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The compressive array method, where a compression matrix is designed to reduce the dimension of the received signal vector, is an
effective solution to obtain high estimation performance with low system complexity. While sparse arrays are often used to obtain
higher degrees of freedom (DOFs), in this paper, an orthogonal dipole sparse array structure exploiting compressive measurements
is proposed to estimate the direction of arrival (DOA) and polarization signal parameters jointly. Based on the proposed structure,
we also propose an estimation algorithm using the compressed sensing (CS) method, where the DOAs are accurately estimated by
the CS algorithm and the polarization parameters are obtained via the least-square method exploiting the previously estimated
DOAs. Furthermore, the performance of the estimation of DOA and polarization parameters is explicitly discussed through the
Cramér-Rao bound (CRB). The CRB expression for elevation angle and auxiliary polarization angle is derived to reveal the limit
of estimation performance mathematically. The difference between the results given in this paper and the CRB results of other
polarized reception structures is mainly due to the use of the compression matrix. Simulation results verify that, compared with
the uncompressed structure, the proposed structure can achieve higher estimated performance with a given number of channels.

1. Introduction

In a traditional scalar sensor array, the time delay of the
phased array is used to estimate the direction of arrival
(DOA). In the practical application environment, however,
the signal to be detected usually has certain polarization char-
acteristics. The polarization sensitive array [1–3] can be used
to obtain and utilize the spatial and polarization domain
information of the signal source comprehensively, which lays
a physical foundation for improving the overall performance
of the array signal processing. Therefore, the concept of
polarization is extended to wireless communication [4],
radar systems [5], and many other fields of space science
[6]. At present, the research on polarization parameter esti-
mation mainly focuses on how to improve the estimation
performance, such as estimation accuracy and degree of free-
dom (DOF). As the polarized state of a signal varies with
polarization diversity, only if the polarization direction of a
single antenna matches with the incoming wave, all energy
of the incoming wave can be received; otherwise, the loss of

energy will occur [7]. Since a dual-polarized antenna [8, 9]
can receive the signal energy along the horizontal and vertical
branches, it can increase the receiving efficiency of signals.

To obtain a higher number of DOFs under the pre-
mise of a given number of sensors, sparse array structures
[10–12] have been proposed under the coarray framework,
which generate equivalent virtual array elements via extract-
ing the correlation information of received signals. On the
one hand, the nested array [11] can generate a difference
coarray with all continuous lags, which is very useful for spa-
tial smoothing-based estimation algorithms. However, since
one subarray has the sensors placed with a half wavelength,
the mutual coupling effects will compromise the estimation
performance. In [13], a sparse nested array has been pro-
posed, where the interelement spacing of the dense subarray
is extended to suppress mutual coupling effects. The diversely
polarized dipoles are used to further improve estimation per-
formance. Moreover, the spatially spread orthogonal dipoles
are exploited in the sparse nested array in [14], where a pas-
sive direction finding structure with high accuracy has been
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proposed. Then, [15] further takes spatially spread square
acoustic vector sensors into account, thus constructing a
high-accuracy DOA estimation structure for an underdeter-
mined case. On the other hand, the coprime array [12] can
suppress the mutual coupling effect by using two sparse uni-
form linear arrays (ULA). In general, for a coprime array
composed of anM-element subarray and an N-element sub-
array, up to 2M +N − 2 uncorrelated sources can be distin-
guished. Therefore, the coprime array and its related
improved structures [16] are also introduced into other radar
structures [17]. In addition, [18] proposed an adaptive beam-
forming approach based on the coprime array, where the
output performance is improved.

