper considers the benefits of nonkey tasks and
then comprehensively measures the nonkey tasks and key
tasks, abstracts a new task planning solution model, and
designs a new problem model. Finally, this paper uses the
improved traditional task allocation scheme for task
planning.

(1) Problem model: assume that according to the binary
decision graph, the top n scheme fS1 ⋯ Sng with the
highest probability is selected, and the scheme Si =
x1 ⋯ xk represents the sequence of task execution,
which are all key tasks. Suppose that there are M
UAVs and N missions (including key and nonkey
missions) globally. To solve a task allocation scheme,
(1) include all the key tasks in Si, (2) maximize the
number of successfully assigned tasks, (3) maximize
the benefits of executing the assigned tasks, (4) min-
imize the loss of resources, and (5) minimize the
maximum time of executing tasks in UAV

(2) Execution probability:

Input: UAVs, Tasks, Key Tasks.
Output: The best task assignment sequence and its objective function value.
1: For each UAV ui
2: Get all of its executable tasks;
3: Arrange the tasks in full order;
4: Get all the executable task sequences of the UAV execQueue;
5: For each task sequence in execQueue
6: If not all key-tasks exist
7: Delete current task sequence;
8: For each task sequence in execQueue
9: Evaluation function of computing task sequence;
10: Sort the execQueue according to the evaluation results;
11: Select the best task sequence after sorting.

Pseudocode 1: Pseudocode of the brute-force algorithm.
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P =

p11 ⋯ p1N

⋮ ⋱ ⋮

pM1 ⋯ pMN

2
664

3
775: ð1Þ

pijð1 ≤ i ≤M, 1 ≤ j ≤NÞ represents the success rate when the
UAV ui performs the task msj

(3) Constraint condition:

(1) Time constraint: the UAV must first arrive at the
location of the task, and then, it can execute the task.
The earliest start event and the latest end time of the

task are in an interval ½startTi, endTi�. The arrival
time of the UAV ui meets

arrivalTimei,j = flyTimei,j + curTime ≤ endTi: ð2Þ

arrivalTimei,j represents the time when the UAV ui arrives at
the location of task msj, and flyTimei,j represents the time
required for the UAV ui to fly from the current position to
task msj. curTime means the current time for the task
allocation
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t = t+1
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No
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Setting NSGA-III
algorithm parameters

Initialize the population
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dominated sort
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Figure 3: NSGA-III flowchart.
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(2) Resource constraints: on the premise that the UAV
can arrive at the task location on time, each task
needs a certain amount of resource consumption to
be executed. Only when the UAV meets the resource
requirements of the task can the task be executed. If
the UAV can meet the resource requirements of the
task, the UAV will go to the location of the task;
otherwise, it will not perform the task

carryResourcerei ≥ costResourcej: ð3Þ

carryResourcerei is the resources carried by the current UAV
ui, and costResource j is the resources consumed by the task
msj to be executed

(3) Functional constraints: during actual combat, UAVs
may be divided into many types; each UAV has its
own specific function or has outstanding ability in a

certain aspect. For example, the reconnaissance
UAV has good concealment and mobility, the com-
bat UAV can carry more weapons and equipment
with an accurate strike system, the transport UAV
has better transport capacity to provide resource sup-
port for other UAVs or provide support for combat
personnel, and the rescue UAV is equipped with var-
ious medical equipment and has certain personnel
transport capacity. With this in mind, establish a
functional constraint between the mission and the
UAVs. msj can only be executed by a specific UAV
or a class of UAVs. Similarly, UAV ui can only per-
form a specific task or category of tasks

For task constraints,

msj ⟶ uk ⋯ ulf g: ð4Þ

This means that task msj can only be executed by UAV
uk ⋯ ul:

msk ⋯mslf g⟶ ui: ð5Þ

This means that the function of UAV ui can only execute
msk ⋯msl.

