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Object detection is used widely in smart cities including safety monitoring, traffic control, and car driving. However, in the smart
city scenario, many objects will have occlusion problems. Moreover, most popular object detectors are often sensitive to various
real-world occlusions. This paper proposes a feature-enhanced occlusion perception object detector by simultaneously detecting
occluded objects and fully utilizing spatial information. To generate hard examples with occlusions, a mask generator localizes
and masks discriminated regions with weakly supervised methods. To obtain enriched feature representation, we design a
multiscale representation fusion module to combine hierarchical feature maps. Moreover, this method exploits contextual
information by heaping up representations from different regions in feature maps. The model is trained end-to-end learning by
minimizing the multitask loss. Our model obtains superior performance compared to previous object detectors, 77.4% mAP and
74.3% mAP on PASCAL VOC 2007 and PASCAL VOC 2012, respectively. It also achieves 24.6% mAP on MS COCO.
Experiments demonstrate that the proposed method is useful to improve the effectiveness of object detection, making it highly
suitable for smart cities application that need to discover key objects with occlusions.

1. Introduction

The development of smart cities is inseparable from the two
key technologies of the Internet of Things (IoT) and artificial
intelligence (AI). Although the IoT technology [1–3] has
developed well in recent years, the effect needs to be
improved. Therefore, the effective combination of IoT [4–6]
and AI technology has become a major challenge today.
Object detection based on neurocomputing, which is one of
the tasks of smart cities, has been well studied in recent years,
since it is a biologically inspired AI application. The goal of
object detection is to localize an object of a predefined cate-
gory. Recent state-of-the-art object detectors could be split
into two main categories: the region-based detectors [7–9]
and the regression-based detectors [10, 11]. These models
havemade a big contribution to object detection development.

Nevertheless, the robustness of object detection is still
worth study. In practical application for smart cities, the net-

work needs to detect some perturbed images. We can classify
these images into two categories: (1) some parts of object are
occluded (Figure 1(a)) and (2) object is beyond the picture
boundary (Figure 1(b)). The occlusion occurs commonly in
multiple object image, and the foreground objects always
mask some features of object behind it. For another images,
some object features are lost since the object is beyond the
picture boundary. These images are called hard examples in
this paper.

Because the hard examples have stronger transfer abil-
ity, the network is difficult to learn discriminative features
for detection. Therefore, it is necessary to enhance the net-
work’s ability of mining useful information from perturbed
images. However, it is difficult to train a robust model only
given normal dataset. A solution to solve this problem is to
integrate hard example mining in the training stage [12,
13], but it cannot solve the essential problem. An effective
method is to generate hard examples from the detection
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dataset. Some works [14–18] have been devoted to
addressing example generation problems. One useful solu-
tion is to generate realistic looking images by generative
adversarial networks [14–17]. Another way is to generate
masks on the original images directly. For instance, [18]
generates hard occlusion examples for object detection
during training.

In this paper, we propose a novel approach that better
addresses the above issues. Our goal is to tackle the lack of
hard examples and exploit more feature representation for
the object with occlusions as far as possible.

There are three motivations for our study. Firstly, con-
sider improving the network robustness in a balanced data-
set, a deep mask generator is proposed in our approach to
generate hard positive examples. Secondly, the weakly super-
vised object localization is crucial for a mask generator to
obtain mask accurately. Locating in a discriminative region
can let the generator know which region of object is possibly
occluded in real life. Thirdly, the richness of the feature map
is important for a mask generator to obtain hard examples.
Therefore, the multiscale feature map can contain far more
information and detail. To sum up, our main contributions
are as follows:

(1) We introduce an end-to-end approach which can
improve the robustness of the object detector and
achieve competitive performance in object detection
task

(2) We proposed a mask generator which uses weakly
supervised location to generate pixel-wise masks
and show that the mask generator is helpful to obtain
more realistic hard examples during training

(3) We design a multiscale feature fusion module and
context-aware information module to exploit abun-
dant spatial information and demonstrate that these
can improve the richness of feature map

2. Related Work

In recent years, many object detectors based on region per-
form classification and bounding box regression on each pro-
posal region. Compared with the regression-based detectors,
the detection accuracy and location accuracy of the region-
based detectors are superior. Following the pioneer region-
based object detector R-CNN, Fast R-CNN [7] increases
model’s accuracy by adding a RoI-pooling layer. In Faster
R-CNN [9], region proposal network (RPN) generated more
precise proposals than selective search. Our work builds on
Faster R-CNN, which is a remarkable end-to-end method.