The DOA parameters, including the azimuth and eleva-
tion angle, are of great importance in many applications,
especially the unmanned driving technology [19] which is
one of the current hot research issues. Thus, different cata-
logs of DOA estimation methods have been proposed, for
instance, the subspace methods [7], deep learning methods
[20], and sparse reconstruction methods [21]. The compres-
sive sensing (CS) theory is the kernel of sparse reconstruction
methods. However, CS is first used in time domain to break
through the limitation of the Nyquist Sampling Theorem
[22], since a high sampling rate is usually required for wide-
band signals, thus leading to a high cost of analog-to-digital
converters (ADCs). To be specific, if the number of nonzero
elements in a vector is much less than that of the zero ele-
ments, then this vector is regarded as a sparse vector and
can be recovered from a small sample set. Thus, the sam-
pling rate is dramatically reduced. Then, as the polarization
sensitive array develops, several DOA and polarization joint
estimation algorithms have been proposed [23–25]. More-
over, in addition to the estimation algorithms, the CS has
also been used in system design. The DOA estimation sys-
tem exploiting compressive measurements can dramatically
reduce the complexity and the computational burden. For
example, the compressive measurement method has found
many applications in the coprime arrays [26], one-bit quan-
tization [27], modulated wideband converter [28], and
MIMO radar [29].

Motivated by the above facts, in this paper, we mainly
consider the orthogonal dipole antennas and propose a com-
pressive measurement-based orthogonal dipole sparse array
structure for the joint estimation of signal parameters. It is
worth noting that there is no demand on the receive array
structure, meaning that all kinds of dipole sparse array can
be used. Based on the proposed structure, we first estimate
the DOAs using a CS-based approach, and then the esti-
mated DOAs are utilized to analyze the polarization param-
eters by a least-square estimation approach. In [24], the CS-
based joint estimation of DOA and polarization parameters
is proposed using a sparse array consisting of dual-
polarized antenna elements. However, we would like to
emphasize the contribution of this paper, as well as the differ-
ence with [24]:

(a) In this paper, a two-dimensional polarization signal
model is established, in which the azimuth angle
and elevation angle are both taken into account,

while [24] only considers the one-dimensional case,
that is, only the azimuth angle is included in the sig-
nal model. In addition, it should be noted that a steer-
ing vector matrix ψðθk, ϕk, γk, ηkÞ is introduced into
the signal model to describe the coherent structure
in the polarizational and spatial domains

(b) The compression measurement method is applied to
the proposed structure to compress the signal dimen-
sion by introducing a compression matrix Φ, there-
fore effectively reducing the number of channels
required for subsequent digitization operations

(c) Considering that the Cramér-Rao bound (CRB) indi-
cates the lower bound of the estimation error for an
unbiased system, we first derive the CRB expression
for the elevation angle and auxiliary polarization
angle of the proposed structure. Then, theoretical
performance analysis and simulation verification
are made via the CRB expression in this paper

Note that we use the CS theory twice in this paper. One is
in the system design part, in order to reduce the dimension of
received signal vector. The other is in the DOA estimation
algorithm, where the group sparsity is used to obtain an
improved number of DOF. Using the proposed structure,
the number of channels is effectively controlled, thus reduc-
ing the hardware cost. In addition, although the compression
leads to a degradation on the estimation performance, the
proposed structure still outperforms the conventional dipole
sparse array with the same number of channels, which can be
clearly observed from both the theoretical derived CRB
expression and the experimentally obtained root mean
square error (RMSE). Therefore, the proposed structure also
provides a flexible alternative option for low complexity
polarization sensitive array with a relatively high estimation
performance. Numerical simulations are conducted to exam-
ine the performance of the proposed structure.

The following of this paper is organized as follows: In
Section 2, we build the system model of the proposed struc-
ture. Then, a CS-based algorithm is proposed in Section 3
to jointly estimate the DOAs and polarization parameters.
In Section 4, the CRB expression for the estimation of DOAs
and polarization parameters of the proposed structure is
derived. Numerical simulation results are shown in Section
5, where the corresponding analysis is given simultaneously.
Finally, Section 6 concludes the whole paper.