Input: UAVs, Tasks, Key Tasks.
Output: The best task assignment sequence and its objective function value.
1: The UAV, mission and key task are encoded as particles.
2: DO
3: For per particle
4: Calculated the fitness (using evaluation function);
5: If (fitness is better than historical best value of particles)
6: Use Xi update the best individual in history Pi;
7: End
8: Select the best particle in the current particle swarm;
9: If (the current best particle is better than the historical best particle)
10: Update with the best particle of current swarm Pg;
11: For per particle
12: Update the particle velocity according to formula (11);
13: Update the particle position according to formula (12);
14: End
15: While The maximum number of iterations is not reached

Pseudocode 2: Pseudocode of the PSO algorithm.

Input: Individual x
Output: Optimized individual x
1: oldF ⟵ getFvalueðxÞ;
2: do
3: for i =1 to m do
4: for∀vij,∈xi (j≠k)do
5: Exchange the positions of vij and vik in xi;
6: Calculate newF⟵ getFvalueðxÞ;
7: if oldF−newF≤0 then
8: Restore the positions of vij and vik in xi;
9: end if
10: end for
11: end for
12: while (x is updated)
13: return x

Pseudocode 3: Greedy algorithm

Table 1: Algorithm efficiency of m = 20, n = 50, and k = 20.

Brute force NSGA-III PSO NSGA-III-greedy

Times 1 20 20 20

Total time (s) — 2215.29 530.93 3775.07

Avg time (s) — 110.76 26.55 188.75

Table 2: Implementation of key tasks of m = 20, n = 50, and k = 20.

Brute force NSGA-III PSO NSGA-III-greedy

Achieve goal Yes Yes No Yes
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(4) Objective function:

(a) Include all the key tasks in Si:

goal1 = Si ∈Q: ð6Þ

Q = fq1 ⋯ qng is the final execution sequence of UAV,
and Si=x1⋯xk

is one of the key tasks. That means that the final
UAV task allocation scheme contains all the key tasks.

(b) Maximize the number of tasks:

goal2 = max∀D 〠
n

i=1
πi ≠NULLf g: ð7Þ

(c) Maximize the mission revenue:

goal3 = max∀D 〠
n

i=1
πi ≠NULLf g: ð8Þ

(d) Minimize resource consumption:

goal4 = max∀D 〠
m

i=1
move cost pri , p

s
i1ð Þ + 〠

sij j

j=2
move cost

 

� psi j−1ð Þ, p
s
ij

� �
+ 〠

sij j

j=1
task cost sij

� �!
:

ð9Þ

move timeðpri , psi1Þ indicates the movement time of UAV
from the previous task to the current task. task timeðsi, j − 1Þ
represents the time spent on the previous task of the current
task.

(e) Minimize time cost:

goal5 = min∀D maxmi=1time cost si, sij jð Þ: ð10Þ

3.1. Brute-Force Method

(1) Load UAV information, mission information, and
key task information

(2) Solve all the permutations and combination situa-
tions of the tasks that each UAV can perform

(3) For each combination of UAVs in the front, the
executable test is carried out, leaving the length of
task sequences that UAVs can execute in each task
sequence

(4) Judge whether the key tasks assigned to the UAV are
lost in the remaining tasks. If lost, delete the execu-
tion sequence; otherwise, keep it

(5) The existing task sequences of each UAV are
arranged and combined to get the total task sequence

(6) The total sequence of tasks is then evaluated using the
nondominated function

(7) Select the optimal task sequence and its objective
function value to output

The pseudocode of the brute-force method is shown in
Pseudocode 1.

3.2. Constrained Optimization Evolutionary Algorithm. After
studying and testing a variety of constrained evolutionary
algorithms, this paper chose the NSGA-III algorithm as the
main algorithm of the comparative experiment.

NSGA-III [20] is a novel multiobjective optimization
evolutionary algorithm based on fast nondominated sorting
proposed by DEB in 2014. The algorithm can well deal with
multiobjective optimization problems [21], and the effective-
ness of the algorithm is verified by a multiobjective function.
Moreover, from the known findings of researchers, the
NSGA-III has a very good effect in solving the task allocation
problem of multitarget UAV [22].

