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A webshell is a malicious backdoor that allows remote access and control to a web server by executing arbitrary commands. The
wide use of obfuscation and encryption technologies has greatly increased the difficulty of webshell detection. To this end, we
propose a novel webshell detection model leveraging the grammatical features extracted from the PHP code. The key idea is to
combine the executable data characteristics of the PHP code with static text features for webshell classification. To verify the
proposed model, we construct a cleaned data set of webshell consisting of 2,917 samples from 17 webshell collection projects
and conduct extensive experiments. We have designed three sets of controlled experiments, the results of which show that the
accuracy of the three algorithms has reached more than 99.40%, the highest reached 99.66%, the recall rate has been increased
by at least 1.8%, the most increased by 6.75%, and the F1 value has increased by 2.02% on average. It not only confirms the
efficiency of the grammatical features in webshell detection but also shows that our system significantly outperforms several
state-of-the-art rivals in terms of detection accuracy and recall rate.

1. Introduction

Webshell is a web backdoor written in the web scripting lan-
guages that provide a covert way to communicate with the
server [1]. Along with the fast development of the Internet,
web attacks occur much more frequently, among which
implanting webshell into target websites is one of the most
commonly used means for attackers [2]. Attackers can use
webshell to gain control of the website server, so as to further
conduct information sniffing, data theft, or tampering. In
order to bypass the webshell detection tools, attackers usually
use obfuscation and encryption or just embed webshell codes
into normal files, thus preventing webshell files from being
detected. Therefore, precisely detecting and identifying web-
shell are growing much tougher, and how to accurately con-
duct webshell detection has already become one important
problem for preventing web-based attacks.

Currently, there are two distinct technical routes of web-
shell detection—dynamic feature detection and static feature
detection. Specifically, dynamic feature detection is mainly
based on the webshell file behavior [3], webshell communica-

tion traffic [4–6], and other characteristics. It only works
when webshell is dynamically executed. On the one hand,
dynamic detection needs hook [7], sandbox [8] and other
technologies. On the other hand, it has to detect the opera-
tion of files and traffic communication. Therefore, dynamic
detection could consume much of the computing resources
of the server and significantly deteriorate its performance.
As a result, static feature detection methods have become
the focus of research.

The static feature detection methods are mainly based on
webshell text content as well as web log information [9, 10]
for analysis and detection. Although regular expressions
[11] are the earliest widely used method to detect the con-
tents of webshell, they are confined to be extracted from the
existing webshell and need to be constantly updated. To this
end, the static feature detection method cannot detect the
unknown webshell. Moreover, since webshell code obfusca-
tion and encryption technology continues to mature, detec-
tion methods based on regular expressions can be easily
bypassed. Machine learning emerges recently in various
fields including cyberspace security [12]. Some researchers
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began to apply this technology to webshell detection, and
results prove that it can play a vital role in webshell detection.
The construction of feature engineering, namely, the features
which are involved are the webshell characteristics we choose
for model training, plays a critical role in webshell detection
methods based on machine learning.

The main contributions of this paper are summarized as
follows:

(1) We first proposed the concept of the executable data
characteristics of PHP code and used it for webshell
detection research. From the perspective of the gram-
matical features of webshell, we constructed a web-
shell detection model based on the executable data
characteristics of PHP code

(2) We construct a cleaned data set to facilitate subse-
quent related research via collecting 17 existing web-
shell data sets on Github. The md5 algorithm has
been used to remove the duplicate webshell samples
and some non-PHP code webshell files through man-
ual analysis

(3) We conduct extensive experiments to evaluate the
performance of our proposed method. The results
show that the executable data characteristics of PHP
code is one of the important grammatical features
of PHP webshell, which significantly improves the
accuracy of the detection model. Moreover, the exe-
cutable data characteristics of PHP code can better
improve the distinguishing ability of the detection
model compared with the traditional static statistical
characteristics

In the next section, we review some representative related
research to outline the motivation of our research. In Section
3, we introduce our system model in detail, including the
opcode text vector library and data executable features of
PHP code. In Section 4, we systematically evaluate our detec-
tion model. Finally, we summarize our work in Section 5.

2. Related Work

For webshell detection based on static features, the feature
selection is mainly divided into two types: text features and
grammatical features. Current research on webshell detection
using machine learning mainly focuses on the text feature. In
order to make up for the shortcomings of the detection
method using regular expression detection, researchers have
proposed a detection method based on statistical features
from the perspective of text features. That is, by extracting
statistical features in webshell, such as information entropy,
longest words, index of coincidence, and compression ratio,
these features combine to form a feature matrix for model
construction. And then, through experiments, it was found
that PHP opcode can help improve the capability of the
detection of webshell in PHP language. By combining the sta-
tistical features, PHP opcode word frequency, PHP opcode
text vector library, signature functions, word relevance, and
other features together to construct a feature matrix as an

input training model for classification, significant perfor-
mance has been achieved.