2. System Model of the Proposed Structure

First, we would like to briefly review the receiving model of
the polarization signals. Polarization sensitive receive array
is composed of L orthogonal dipoles, each of which is aligned
with the y-axis in the Cartesian coordinate system. For the
sake of convenience, the set S = fdy1, dy2,⋯, dyLg is used to
represent the positions of the sensors arranged in ascending
order, and the antenna at the origin is assumed to be the ref-
erence, i.e., dy1 = 0. It is noted that the sensors can be sparsely
placed. For instance, the sensors can be arranged as an
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extended coprime array according to set S = fðBad, 0 ≤ a ≤
2A − 1Þ ∪ ðAbd, 0 ≤ b ≤ B − 1Þg, where A and B are a pair of
coprime integers. As shown in Figure 1, the signal from each
dipole is processed separately; therefore, the array is divided
into two subarrays according to the polarization receiving
direction of the dipole:

(a) All dipoles pointing in the direction of the x-axis con-
stitute Subarray 1

(b) All dipoles pointing in the direction of the y-axis con-
stitute Subarray 2

Assume K narrow-band transverse electromagnetic
(TEM) waves impinge upon the polarization sensitive array
from the azimuth angle θk and elevation angle ϕk, where θk
∈ ½0, π� and ϕk ∈ ½−2/π, 2/π�. It is assumed that each signal
has an arbitrary elliptical electromagnetic polarization. The
polarization of a TEM wave is often specified by two real
parameters, namely, the auxiliary polarization angle γk
(γk ∈ ½0, π/2�) and the polarization phase difference ηk
(ηk ∈ ½−π, π�). The signal vector received by the polarization
sensitive array, which has the dimension of Lo = 2L, is
expressed as

x tð Þ = 〠
K

k=1
ψ θk, ϕk, γk, ηkð Þ ⊗ u θk, ϕkð Þ½ �sk tð Þ + n tð Þ

=As tð Þ + n tð Þ,
ð1Þ

where we use ⊗ to denote the Kronecker product. Denote
uðθk, ϕkÞ as the L-dimensional spatial steering vector of the
kth signal, expressed as

u θk, ϕkð Þ = e
j2πdy1 sin θk sin ϕk

λ ,⋯, e
j2πdyL sin θk sin ϕk

λ

� �T
, ð2Þ

in which λ is the signal wavelength. For simplicity of notation,
we denote uðθk, ϕkÞ as uk. A vector matrix ψðθk, ϕk, γk, ηkÞ
which describes the polarization information of incoming sig-
nals is defined as follows:

ψ θk, ϕk, γk, ηkð Þ = ψk = Ξθk ,ϕkhγk ,ηk , ð3Þ

where Ξ and h are defined as

Ξθk ,ϕk =
−sin θk cos ϕk cos θk
cos θk cos ϕk sin θk

2664
3775,

hγk ,ηk =
cos γk

sin γke
jηk

2664
3775,

ð4Þ

respectively. Thus, A = ½ψ1 ⊗ u1, ψ2 ⊗ u2,⋯, ψK ⊗ uK � is the
manifold matrix of polarization received signal, and sðtÞ =
½s1ðtÞ, s2ðtÞ,⋯, sKðtÞ�T is the complex envelope. Noise vector
nðtÞ is assumed to be the zero mean complex Gaussian pro-
cesses, where each of its entries is statistically independent.

Then, let x1ðtÞ be the signal received on Subarray 1 and
x2ðtÞ the signal received on Subarray 2. Then, replace ψkð1Þ
and ψkð2Þ with ψxk and ψyk, respectively. The received signal
vector of subarrays are expressed as

x1 tð Þ = 〠
K

k=1
ψxk ⊗ uk½ �sk tð Þ + n1 tð Þ =A1s tð Þ + n1 tð Þ,

x2 tð Þ = 〠
K

k=1
ψyk ⊗ uk
h i

sk tð Þ + n2 tð Þ =A2s tð Þ + n2 tð Þ:

ð5Þ

The proposed orthogonal dipole sparse array structure
exploiting compressive measurements method is shown in
Figure 2. The core principle of the compressive measurement
method is to insert a combining network consisting of phase
shifters and accumulators at the antenna outputs before sub-
sequent digitization operations, which is equivalent to intro-
ducing a compression matrix Φ ∈ℂM×L (M < L) for linear
operations mathematically. In this way, the received signal
vector in the L-dimension is compressed to M-dimension
and then output for subsequent signal processing [30].

It should be noted that the entries in the compression
matrix are usually randomly selected from independent iden-
tically distributed parameters, and it is assumed that no addi-
tional noise is introduced during the compression process. In
order to avoid information loss caused by data compression,
the compression matrix can be optimized by various
methods [27, 31, 32]. In this paper, Φ is selected to satisfy
row-orthonormal, namely, ΦΦH = IM .