The main flow of the algorithm is as follows:

(1) Load UAV information, task information, and key
task information

(2) The UAV information, task information, and key
task information are encoded, and the key task is
compulsorily encoded into the corresponding UAV
executable task sequence

(3) The number of iterations t is set to 0

(4) Evaluate the initial population and calculate the indi-
vidual fitness

(5) The offspring population was generated by crossover
and mutation; then, individual fitness was calculated

(6) The parent population and the offspring population
are combined, and then, nondominated sorting is
performed

(7) Based on the reference point, n better individuals
were selected; then, put them into the next-
generation population

Table 3: Target optimization of goal2 to goal5.

Goal2 Goal3 Goal4 Goal5
Brute force — — — —

NSGA-III 0.18 0.14 0.28 0.71

PSO 0.56 0.47 0.08 0.70

NSGA-III-greedy 0.18 0.14 0.28 0.87
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(8) Repeat the operations of 4–7 until the number of
iterations is reached

(9) After processing the results, the solution set contain-
ing all the key tasks is selected

The program flowchart is shown in Figure 3.

3.3. PSO Algorithm. Particle swarm optimization (PSO) was
proposed by Dr. Eberhart and Dr. Kennedy in 1995 which
is based on the study of birds’ predation behavior. Its basic
core is to make use of the information sharing of individ-
uals in the group, so that the movement of the whole group
will have an evolutionary process from disorder to order in
the problem solving space, so as to obtain the optimal solu-

tion of the problem. Particle swarm optimization has the
advantages of easy implementation, high accuracy, and fast
convergence. This paper chooses the particle swarm optimi-
zation algorithm mainly because of its high precision and
fast convergence, because in the real combat plan, people
need to plan the task allocation scheme in the quickest time
possible [4, 23].

The pseudocode of the PSO algorithm is shown in
Pseudocode 2.

Speed update equation:

Vid = ωVid + C1random 0, 1ð Þ Pid − Xidð Þ
+ C2random 0, 1ð Þ Pgd − Xid

� �
:

ð11Þ
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Figure 4: NSGA-III for m = 20, n = 50, and k = 20.
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Position update equation:

Xid = Xid +Vid: ð12Þ

3.4. Constrained Optimization Evolutionary Algorithm with
the Greedy Algorithm. Here, this paper still uses the NSGA-
III constrained evolutionary algorithm. This paper adds the
greedy algorithm, which can find the local fast optimization
in the population evolution process of the NSGA-III
algorithm. The purpose of this is to enrich the diversity of
the population, avoid local deadlock while accelerating the
speed of local optimization, optimize the global optimal solu-
tion, and obtain better UAV task allocation effect [4].

The pseudocode of the greedy strategy, where xi is the
execution sequence of agent ui, is shown in Pseudocode 3.

4. Results and Discussion

This section will discuss the effect of the four schemes in the
“limited” UAV task allocation scheme based on the event
model by comparing the data of the four experiments and
analyzing the experimental results.

The experimental environment of this paper is as follows:
Windows 10 operating system 64-bit professional edition,
version 2004, processor Intel i7-4720hq, main frequency
2.60GHz, memory 16G, hard disk 512gssd, programming
environment PyCharm 2020, and visual studio 2019.

For the fairness of experimental comparison, this paper
uses the same test data for UAV, mission, and key task. First
of all, this paper designs three scales of test data: 20 UAVs
and 50 tasks, including 20 key tasks; 50 UAVs and 200 tasks,
including 50 key tasks; and 100 UAVs and 400 tasks, includ-
ing 100 key tasks. In terms of the number of key tasks, this
paper’s design is the same as that of UAVs. In reality, there
are few key tasks. In order to test the effectiveness of the
improved algorithm, this paper increased the number of
key tasks to the same level as the number of UAVs and
designed the initialization data of UAV and mission.