Hu et al. proposed a webshell detection model based on
the decision tree focusing on the detection of PHP webshell
[13]. The basic attributes of the sample, such as the number
of words and lines in the text, called functions, are extracted
to construct the features and train the decision tree classifica-
tion model for webshell detection. Although the number of
words, line numbers of the text, and called functions cannot
distinguish between normal files and webshell files, this
research has made a good attempt to build a detection model
using the text features of webshell.

Meng et al. [14] build a matrix to make use of the SVM
algorithm training model for webshell detection. To this
end, web page attribute characteristics are extracted. These
characteristics include page length, code lines, number of
comments and other characteristics, and page operation
attributes. Besides encryption and decryption function calls,
system, eval, exec, shell_exec, and other function calls, char-
acter operation function calls, system function calls, file oper-
ations, FTP (File Transfer Protocol) operations, database
operations, ActiveX control calls, and other features are all
involved in the matrix building.

Hu proposed a model of webshell detection based on
Bayesian theory [15] and extracted the common statistical
features of file analysis for the construction of feature engi-
neering. Features involved are information entropy, longest
word length, compression ratio, index of coincidence, and
other features, all of which would be put into the Bayesian
classifier to train the model for webshell detection.

The model of detecting webshell based on random for-
est with FastText was first proposed by Fang et al. to extract
the opcode of PHP code as a feature for model construction
[16]. By extracting the opcode of the PHP code to train the
FastTest model, the FastText model is used for preclassifi-
cation processing. Statistical features such as the longest
string, information entropy, index of coincidence, text fea-
tures such as sensitive functions, and blacklist keywords
are used as input to train random deep forest classification
model.

Cui et al. proposed the model of webshell detection based
on random forest–gradient boosting decision tree algorithm
[17]. First attain opcode hash vector and text vector library
features extracted from PHP opcode processed by the TF-
IDF (term frequency–inverse document frequency) [18] vec-
tor. All these features are used to train a random deep forest
model, so as to obtain preliminary preprocessing results.
Combined with statistical features such as information
entropy, index of coincidence, compression ratio, length of
the longest word, and number of signature function matches,
to construct a feature matrix as the input of the GBDT (Gra-
dient Boosting Decision Tree) classifier for model training,
the final detection result is obtained.

In 2019, Li et al. proposed a webshell detection model
based on the word attention mechanism [19]; first, use
word2vec to vectorize the text content, then use the GRU
(Gated Recurrent Unit) model and the attention mechanism
model for training, and finally input to a sigmoid function
full connection layer for webshell classification.

2 Wireless Communications and Mobile Computing



The statistical characteristics are mainly the attribute
values of some aspects of the file, which summarize the char-
acteristics of webshell from the perspective of the entire file.
However, with the rapid development of web services, a large
number of web service frameworks have emerged, and devel-
opers have begun to use code obfuscation and encryption
techniques in the project code to avoid the leakage of source
code, which will in the end cause the statistical feature of nor-
mal files to resemble webshell, making the webshell detection
model based on statistical features lose its original advan-
tages. This also fully illustrates that webshell detection based
on statistical characteristics is not comprehensive. Webshell
not only has the attributes of a file but also has the structure
of a scripting language.

According to the analysis above, due to the growing dis-
advantages of statistical features, this paper is dedicated to
proving that the executable data characteristics of the PHP
code can be effective in webshell detection.

3. Model Architecture

The structure of the detection model is shown in Figure 1,
which includes three parts: data preprocessing, feature
matrix construction, and classifications via supervised learn-
ing algorithms.

Firstly, we preprocess the data and extract the features
from the text and data executable, respectively. From the
view of text, we choose to use the text vector library of opcode
with the best discrimination ability in the current research to
combine the static statistical features of the samples. Sec-
ondly, we combine the PHP opcode text vector library
extracted in the preprocessing stage, the static statistical fea-
tures of samples, and the executable data characteristics of
PHP code to form the feature matrix to describe the samples.
Finally, supervised learning algorithm is used for training
classification.

3.1. Static Statistical Features. We selected six types of static
statistical features used in the literature [12], including infor-
mation entropy, index of coincidence, length of the longest
word, amount of matched signatures, data compression ratio,
and uses of the eval function. Combining these features, we
can get a 6-dimensional feature vector.

3.2. Text Vector Library of PHP Opcode. The running process
of PHP code includes three stages: lexical analysis, syntax
analysis, and Zend engine execution. After these three stages
of processing, the corresponding results of PHP code will be
output, as shown in Figure 2.

Through lexical analysis, PHP code is divided into lan-
guage fragments. After syntax analysis, the language frag-
ments are transformed into meaningful expressions which
are input into Zend engine for execution. In the Zend engine
execution stage, it will translate the expressions generated by
syntax analysis into a series of opcodes and perform corre-
sponding operations according to opcode. For example, the
original code of a webshell sample is as follows.