Then, the received signal vector of each subarray after
compression is expressed as

y1 tð Þ =Φ 〠
K

k=1
ukψxksk tð Þ + n1 tð Þ

" #
= �A1s tð Þ + �n1 tð Þ,

y2 tð Þ =Φ 〠
K

k=1
ukψyksk tð Þ + n2 tð Þ

" #
= �A2s tð Þ + �n2 tð Þ:

ð6Þ

x

y

z

O

L1 2𝜃

𝜙

Figure 1: Schematic diagram of electromagnetic wave propagation.
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Stacking the received vectors into a column vector yields

y tð Þ = ~As tð Þ + ~n tð Þ, ð7Þ

where yðtÞ = ½yT1 ðtÞ, yT2 ðtÞ�T and ~A = ½�AT
1 , �A

T
2 �

T
is the steering

vector after compression with the kth term being

~ak = ψk ⊗ ~uk = ψxk, ψyk

h iT
⊗ Φuk½ �: ð8Þ

In addition, ~n = ½�nT1 ðtÞ, �nT2 ðtÞ�T is the noise vector after
compression.

Therefore, for the proposed structure, the length of the
compressive received signal vector is 2M, while the length
of conventional sparse dipole array with the same configura-
tion is 2L. Assume that the number of snapshots is T . When
the signal snapshots are used to compute the covariance
matrix, the computational complexity of the proposed struc-
ture is Oð4TM2Þ, while that of the conventional sparse dipole
array is Oð4TL2Þ.

3. Signal Parameter Estimation Approach

Since two-dimensional DOA estimation based on linear
array cannot be realized, it is generally assumed that the
signals and the linear array are in the yz plane, that is,
the azimuth angle θk = π/2. To avoid three-dimensional
parameters, we search for ϕk, γk, and ηk; [24] proposed a dif-
ferent reformulation, where a CS-based approach is first used
to estimate the DOAs, and then the polarization parameters
are estimated utilizing the estimated DOAs and a least-
square estimation approach. In this paper, the above method
is improved and applied to the proposed structure.

We start with the array output covariance matrix Ryy =
E½yðtÞyHðtÞ�. The self-lag covariance matrix for the data vec-
tor yðiÞðtÞ and the cross-lag covariance matrix between yðiÞðtÞ
and yðjÞðtÞ can be obtained as

R ið Þ
yy =Φ Uψ ið ÞRssψ ið ÞHUH + pnIL

� �
ΦH ,

R i,jð Þ
yy =ΦUψ ið ÞRssψ jð ÞHUHΦH , ð9Þ

respectively (1 ≤ i ≠ j ≤ 2), with Rss representing the source
covariance matrix and pn indicating the noise power. In addi-
tion, U = ½u1, u2,⋯, uK � is a spatial phase matrix with L × K
dimension.

We denote the vectorized form ofRyy as ryy , which can be
regarded as a received data vector at a virtual array with an
extended coarray aperture. On the basis of the matrix algo-
rithm, the vectorization covariance matrix of different subar-
rays are calculated as

r ið Þ
yy =Φ0 U∗ ⊙Uð Þvec ψ ið ÞRssψ ið ÞH� �

+ pn~iL2
h i

,

r i,jð Þ
yy =Φ0 U∗ ⊙Uð Þvec ψ ið ÞRssψ jð ÞH� �

, ð10Þ

in which we denote ðΦ∗ ⊗ΦÞ ∈ℂM2×L2 as Φ0 for notational
simplicity. A matrix U∗ ⊙U = ½u∗1 ⊗ u1,⋯, u∗K ⊗ uK � that
leads to a series of virtual array elements is defined, and the
Khatri-Rao product is denoted by ⊙ . Define a set of integers
D = fdyα − dyβjdyα, dyβ ∈ Sg to represent the locations of vir-
tual sensors and arrange them in ascending order. Then, the
corresponding array manifold can be represented as UD =
½uD1, uD2,⋯, uDK �.