In terms of functional constraints, both key tasks and
nonkey tasks may be executed by multiple UAVs; each
UAV’s task execution sequence can include both key tasks
and nonkey tasks; there is no necessary sequence between
nonkey tasks and key tasks.

4.1. Small-Scale Task Allocation Experiment. Under the
small-scale UAV task allocation, the number of UAVs is
assumed to be 20 and the total number of tasks is 50, includ-
ing 20 key tasks. This paper will show and analyze the data
from three aspects: the algorithm solution time, whether it
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Figure 6: NSGA-III-greedy for m = 20, n = 50, and k = 20.

Table 4: Algorithm efficiency of m = 50, n = 200, and k = 50.

Brute force NSGA-III PSO
NSGA-III-
greedy

Times 1 20 20 20

Total time (s) — 2821.77 1159.54 15217.41

Avg time (s) — 141.10 57.98 760.87

Table 5: Implementation of key tasks ofm = 50, n = 200, and k = 50.

Brute force NSGA-III PSO NSGA-III-greedy

Achieve goal Yes Yes No Yes

Table 6: Target optimization of goal2 to goal5.

Goal2 Goal3 Goal4 Goal5
Brute force — — — —

NSGA-III 0.46 0.28 0.31 0.94

PSO 0.74 0.75 0.11 0.86

NSGA-III-greedy 0.46 0.28 0.32 0.94
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can ensure the implementation of key tasks, and the final
optimization effect of the objective function.

First, the time efficiency of the algorithm is shown in
Table 1.

This paper finds that the time complexity of the brute-
force method increases exponentially with the increase in
the task scale. When the task scale reaches 20, 50, and 20,
the computer for the experiment cannot solve the task plan-
ning scheme with the existing equipment. Obviously, the
brute-force method can only be applied to the task allocation
of small teams, but it is not applicable to the task allocation of
large-scale cluster operations. This paper will focus on the
other three options. From Table 1, the PSO algorithm has
great advantages in solving efficiency.

Then, there is the ability to ensure the smooth progress of
key tasks (see Table 2).

This paper finds that only in the particle swarm optimiza-
tion algorithm, key tasks cannot be realized to be executed
inevitably. This is because the particle swarm optimization
algorithm is easy to fall into the local optimal situation in
the process of optimization. Because this paper set more tar-
gets, the algorithm converges quickly after a target has better
effect. In fact, it is also a trade-off between the optimization
effect and optimization time of the particle swarm optimiza-
tion algorithm.

Finally, the four goals of goal2-goal5 are compared.
Table 3 shows the comparison of optimal solutions, and
Figures 4–6 show the solution set distribution.
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Figure 7: NSGA-III for m = 50, n = 200, and k = 50.
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4.2. Middle-Scale Task Allocation Experiment. Under the
middle-scale UAV task allocation, the number of UAVs is
assumed to be 50 and the total number of tasks is 200, includ-
ing 50 key tasks. This paper will show and analyze the data
from three aspects: the algorithm solution time, whether it
can ensure the smooth implementation of key tasks, and
the final optimization effect of the objective function.

First, the time efficiency of the algorithm is shown in
Table 4.

It can be seen from Table 4 that the PSO algorithm still
has the fastest solution speed, followed by NSGA-III. After
adding the greedy algorithm, the speed of NSGA-III is greatly
reduced with the increase in the problem size.

Then, there is the ability to ensure the smooth progress of
key tasks (see Table 5).

Here, like the small-scale problem, in four cases, the inev-
itable execution of key tasks cannot be realized only in the
particle swarm optimization algorithm.

Finally, the four goals are compared. Table 6 shows the
comparison of optimal solutions, and Figures 7–9 show the
solution set distribution.

4.3. Large-Scale Task Allocation Experiment.Under the large-
scale UAV task allocation, the number of UAVs is assumed
to be 200 and the total number of tasks is 1000, including
200 key tasks. This paper will show and analyze the data from
three aspects: the algorithm solution time, whether it can
ensure the smooth implementation of key tasks, and the final
optimization effect of the objective function.