The opcode sequence generated by Zend engine coding is
as follows: [‘FETCH CONSTANT’,‘FETCH R’,‘FETCH DIM
R’,‘INCLUDE OR EVAL’,‘RETURN’], as shown in Table 1.
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Figure 1: The structure of the detection model.

<?php echo('Hello 
World');?> Hello World
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Figure 2: The running process of PHP code.
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That is to say, Zend engine will parse and execute accord-
ing to the opcode sequence generated by compilation and get
the above webshell code by obfuscating encryption:

The opcode sequence of this code is as follows: [‘INIT_
FCALL’, ‘SEND_VAL’, ‘DO_ICALL’, ‘INIT_FCALL’,
‘SEND_VAL’, ‘SEND_VAL’, ‘DO_ICALL’, ‘FETC_CON-
STANT’, ‘INIT_FCALL’. ‘SEND_VAL’, ‘SEND_VAL’,
‘DO_ICALL’, ‘FETCH_W’, ‘ASSIGN_DIM’, ‘OP_DATA’,
‘FETCH_CONSTANT’, ‘FETCH_R’, ‘FETCH_DIM_R’,
‘FETCH_DIM_R’, ‘FETCH_R’, ‘FETCH_DIM_R’, ‘INCLUDE_
OR_EVAL’, ‘RETURN’]. By comparison, it can be found that
opcode generated by obfuscated encryption contains the
opcode of source code. From the perspective of opcode, after
obfuscated encryption, webshell code adds some additional
operations for changing code style on the basis of original
operation sequence and does not change its original core
opcode sequence. Therefore, the use of opcode in webshell
detection can play a great role in webshell detection. Docu-
ment [16] first demonstrated the application of PHP opcode
to webshell detection through the comparative experiment
for the first time in 2018, which can improve the discrimina-
tion ability of the detection model.

In the previous research, we usually use PHP’s VLD [20]
extension to extract opcode, but when we are dealing with the
large amount of code after confusion encryption, the low effi-
ciency of VLD extension processing the output file opcode is
unbearable, so we use PHP’ native debugger PHPDBG [21]
to extract opcode of PHP code.

In the detection model of this paper, we focus on the text
vector library of opcode, and the opcode sequence of each

PHP file has a certain correlation; that is to say, each opcode
has a certain correlation with the opcode before and after it.
Therefore, n-gram model is used to preprocess opcode to
generate the opcode word frequency matrix, and then, the
TF-IDF model is introduced to calculate the TF-IDF value
of each opcode segment. The text vector library of opcode
is generated by filtering out the opcode fragments with less
distinguishing ability. Its concrete process is shown in
Figure 3.

N-gram [22] is a probabilistic language model based
on the Markov assumption that the occurrence of the n
th word is related to the (n − 1)th words; the probability
of the entire sentence is equal to the probability product
of each word appearing. Assuming that the sequenceS is
composed of the word sequences W1, W2, W3,...,Wn, the
probability of the sentence S appearing could be expressed
in this way:

P Sð Þ = P W1ð ÞP W2ð ÞP W3ð Þ⋯ P Wnð Þ: ð1Þ

The probability of each word occurrence is calculated by
sample statistics when the model is built. Using the N-Gram
model to preprocess opcode, a large number of opcode
sequence samples are divided into n-length opcode corpus
fragments. For example, opcode sequences are as follows:
[‘ASSIGN’, ‘INCLUDE_OR_EVAL’, ‘CONCAT’, ‘INCLUDE_
OR_EVAL’, ‘RETURN’], [‘ASSIGN’, ‘INIT_FCALL’, ‘SEND_
VAL’, ‘DO_ICALL’, ‘CONCAT’, ‘INCLUDE_OR_EVAL’,
‘RETURN’], The corpus fragments generated by N=3 are
shown in Table 2.

The frequency matrix of opcode sequence can be con-
structed by calculating the number of occurrences of corpus
fragments:

1 0 1 0 1 0 0½ �
0 1 1 1 0 1 1½ �

" #
ð2Þ

TF-IDF [18] is used to evaluate the importance of a cor-
pus fragment in the corpus, where TF (word frequency) rep-
resents the frequency of a corpus fragment in the corpus. To
be specific, nði, jÞ represents the number of occurrences of
corpus fragment ti in file dj, and∑knk,j means the total num-
ber of occurrences of all corpus fragments in file dj. The cal-
culation formula is given like this:

t f ij =
ni,j

∑knk,j
: ð3Þ

IDF (Reverse File Frequency) is used to indicate whether
a corpus fragment has good class discrimination ability in the
corpus. The formula is (4), in which jDj represents the sum of
the files in the corpus. jfj : ti ∈ djgj represents the number of
files that contain corpus fragments ti. If the corpus fragment
is not in the corpus, it will result in a denominator of 0. So
generally, the denominator is symbolled as jfj : ti ∈ djgj + 1.
If fewer files contain corpus fragments ti, the IDF value grows
with files in corpus fragments decreasing. This shows that

<?phpeval($_REQUEST[‘password’]) ; ?>

Code 1

Table 1: Opcode sequence.