The vectorized covariance matrices are stacked and sim-
plified as

r 1ð Þ
yy

r 1,2ð Þ
yy

r 2,1ð Þ
yy

r 2ð Þ
yy

26666666664

37777777775
=

Φ0 U∗ ⊙Uð Þp 1ð Þ

Φ0 U∗ ⊙Uð Þp 1,2ð Þ

Φ0 U∗ ⊙Uð Þp 2,1ð Þ

Φ0 U∗ ⊙Uð Þp 2ð Þ

2666666664

3777777775
+

pnΦ0~iL2
0
0

pnΦ0~iL2

2666666664

3777777775
, ð11Þ

where~iL2 = vecðILÞ and the k-th item containing signal power
is represented as

p 1ð Þ
k = pk cos γkð Þ2, ð12Þ

p 2ð Þ
k = pk cos ϕk sin γkð Þ2, ð13Þ

Signal
parameter
estimation

Front-end chain M

... ...

...
...

...

Front-end chain 2

Front-end chain 1

Combining
network

𝛷

Pointing in
the

x-axis
Subarray 1

s1 (t) x1
(1) (t) y(1) (t)

y(2) (t)

y(M) (t)

x1
(L) (t)

x2
(1) (t)

x2
(L) (t)

s2 (t)

s
K
 (t)

K
completely
polarized

signals Pointing in
the

y-axis
Subarray 2

L-element orthogonal
dipole coprime array

Figure 2: System model of the proposed compressive measurement-based orthogonal dipole sparse array structure.
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p 1,2ð Þ
k = −pk cos ϕk sin γk cos γke−jηk , ð14Þ

p 2,1ð Þ
k = pk cos ϕk sin γk cos γkejηk : ð15Þ

Discretizing the spatial domain ΩP,Q (P,Q≫ K) into a
grid, let dgridðθp, ϕqÞ (1 ≤ p ≤ P, 1 ≤ q ≤Q) represent the steer-
ing vector. Thus, the discretized array manifold correspond-
ing to this grid can be obtained as

Ggrid,i =Φ0 d∗grid θ1, ϕ1ð Þ ⊗ dgrid θ1, ϕ1ð Þ,⋯, d∗grid θP, ϕQ
� �

⊗ dgrid θP, ϕQ
� �i

:
h

ð16Þ

It can be known that there is a γk (k ∈ ½1, K�) such that
sin γk ⟶ 0 or cos γk ⟶ 0. In this case, pð1,2Þ and pð2,1Þ
approach zero simultaneously due to the item sin γk cos γk.
Thus, using pð1,2Þ and pð2,1Þ has no improvement on the esti-
mation performance. Meanwhile, the computational com-
plexity is increased. However, it is impossible for ðcos γkÞ2
and ðsin γkÞ2 to be equal to zero at the same time. Thus, both
pð1Þ and pð2Þ can be utilized for DOA estimation, and we have

r = ~Ggridp + pn~I = ~G~p, ð17Þ

where r = ½ðrð1Þyy Þ
T , ðrð2Þyy Þ

T �T , p = ½ðpð1ÞÞT , ðpð2ÞÞT �T , ~I = diag
fΦ0vecðILÞ,Φ0vecðILÞg, and ~Ggrid = diag fGgrid,1,Ggrid,2g.
The nonzero entries of pð1Þ and pð2Þ share the same support
corresponding to the same grid. Thus, to utilize the group
sparsity, hereby we define a sparse vector ξð~pÞ as the ℓ2
-norm of each row in the matrix ½pð1Þ, pð2Þ�. The group
LASSO algorithm [21] is utilized to solve the group sparsity
problem, and the minimization problem is as follows:

b~p = argminb~p
1
2 ∥r −

~Ggrid~p∥2 + μ0∥ξ ~pð Þ∥1: ð18Þ

The nonzero items in b~p at its respective positions are the
estimated DOAs.