2.1. Multiscale Representation Concatenation. Recently,
many significant works presented that multiscale feature
concatenation is vital for object detection [19, 20]. For exam-
ple, ION [21] extracts some feature descriptors and combines
them after RoI-pooling layer [8]. HON [22] aggregates high-

(a)

(b)

Figure 1: Illustration of hard examples in real situation.
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level semantic features and shallow detail features through
reverse connections. HyperNet [23] incorporates hierarchical
feature maps and compresses them into a fixed-size space. In
order to perform detection at multiple scales, RON [24] uses
reverse connection to predicts objects at different layers, and
FPN [25] presented a clean and simple framework for build-
ing feature pyramids inside ConvNets; it archived good a
result and trained using the COCO trainval35k dataset. Effi-
cientDet [26] proposes a weighted bidirectional feature pyra-
mid network (BiFPN), which allows easy and fast multiscale
feature fusion. AugFPN [27] incorporates consistent supervi-
sion, residual feature augmentation, and Soft RoI selection,
which can significantly improve the baseline approach on
challenging MS COCO datasets. Chu et al. [28] used an
ensemble object detection system to combine the relation-
ships between objects and context features based on global
scenes. Res2Net [29] construct a hierarchical residual-like
connections which represents multiscale features at a granu-
lar level. [30] proposes a multiconnection module to fuse
multigrained information to enhance feature representation.
VDNets [31] uses a feature fusion method based on the
attention mechanism to make full use of multiscale feature
information. In summary, the multiscale feature concatena-
tion is to improve the richness of the feature map, so as to
improve the detection accuracy of the detector. Different
from these works, our work uses a new convolution layer
with higher semantic information and trained using the
trainval dataset for COCO.

2.2. Hard Example Mining. Some works focus on how to bet-
ter use data for improve the performance of the model. [32]
enhances the representations for small objects using percep-
tual GAN. One direction is to insert hard examples in the
training stage. For example, inspired by bootstrapping,
OHEM [13] improves the capacity of object detection by
reranking and training hard examples. This work is further
extended by Wang et al. [18], which generates hard examples
by adversarial learning for object detection. AOFD [33] pays
attention to increase the capacity of face detection by gener-
ating occlusion-like face features and proposes a multitask
training method. [34] studies online selection of hard exam-

ples for minibatch SGD methods. [35] independently selects
the positive and negative examples with a stochastic strategy
of the training set, and [36] uses a ranking loss function to
find hard negative patches from a large set. C-RPNs [37]
adopt multiple stages to mine hard samples.

Similar to these works, our method improves the capacity
of detector by adding hard examples during training. How-
ever, these works may have collapsed and instable problems.
Therefore, our model generates hard examples by masking
the discriminative parts of object, rather than adversarial
learning. These discriminative parts are accurately located
by weakly supervised learning.

2.3. Weakly Supervised Object Localization. CNNs are proved
to have great performance on object location. Recently, there
are many works exploring weakly supervised localization
(WSL) using CNNs. Huang et al. [38] pays attention to
improve the quality of initialized object locations. [39] pro-
poses a self-taught model to localize the stronger responsive
regions when artificially masking. [40] contributes a multi-
fold multiple instance learning procedure to localize objects
with CNN features. To solve the WSL problem and improve
the detection ability, [41] proposes a deep self-taught
approach to localize more positive samples by retrain itself.
[42] proposes to integrate the feature pyramid network
(FPN) with convolutional neural network (CNN) for weakly
supervised object localization. Hide-CAM [43] utilizes a hide
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Figure 2: The overall architecture of our method. Mask generators are added before RoI-pooling.
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Figure 3: The architecture of multiscale feature fusion module.
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strategy to locate the most discriminative and the comple-
mentary object regions of the object. Oquab et al. [44]
proposes global max pooling and demonstrate that object
localization can be completed using the output of CNNs. Dif-
ferent from [44, 45] localizes the discriminative image
regions base on the global average pooling. [46] trains a
weakly supervised framework and to mine the entire region
of object by randomly hiding patches. [46] is closely related
to the adversarial erasing method [47]; this method also
localizes dense regions by erasing some discriminative parts
iteratively.