No. Opcode

0 FETCH CONSTANT

1 FETCH R

2 FETCH DIM R

3 INCLUDE OR EVAL

4 RETURN

<?php
error_reporting(E_ALLˆE_NOTICE);
define(‘%uFFFD%uFFFD’,’%uFFFD%uFFFD%uF
FFD’);
$_SERVER[%uFFFD%uFFFD]=explode(‘|-|; |(
‘,“password”);
eval($_REQUEST[$_SERVER{%uFFFD%uFFFD}[
0]])
?>

Code 2
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corpus segment shows excellent performance in distinguish-
ing categories.

idf i,j,D = log
Dj j

j : ti ∈ dj

� ��� �� : ð4Þ

TF-IDF is the product of TF and IDF, and the formula is
(5). The TF-IDF value can be used to filter out some of the
referenced corpus fragments, reserving corpus fragments
with good discriminatory ability.

t f − idf i,j,D = t f i,j ∗ idf i,j,D: ð5Þ

The opcode text vector library can be obtained by passing
the frequency matrix generated by the n-gram preprocessing
above into the TF-IDF model.

By transmitting frequency matrix generated by n-gram
preprocessing into the TF-IDF model, the opcode text vector
library is attained:

0:6317 0 0:4494 0 0:6317 0 0½ �
0 0:4712 0:3351 0:4712 0 0:4712 0:4712½ �

" #

ð6Þ

3.3. The Executable Data Characteristics of PHP Code. In the
parsing of PHP language, there is no difference between data
segment and code segment. When PHP receives data from
users, the input data may not only be processed as characters
but also be parsed and executed as PHP code. For example,
the PHP code is as follows.

We can directly get knowledge about the function of the
code. That is to say, the data input by the user would be
printed in the page by the echo function. And the overall
function of the code would not be affected due to the different
inputs from users, so the function of the code is clear. If the
echo function in the above code is replaced with eval, it will
become a sentence webshell in PHP.

The specific function of this code cannot be determined
directly. If the data obtained by $_GET[‘txt’] is ‘1+1’, this
code would output the calculation result ‘2’. If the data
obtained by $_GET[‘txt’] is the function phpinfo() in PHP,
this code would print the relevant configuration information
of the server of PHP language. If the acquired data is ‘system
(whoami)’, the user input is converted into a system function
to execute the corresponding system command, which
means that the data entered by the user is actually executed
as a PHP code in this code. To sum up, input data determines
the actual function of the code, so we make a definition as
follow:

Definition 1. In a section of PHP code, the input data is
parsed and executed as PHP code or system command to
determine the actual function of this section of code, which
is called data executable characteristic.

And webshell is able to realize various functions through
a simple piece of code. For example, you can get information
about the running environment of the web server; perform
file uploading, downloading, or editing operations; connect
to the database; get the command execution environment
of the server; and so on. Therefore, we are certain that the
majority of webshell will respond to users’ inputs to achieve
the correspondence functionality. In other words, the major-
ity of webshell possesses data executability features.

Use phpdbg to
extract opcode
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[0.26061951,0,0,0,0,0,…,0.26061951,0,0,0,0,0.22155040]

[0,1,0,0,0.38568218,0,…,0,0,0.38568218,0,0,0]
[0,0,0.14002801,0,0,0,…,0,0.42008403,0,0,0,0]

TF-IDF
processing

…
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Figure 3: PHP opcode processing flow.

Table 2: The corpus fragments generated by N=3.

# Corpus fragments

0 [‘ASSIGN’, ‘INCLUDE_OR_EVAL’, ‘CONCAT’]

1 [‘ASSIGN’, ‘INIT_FCALL’, ‘SEND_VAL’]

2 [‘CONCAT’, ‘INCLUDE_OR_EVAL’, ‘RETURN’]

3 [‘DO_ICALL’, ‘CONCAT’, ‘INCLUDE_OR_EVAL’]

4 [‘INCLUDE_OR_EVAL’, ‘CONCAT’, ‘INCLUDE_OR_EVAL’]

5 [‘INIT_FCALL’, ‘SEND_VAL’, ‘DO_ICALL’]

6 [‘SEND_VAL’, ‘DO_ICALL’, ‘CONCAT’]

<?phpecho($_GET[‘txt’]) ; ?>

Code 3

<?phpeval($_GET[‘txt’]) ; ?>

Code 4
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An abstract syntax tree [23] for PHP code is needed to
extract executable data characteristics of PHP code. An
abstract syntax tree is a tree that represents the grammatical
structure of a program’s source code, where each node repre-
sents a structure in the source code. Abstract syntax tree for
PHP code can be generated by using PHP-Parser [24].
PHP-Parser is an open-source PHP abstract grammar tree
generation tool programmed in PHP language based on the
Zend engine. For example, the abstract syntax tree generated
by the sentence webshell mentioned above through PHP-
parse is as follows.