The estimated elevation angle is denoted as bϕ =
½bϕ1,⋯, bϕK �

T
, and the estimation of the array manifold is

defined as Ĝ =Ggrid ∈ℂM2×K , which is used for the next polar-

ization parameter estimation. Then, the vectors pð1Þ, pð1,2Þ,
pð2,1Þ, and pð2Þ which contain the polarization parameters
can be obtained using the following least-square estimation:

p̂ i,jð Þ = ĜHĜ
h i−1

ĜHr i,jð Þ, i, j = 1, 2, ð19Þ

where the kth item is expressed in (12)–(15). Simplifying the
above equations, we have the following equations:

cos 2γkð Þ =
p̂ 1ð Þ
k − p̂ 2ð Þ

k / cos bϕk

� �2
� 	

pk
,

cos ηkð Þ sin 2γkð Þ = p̂ 2,1ð Þ
k − p̂ 1,2ð Þ

k

pk cos bϕk

:

ð20Þ

The estimated polarization phase difference bηk can be
obtained by expressing sin ð2γkÞ in terms of cos ð2γkÞ,
whereas the estimated auxiliary polarization angle can be cal-
culated by the following equation:

bγk =
1
2 atan2 p̂ 2ð Þ

k /p̂ 1ð Þ
k




 


1/2, cos bϕk

� �
: ð21Þ

Thus, the joint estimation of DOA and polarization
parameters is completed. The procedure of the proposed algo-
rithm is summarized in Algorithm 1.

4. The Cramér-Rao Bound Analysis

Since the linear array is exploited, without loss of generality,
the azimuth angle θk and polarization phase difference ηk are
set as π/2, thus limiting the DOAs to the yz plane and the
polarization state to the same great circle orbit of Poincare
sphere. The CRB [33] provides a lower bound on the covari-
ance matrix of any unbiased estimator. In fact, under mild
regularity conditions, the maximum likelihood estimator
achieves the CRB asymptotically, as the number of snapshots
tends to infinity. Given T independent samples of a zero
mean Gaussian process yðtÞ whose statistics depend on a
parameter vector α

α = ΩT , YT , pT , p 1ð Þ
n , p 2ð Þ

n

h iT
, ð22Þ

with Ω = ½ϕ1, ϕ2,⋯, ϕK �T , Y = ½γ1, γ2,⋯, γK �T , and p =
½p1, p2,⋯, pK �T , the CRB is obtained by the inverse of the
Fisher informative matrix (FIM) [34].

CRB αð Þ = 1
T

GHΠ⊥
ΔG

� �−1, ð23Þ

in which

G =M
∂ryy
∂ϕ1

,⋯,
∂ryy
∂ϕK

,
∂ryy
∂γ1

,⋯,
∂ryy
∂γK

� �
, ð24Þ

Δ =M
∂ryy
∂p1

,⋯,
∂ryy
∂pK

,
∂ryy
∂p 1ð Þ

n

,
∂ryy
∂p 2ð Þ

n

" #
, ð25Þ

and M = ðRT
yy ⊗ RyyÞ−ð1/2Þ.
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Then, denote diag fΦ,Φg asΨ ∈ℂ2M×2L, and vectorizing
Ryy yields

ryy = ~A∗ ⊗ ~A
� �

vec Rssð Þ + vec Rnnð Þ: ð26Þ

Expand ð~A∗ ⊗ ~AÞ as ∑K
k=1 ½ðψk ⊗ ~ukÞ∗ ⊗ ðψk ⊗ ~ukÞ�, so

that the ryy is finally simplified to the following form due to
space limitation:

ryy = 〠
K

k=1
V0HkΓkJuDkpk +V0pnvec ILo

� �
: ð27Þ

Several definitions are given to illustrate the vectorized
results in (27):

V0 =Ψ∗ ⊗Ψ,

Hk =
h∗k 1ð ÞIL

h∗k 2ð ÞIL

2664
3775 ⊗

hk 1ð ÞIL
hk 2ð ÞIL

2664
3775,

Γk =
−IL

cos ϕkIL

2664
3775 ⊗

−IL
cos ϕkIL

2664
3775:

ð28Þ

Besides, the binary matrix J has the definition as follows:

<J>:,d = vec I dð Þð Þ, d ∈D, ð29Þ

where IðdÞ satisfies

<I dð Þ>a,b =
1, if a − b = d,
0, otherwise:

(
ð30Þ

Thus, by utilizing the relationship u∗k ⊗ uk = JuDk, uk and
uDk can be bridged.