First, the time efficiency of the algorithm is shown in
Table 7.

The PSO algorithm still maintains excellent efficiency in
solving large-scale problems. The efficiency of NSGA-III
with the greedy algorithm is further reduced.

The next part is whether the smooth progress of key tasks
can be ensured (see Table 8).

The four cases here are the same as the previous two
cases; only in the particle swarm optimization algorithm,
the time key task cannot necessarily be executed.

Finally, the four goals are compared. Table 9 shows the
comparison of optimal solutions, and Figures 10–12 show
the solution set distribution.

From the above several different scale experiments, the
four methods show different characteristics and advantages.
The brute-force algorithm needs to enumerate all the possi-
bilities, which leads to slow efficiency. But the brute-force
algorithm can get the best result. The NSGA-III algorithm
needs a lot of crossover and mutation operations in the iter-
ative process, and its efficiency is not the best. But the NSGA-
III has an excellent balance. Algorithm efficiency and effect
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Figure 9: NSGA-III-greedy for m = 50, n = 200, and k = 50.

Table 7: Algorithm efficiency of m = 200, n = 1000, and k = 200.

Brute force NSGA-III PSO
NSGA-III-
greedy

Times 1 20 20 5

Total time (s) — 4904.00 1501.91 21532.62

Avg time (s) — 245.20 75.10 4306.52

Table 8: Implementation of key tasks of m = 200, n = 1000, and k
= 200.

Brute force NSGA-III PSO NSGA-III-greedy

Achieve goal Yes Yes No Yes

Table 9: Target optimization of goal2 to goal5.

Goal2 Goal3 Goal4 Goal5
Brute force — — — —

NSGA-III 0.43 0.29 0.36 0.89

PSO 0.68 0.63 0.12 0.79

NSGA-III-greedy 0.43 0.28 0.33 0.93
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Figure 10: NSGA-III for m = 200, n = 1000, and k = 200.
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have excellent performance. In the process of iteration, the
PSO algorithm needs few operations, and the iteration effi-
ciency is very fast. PSO has a local optimal problem, which
leads to poor results. After adding the greedy algorithm, the
population diversity of NSGA-III is improved. At the same
time, due to the increase in computation, the efficiency of
the algorithm is reduced.

5. Conclusions

In order to solve the problem of “limited” task allocation in
UAV combat, four existing algorithms are improved and
optimized in this paper to ensure that the nonkey tasks are
optimized to maximize the revenue when the key tasks are
executed. The brute-force method, because its solution time
increases exponentially with the increase or decrease in task
size, is only suitable for small-scale task allocation and can
achieve the optimal effect; NSGA-III, an evolutionary algo-
rithm for multiobjective optimization, has a very good effect
in solving such problems and has a good balance between
solution efficiency and solving effect; PSO is suitable for solv-
ing different scale task allocation problems, and it has the
fastest solving efficiency, but because the algorithm itself is
easy to fall into the local optima, it often leads to premature
convergence of the algorithm. In the final, the effect of the
constrained optimization evolutionary algorithm with the
greedy algorithm is not very obvious, but with the increase
in the size of the problem, the optimization effect begins to
show gradually. In the actual UAV combat task allocation
problems, users can choose different algorithms with differ-
ent problem sizes and constraints, which can give full play
to the advantages of each algorithm to adapt to different task
allocation requirements.

In the future work, we intend to focus on optimizing the
constrained evolutionary algorithm, because its performance
is excellent in solving the constrained task allocation in the
existing work. In the future, we may try to enrich the diver-
sity of its population, improve its global search ability, and
avoid the local optimal problem, so that the algorithm can
achieve better performance. At the same time, using more
efficient algorithms to solve the existing problems will also
be our work direction.

Data Availability

All the data can be generated according to the steps described
in our paper, and readers can also ask for the data by contact-
ing cxj_dna@yeah.net.
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