Stmt and Expr represent the declaring node and the
expression node, respectively. Besides, variables in the for-
mula are expressed by Variable, and a string constant is rep-
resented by Scalar_String. Through the abstract grammar
tree, we can intuitively understand the overall grammar
structure of the code. Extracting the executable data charac-
teristics of the PHP code allows us to analyze Eval, FuncCall,
MethodCall, and ShellExec nodes in Expr nodes of the
abstract syntax tree by matching, analyzing, and judging the
attributes (function name, parameter type) of these nodes
to get knowledge that whether the function in the expression
node can execute data as the PHP code or system command
and whether the parameter of the function is a variable node.
Variable node, the function of expression node, executes var-
iable parameters as PHP code or system command, while the
actual function of the code is dynamically determined by the
value of the variable. If all the above conditions are met, the
PHP code is judged to have executable data characteristics.
The algorithm to extract the executable data characteristics
of the PHP code shown in Algorithm 1:

Finally, a one-dimensional matrix is generated to
describe the executable data characteristics of the sample.
Samples which possess executable data characteristics will
be marked as 1, and samples without data executability are
marked as 0.

3.4. Feature Matrix Construction and Supervised Learning
Algorithm. The feature matrix is constructed by combining
the text vector library, sample static statistical features, and
data executable features of opcode. The characteristic matrix

is constituted byM rows and N + 7 columns.M represents a
total of M samples. The first N columns represent the text
vector of the sample opcode. Column N + 1 to N + 6 repre-
sent the static statistical characteristics of the sample. The
N + 7th column represents the executable data characteristics
of the sample. This paper focuses on whether the executable
data characteristics of PHP code can play a vital role in web-
shell detection. Therefore, the impact of specific algorithm on
detection is not discussed. Supervised learning refers to using
a set of labeled data to learn its mapping from input to output
and applies this mapping relationship to unknown data in
order to achieve the purpose of classification or regression.
The constructed feature matrix is introduced into the super-
vised learning algorithm to construct the model. Finally, the
model is used to classify each test data.

4. Experimental Analysis

4.1. Data Sets. Since we found there is no ready-made and
cleaned data set of PHP webshell on the internet available,
we collected a total of 6021 webshell samples of PHP lan-
guages from 17 open-source projects. Github projects
involved are shown in Table 3.

Since webshell samples collected by each github project
inevitably include partial duplicate sample files, in order to
avoid repeated webshell sample files affecting the experimen-
tal results, we used the md5 algorithm to reprocess 6,021
webshell samples and obtained a total of 3,211 nonrepeated
webshell sample files. Meanwhile, in order to ensure the
accuracy of the data, 294 non-PHP webshell files were
excluded by manual analysis, so the final number of webshell
samples was 2,917. By making a test of executable data char-
acteristics, a total of 2,696 samples were found to have this
property. And the remaining 221 webshell samples were ana-
lyzed manually only to find that samples that did not detect
the executable data characteristics of PHP code were only
related to operations with only one function such as file
upload operation, database connection operation, and file
system directory operation. This data also fully demonstrated

array (
0: Stmt_Expression (
expr: Expr_Eval (

expr: Expr_ArrayDimFetch (
var: Expr_Variable (

name: _REQUEST
)
dim: Scalar_String (

value: txt
)

)
)

)
)

Code 5

Input: PHP language samples files
Output: one-dimensional matrix of executable data charac-

teristics of the sample
1. Convert PHP code to abstract syntax tree, turn to step 2.
2. Judges whether there are Eval, FuncCall, MethodCall,
or ShellExec nodes under Expr nodes in the abstract
grammar tree, and if matched, turn to step 3; else,
return 0.

3. Judges whether the functions in the nodes above are
functions that can execute the data as PHP code or
system commands, such as eval, exec, system, etc. If
the answer is yes, turn to step 4; else, return 0.

4. Judge the type of parameter in the function, whether
the parameter is variable. If it is, return 1, if not,
return 0.

Algorithm 1: Executable data characteristic extraction of PHP
code.
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the truth that most PHP language webshell had executable
data characteristics of PHP code. We used the same approach
to collect 9,736 samples of nonrepeated normal web pages in
the PHP language from 9 well-known open-source web con-
tent management systems (content management system
(CMS)). The relevant CMS is shown in Table 4.