Taking the derivatives of ryy with respect to the DOA,
polarization, signal power, and noise power, we have follow-
ing results:

∂ryy
∂ϕk

= 2V0HkΓ′kJukpk + jπV0HkΓkJ diag Dð Þ cos ϕkukpk,

ð31Þ

∂ryy
∂γk

=V0 H′k + H′k
� �∗h i

ΓkJukpk, ð32Þ

∂ryy
∂pk

=V0HkΓkJuk, ð33Þ

∂ryy
∂p 1ð Þ

n

=V0vec
IL 0
0 0

2664
3775

0BB@
1CCA,

∂ryy
∂p 2ð Þ

n

=V0vec
0 0
0 IL

2664
3775

0BB@
1CCA,

ð34Þ

procedure polarization signal parameter estimation
Initialize rðiÞyy ⟵ vecðRðiÞ

yy Þ, rði,jÞyy ⟵ vecðRði,jÞ
yy Þ

for ðθp, ϕqÞ, 1 ≤ p ≤ P, 1 ≤ q ≤Qdo
~Ggrid ⟵Φ0½d∗gridðθ1, ϕ1Þ ⊗ dgridðθ1, ϕ1Þ,⋯, d∗gridðθP , ϕQÞ ⊗ dgridðθP , ϕQÞ�b~p ⟵ argmin

~p
1/2∥r − ~Ggrid~p∥2 + μ0∥ξð~pÞ∥1

end

if b~p i ≠ 0, i ∈ ½1,Q�
then bϕk ⟵ the position of b~p i, k = 1,⋯, K

end

for bϕk ∈ ½bϕ1,⋯, bϕK �, pk ∈ ½p1,⋯, pK � do
cos ð2γkÞ⟵ p̂ð1Þk − ðp̂ð2Þk /ðcos bϕkÞ

2Þ/pk
cos ðηkÞ sin ð2γkÞ⟵ p̂ð2,1Þk − p̂ð1,2Þk /pk cos bϕkbγk ⟵ 1/2atan2fjp̂ð2Þk /p̂ð1Þk j1/2, cos bϕkg

end

return bϕ ⟵ ½bϕ1,⋯, bϕK �
T
, bη ⟵ ½bη1,⋯, bηK �T , bγ ⟵ ½bγ1,⋯, bγK �T

end procedure

Algorithm 1: Procedure of the proposed algorithm.
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where

Γ′k =
0

−sin ϕkIL

2664
3775 ⊗

−IL
cos ϕkIL

2664
3775 +

−IL
cos ϕkIL

2664
3775 ⊗

0
−sin ϕkIL

2664
3775,

H′k = −

sin γkIL
j cos γkIL

2664
3775 ⊗

cos γkIL
j sin γkIL

2664
3775:
ð35Þ

Substituting (31)–(34) into (23), (24), and (25) leads to
the CRB for the proposed structure.

5. Simulation Results

Throughout our simulations, the 10-element coprime array
with A = 3 and B = 5 is considered. Without additional
instructions, we assume the channel number after compres-
sion is M = 8, and Φ ∈ℂ8×10 is generated from the standard
complex Gaussian distribution. The incident signal is gener-
ated uniformly in the range of ϕk ∈ ½−40∘, 50∘� with θk = π/2,
and the auxiliary polarization angle and polarization
phase difference are evenly distributed in γk ∈ ½5∘, 85∘� and
ηk ∈ ½−120∘, 150∘�. Under the condition that SNR = 5dB and
1, 000 snapshots, the elevation angle is estimated using the
CS-based approach. The angle range from −60∘ to 60∘ is uni-
formly divided into grids with a 0:1∘ searching step.

The signal parameter estimation results of 17 sources
using the proposed structure are shown in Figure 3, where
the actual parameter values are marked in red. Compared
with the results in [24], the proposed structure with channel
number compression can still correctly analyze 17 signals
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Figure 3: Signal parameter estimation of the proposed structure (SNR = 5 dB and 1,000 snapshots).
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Figure 4: CRB versus the number of sources (SNR = 10 dB and 1,000 snapshots).