We divided the 2,917 webshell samples and 9,736 normal
web page samples obtained by processing into the training set
and the test set randomly according to the ratio of 7 : 3; that
is, the training set consists of 2,044 webshell samples and
6,815 normal web page samples totaling 8,859, and the test
set consists of 3,794 samples which consisted by 873 webshell
samples and 2,921 normal web page samples. After the
assignment was completed, the normal web samples and
webshell samples for training were combined to form the
training set of the model. The normal web samples and the
webshell samples for classification testing were mixed to
form the test set of the model. In the previous research, the
data set is usually preprocessed uniformly, and then, the
training set and the test set are divided. Since we use the N
-gram and TF-IDF algorithm to extract the opcode text vec-

tor library, the divided training set and the test set will have
relevance in the opcode text vector library if the data is uni-
fied preprocessing. With the aim of eliminating the relevance
of the training set and test set, we have divided the training
set and test set before preprocessing. The preprocessing of
the data and the construction of the feature matrix are carried
out separately to ensure that the data in the training set and
the test set are uncorrelated and to ensure the validity of
the experimental results. We uploaded the cleaned data set
to the Github project for use in the subsequent experiments
of webshell detection research, which can be downloaded
from https://github.com/Cyc1e183/PHP-Webshell-Dataset.

4.2. Algorithm Parameter Setting. Aiming to better compare
the experiments’ results and analyze the impact of executable
data characteristics of PHP code on model performance, we
adopt the random forest (RF) algorithm [25], support vector
machine algorithm (SVM) [14], and multilayer perceptron
(MLP) [26] with the same training set for webshell classifica-
tion. Besides, we do not explore the optimal situation of algo-
rithm parameter setting. In the experiment, we set the N
value of the N-gram algorithm used in opcode text vector
library processing as ‘3’; The sample-set segmentation strat-
egy of the random forest algorithm was set to information
entropy, the number was set to 100, the value of the random
seed was set to 2, and the remaining parameters were used for
model training with default settings. Set the kernel type of the
support vector machine algorithm to the linear kernel func-
tion. The penalty factor is set to 1. The remaining parameters
are trained by default. The weight optimization algorithm in
multilayer perceptron was set to a random gradient-based
optimization algorithm. The regularization parameter is set
to 0.0001. The hidden layers are set to 1 with 100 hidden
units in this layer. We choose the logistic function as the hid-
den layer activation function. The random seed was set to 1.
The maximum number of iterations was set to 150, while the
initial learning rate was set to 0.089. The remaining parame-
ters were set by default design for model training.

4.3. Experimental Results and Analysis. We divided the
experiment into three groups. The experiment uniformly
used the same parameter for random forest algorithm, sup-
port vector machine algorithm, and multilayer perceptron.
The first group combined the opcode text vector library, sam-
ple static statistical features, and executable data characteris-
tics of the PHP code to form a feature matrix construction
model for the experiment (we call it model 1). The second
group used the opcode text vector library combined with
static statistical features as a feature matrix to build a model
(we call it model 2), and the last group used the opcode text
vector library and executable data characteristics of PHP
code to constitute a feature matrix construction model for
experimentation (we call it model 3). Three experiments are
set to compare the excellency of executable data characteris-
tics of the PHP code with executable data characteristics.
What is more, we can also know whether executable data
characteristics of PHP code would affect the performance of
the detection model.

Table 4: Content management system lists.

# CMS Version

0 Wordpress 5.4

1 Joomla 3.9.16

2 Laravel 7.6.2

3 PHPBB 3.3.0

4 Typecho 1.1

5 ThinkPHP 5.0.24

6 Seacms 10.1

7 MetInfo 7.0.0

8 DiscuzX 3.4

Table 3: Github projects lists.

No. Github projects

0 JohnTroony/PHP-Webshells

1 xl7dev/Webshell

2 ysrc/Webshell-sample

3 tennc/Webshell

4 BlackArch/Webshells

5 JoyChou93/Webshell

6 bartblaze/PHP-backdoors

7 WangYihang/Webshell-sniper

8 tanjiti/WebshellSample

9 tdifg/Webshell

10 LandGrey/Webshell-detect-bypass

11 backlion/Webshell

12 Webshellpub/awsome-Webshell

13 x-o-r-r-o/PHP-Webshells-Collection

14 S9MF/S9MF-PHP-Webshell-bypass

15 backdoorhub/shell-backdoor-list

16 amitnaik/PHP-backdoor
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We marked the webshell sample as positive and the nor-
mal web page file sample as negative in the experiment. Con-
fusion matrices of each group of experiments are shown in
Table 5.

While TP (true positive) indicates the number of web-
shell samples that the model recognizes correctly, FN (false
negative) indicates the number of webshell samples recog-
nized by the classification model as normal web page files.
In contrast, TN (true negative) indicates the number of nor-
mal web page files that the classification model correctly
identifies, and FP (false positive) means that the classification
model recognizes the number of normal web pages as web-
shell. After comparing and analyzing the experimental data,
adding the executable data characteristics of PHP code, the
FN and FP values displayed in the confusion matrix have
been significantly reduced.

We can see from the data in Table 5 that, compared to
model 2 and model 3, the random forest and MLP models in
model 1 have achieved the maximum value of TP and TN,
while the TP in the SVM model has also achieved the maxi-
mum value. TP indicates the number of webshell samples that
the model correctly identified, it is more critical to system
security to be able to accurately identify the webshell. Com-
pared with model 2, the TP of the three models’ results has
increased by 31 in model 1; the value of TN is not significantly
improved. Compared with model 2, model 3 has an average
increase of 9 in the TP value of the three models’ results.

To more accurately conduct the experimental evaluation
and make it easy for us to compare with other detection

methods, we used five commonly used evaluation indicators
for webshell detection evaluation: accuracy, precision, recall,
F1 values, and comprehensive evaluation using ROC curves
[27]. The four evaluation indicators are calculated as follows:

Accuracy = TP + TNð Þ
TP + FN + FP + TNð Þ ,

Precision =
TP

TP + FPð Þ ,

Recall =
TPð Þ

TP + FNð Þ ,

F1 =
2 ∗ Precision ∗ Recallð Þ
Precision + Recallð Þ :

ð7Þ

While accuracy indicates the proportion of correctly pre-
dicted samples to the whole test set, precision indicates the
proportion of predicted true-positive samples to all tested
positive samples. Recall rate indicates the proportion of cor-
rectly predicted webshell samples. The F1 value is a compre-
hensive evaluation index combining the accuracy and recall
rate. The evaluation index results of the model are shown
in Table 6.

Model 1 involves a feature matrix that combines the
opcode text vector library, sample static statistical features,
and the executable data characteristics of PHP code. Model
2 adapts a feature matrix that only uses the combination of

Table 5: Confusion matrices of each group of experiments.

Model name Classification algorithm Actual
Predicted

Positive Negative

Model 1

Random forest
Positive TP = 869∗ FN = 4

Negative FP = 9 TN = 2912∗

Support vector machine
Positive TP = 865∗ FN = 8

Negative FP = 14 TN = 2907

Multilayer perceptron
Positive TP = 867∗ FN = 6

Negative FP = 12 TN = 2909∗

Model 2

Random forest
Positive TP = 854 FN = 19

Negative FP = 9 TN = 2912∗

Support vector machine
Positive TP = 806 FN = 67

Negative FP = 12 TN = 2909∗

Multilayer perceptron
Positive TP = 848 FN = 25

Negative FP = 24 TN = 2897

Model 3

Random forest
Positive TP = 867 FN = 6

Negative FP = 16 TN = 2905

Support vector machine
Positive TP = 863 FN = 10

Negative FP = 34 TN = 2887

Multilayer perceptron
Positive TP = 859 FN = 14

Negative FP = 17 TN = 2904
∗The maximum value of the same algorithm in different models.
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opcode text vector library and sample static statistics. By
comparing the experimental data of model 1 and model 2,
we can see model 1 performs well than model 2. The evalua-
tion indicators have been improved a lot, among which the
accuracy of the three algorithms has reached more than
99.40%, the highest reached 99.66%, the recall rate has been
increased by at least 1.8%, the most increased by 6.75%,
and the F1 value has increased by 2.02% on average. The
average value of precision has not changed much. The data
fully shows that the executable data characteristics of PHP
code can effectively improve the distinguishing ability of
the model.

By comparing the experimental data of model 2 and
model 3, results can be reached out. Specifically, the perfor-

mance of the model constructed using the feature matrix of
the combination of the opcode text vector library and the
executable data characteristics of the PHP code is slightly bet-
ter than the performance of the model built by model 2.
Among them, the accuracy rate, recall rate, and F1 value
are improved by 0.52%, 3.07%, and 1.19%, respectively. The
data fully indicates that the executable data characteristics
of PHP code can describe webshell better than static statisti-
cal features and have better discrimination ability. We can
intuitively see the difference in the experimental results of
the three models from Figure 4.

Figures 5–7 show the ROC curves of the three groups of
experiments, respectively. And its horizontal coordinates
are false-positive rate (false-positive rate (FPR)) which

Table 6: The evaluation index results.