7Wireless Communications and Mobile Computing



with 10 physical elements. Then, the variation of CRB
derived with the number of sources is simulated to verify
the DOF that the proposed structure can obtain. To further
analyze the estimation performance of the proposed struc-
ture, the following coprime array configurations are consid-
ered as the comparison structure: (a) the proposed
structure with L = 10,M = 8; (b) the 10-element coprime
array with the compression matrix Φ is equal to a unit
matrix, that is, without compression, denoted as dipole
coprime array 1; and (c) the 8-element coprime array with
A = 2 and B = 5, namely, L =M = 8, denoted as dipole
coprime array 2, in which the idea of the CACIS configura-
tion idea proposed in [35] is used for reference.

Figure 4 describes the CRB curves of ϕ and γ versus the
number of sources when taking 1,000 snapshots at 10 dB
SNR. When the compression ratio is L/M = 1:25, the DOFs
obtained by the proposed structure is not much less than that
obtained by an uncompressed structure with the same num-
ber of physical elements, namely, dipole coprime array 1.
However, compared with dipole coprime array 2 with the
same number of channels, the proposed structure can resolve
more uncorrelated signal sources, showing the superiority of
the proposed structure for the number of DOFs.

The RMSE versus SNR of the comparison structure is
shown in Figure 5. The CRB (ϕ) and CRB (γ) of the three
array configurations are presented by dash lines. The order
of RMSE depicted by solid lines is consistent with that of
CRB shown in Figure 4. It can be observed in Figure 4 that
the downward trend of the RMSE curves can also fit the
CRB curves well, while in Figure 4, the RMSE curves tend
to be flat as the SNR increases since the search step is limited
by the RIP criterion. Due to the largest number of channels,
the estimation accuracy of dipole coprime array 1 is the high-
est among the three configurations, while the computational
complexity is also the highest. In the case of the same number
of channels, the proposed structure has a lower RMSE than

dipole coprime array 2. In general, from the perspective of
the number of inequalities, dimensionality reduction can
inevitably lead to a decrease in estimation performance, such
as DOF and estimation accuracy. In order to achieve the pur-
pose of avoiding excessive system complexity, better estima-
tion performance can be obtained by using the proposed
structure for DOA estimation, which also verifies our previ-
ous analysis. On the other hand, in Figure 4, it can be
observed that, in a low SNR region, the performance of the
proposed structure is almost the same as that of the dipole
coprime array 2, indicating that the compressive
measurement-based structure has no significant improve-
ment on the estimation of polarization parameters. However,
in a large SNR region, the accuracy of the proposed structure
approaches the dipole coprime array 1. We must note that
this improvement is mainly caused by limitation of the step
of the searching grid. To be specific, as the SNR increases,
the estimation performance achieves the ceiling of current
searching step, thus leading to the phenomenon that the pro-
posed structure has almost the same performance as dipole
coprime array 1. Theoretically speaking, by observing the
CRB curves shown in Figures 3 and 4, the improvement on
the estimation of polarization parameters is negligible.

6. Conclusion

In this paper, we proposed a compressive measurement-based
orthogonal dipole sparse array structure, which can be used
for high-performance signal parameter estimation with a
small number of given elements. In the joint estimation algo-
rithm of DOA and polarization parameters, the CS-based
algorithm and the least-square estimation method were
adopted. Then, based on compressive measurements, we
derived the CRB expression for the elevation angle and auxil-
iary polarization angle. By comparing to the array configura-
tions with the unit matrix as the compression matrix, we
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Figure 5: RMSE versus SNR (1,000 snapshots).
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considered the CRB curves versus the number of independent
signal sources and SNR. Thus, we come to the conclusion that,
under the condition that we control the system complexity by
reducing the number of channels, better parameter estimation
performance can be obtained by the proposed orthogonal
dipole array structure, especially for the estimation of DOAs.
Simulation results also verified the theoretical analysis.

Data Availability

If data is needed, please contact M. Guo (email: guomur-
an@hrbeu.edu.cn) for the code of numerical simulations.
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