Model name Classification algorithm
Evaluation index

Accuracy Precision Recall F1 score

Model 1

Random forest 0.9966∗ 0.9897∗ 0.9954∗ 0.9926∗

Support vector machine 0.9942∗ 0.9841 0.9908∗ 0.9874∗

Multilayer perceptron 0.9953∗ 0.9863∗ 0.9931∗ 0.9897∗

Model 2

Random forest 0.9926 0.9896 0.9782 0.9839

Support vector machine 0.9792 0.9853∗ 0.9233 0.9533

Multilayer perceptron 0.9871 0.9725 0.9714 0.9719

Model 3

Random forest 0.9942 0.9819 0.9931 0.9875

Support vector machine 0.9884 0.9621 0.9885 0.9751

Multilayer perceptron 0.9918 0.9806 0.9840 0.9823
∗Comparing the same algorithm in different models, the maximum value of the indicator.
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0.94

0.96

0.98

1

Random forest Support vector
machine

Multi-layer
perceptron

Random forest Support vector
machine

Multi-layer
perceptron

Random forest Support vector
machine

Multi-layer
perceptron

Model 1 Model 2 Model 3

Accuracy
Precision

Recall
F1 score

Figure 4: Data comparison of the three models.
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represents the false alarm rate of web normal page file. The
ordinate stands for true-positive rate (true-positive rate
(TPR)) which describes the accuracy of the classification of
webshell documents. The ideal test model is supposed to fully
identify webshell and normal web files when the value of TPR
is 1 and the value of FPR is 0. In other words, the closer the
area value under the ROC curve to 1, the higher the recogni-
tion accuracy of the detection will be. A comparison between

the ROC curves has validated the performance of our detec-
tion model.

By analyzing the above data, it fully shows that the data
executable feature of PHP code is an important grammatical
feature of PHP language webshell. This grammatical feature
can describe webshell better than traditional statistical-
based text features, and has a better ability to distinguish
between webshell files and normal web pages. By adding
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Figure 5: Model 1 ROC curve.
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Figure 6: Model 2 ROC curve.
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the data executable feature of the PHP code, the performance
of the webshell detection model has been significantly
improved.

Besides, we also randomly divide the training set and the
test set at a ratio of 8 : 2; that is, the training set consists of
7,789 normal web page samples and 2,334 webshell samples,
and the test set consists of 1,947 normal web page samples
and 583 webshell samples. By comparing to model 2, the
highest accuracy rate in model 1 has reached 99.64%, the
most increased by 1.46%, and the least increased by 0.31%.
The recall rate increased by at least 0.86%; the most increased
by 6.35%. The F1 value increased by 2.33% on average, and
the average precision increased by 1.16%. By comparing the
experimental data of model 2 and model 3, results can be
reached out. Specifically, model 3 is slightly better than the
performance of the model built by model 2. Among them,
the accuracy rate, precision rate, recall rate, and F1 value
are improved by 0.94%, 0.83%, 3.37%, and 2.10%. From all
the experimental results, the result of the random division
according to the ratio of 8 : 2 and 7 : 3 is similar. Further con-
firmed the executable data characteristics of the PHP code
can significantly improve the detection performance of the
model, so, we do not describe in detail the experimental
results of randomly dividing the data set and the test set
according to the 8 : 2 ratio.

4.4. Comparison with Well-Known Webshell Detection Tools.
We selected 4 of the current most popular webshell detection
tools to compare with the module in this paper, which are D
shield [28], Baidu WEBDIR+ [29], PHP Malware Finder
[30], and SHELLPUB [31]. By using these tools to scan and
detect all the sample files in our test set, we get results which
are shown in Table 7.

It can be seen from the table that though the accuracy rate
of the D shield can be as high as 98.63% and the Recall as high
as 96.33%, the accuracy rate and the recall rate of our model
detection can reach 99.66% and 99.54%. Obviously, the
detection ability of our model is significantly better than
these webshell detection tools. It is worth mentioning that
the false-positive rate of Webdir+ for whitelist detection in
the test data is 0%, which is also the goal we expect to achieve
in subsequent work.

5. Conclusion

In this paper, we propose a webshell detection model based
on static features of PHP codes. The key idea is to leverage
PHP code executable data characteristics from the perspec-
tive of PHP code syntax features for webshell detection. To
systematically evaluate our model, we firstly construct a
cleaned data set of webshell consisting of 2,917 samples from
17 webshell collection projects and then conduct extensive
experiments. The experimental results have verified the effi-
ciency of our model by achieving 99.66% detection accuracy,
without exploring the optimization of the machine learning
algorithm. Moreover, our detection model outperforms
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Figure 7: Model 3 ROC curve.

Table 7: The evaluation index results.

Webshell detection tools Version Accuracy Recall

D shield V2.0.9 0.9863 0.9633

WEBDIR+ 2020-0423-1800 0.9797 0.9118

PHP Malware Finder — 0.8996 0.7904

SHELLPUB V 1.7.0 0.9027 0.6277

Our model — 0.9966 0.9954
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several popular webshell detection tools in terms of accuracy,
precision, recall rate, F1 value, and ROC curve. It is con-
firmed that the executable data characteristics of PHP code
are significant grammatical features of webshell and can
effectively improve the performance of the detection model.

Data Availability

We uploaded the data set to Github at https://github.com/
Cyc1e183/PHP-Webshell-Dataset.
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