Similar to [45, 46], our work localizes the regions of dis-
criminative features and masks these discriminative features
to generate hard examples, which does not need any bound-
ing boxes annotations to locate regions of features.

3. Network Architecture

As is shown in Figure 2, we use a multiscale feature concate-
nation architecture in feature exaction network. A mask gen-
eration branch is added after input layer, followed by an
element-wise product layer. The aim of the branch is to let
the network know which region of object is possibly occluded
in real life. After that, the generated feature representation
input into the RoI-pooling layer. Two fully connected (Fc)
layers process each descriptor and produce two outputs: a
class prediction and bounding box.

In this section, we first introduce feature extraction
network which can extract richer information. Then, we
describe the mask generator that products mask in a weakly
supervised way.

3.1. Multi-Scale Representation Concatenation. For the fea-
ture extraction stage, multiscale representation concatena-
tion is necessary when you want to get a more detailed
feature map. Observing hierarchical feature map has differ-
ent characteristics in convolutional neural networks (CNNs),
we take a different use for these feature maps.

In our model, convolution layers 4, 5, and 6 are combined
to obtain more feature detail (see Figure 3). After pooling and
convolving convolution layer 5, layer 6 is obtained. The size
of convolution layer 4 is double of the layer 5, and layer 6 is

a half of convolution layer 5. Tomaintain the same resolution
of multilevel maps, layer 4 resize to the same as layer 5
through a max pooling layer, and layer 6 resize to the same
as layer 5 through a deconvolution layer for upsampling
operation. For unify amplitudes from various levels, our
method uses L2 normalize to different feature representation.
Because the amplitudes from different levels are various, L2
normalize is important to representation concatenation.
Therefore, the scale of final representation is 1/16 of the ori-
gin image scale, which is suitable for RoI-pooling layer.

Our method uses VGG-16 [48] as the pretrain network.
To meet the output shape of the RoI-pooling layer, the final
map’s scale should be 7 × 7 pixels with 512 channels. In addi-
tion, it is the formal input for the next detection network
(fc6). Therefore, the representation map will input to the
RoI-pooling layer without any special operation; this process
can guarantee feature map have more details.

3.2. Weakly Supervised Mask Generator. Even in large-scale
datasets, it is difficult to sample all possible hard examples.
We take a flexible approach to generate hard examples,
rather than relying on data augmentation. The mask genera-
tor is used to find some distinguish areas by weakly super-
vised object location and generate various realistic masks.
More specifically, it is only mask the discriminative part of
the object in the training dataset. This effective way forces
the model to learn feature which look like object even if
object is incomplete. Note that we only apply the mask gen-
erator during training but not during testing.

3.3. Weakly Supervised Object Location. To localize these dis-
criminative image regions, we use the network of Zhou et al.
[45] to generate a class activation map (CAM). After learning
a classification network, the CAM can represent the discrim-
inative image regions for a particular class. In general, the
classification network is initialized based on the AlexNet
[49], GoogLeNet [50], and VGGNet [49]. In our work, we
learn a classification network base on VGG-16 architecture.
To generate a CAM for an image, global average pooling
(GAP) is performed on the last convolutional feature maps.
For a class, the GAP’s output is the average of the last convo-
lutional feature map in each unit. A weight corresponds to a

Figure 4: Selected examples of the discriminative object mined by weakly supervised object location and generate hard examples.
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class, CAM is the weight sum of these output values. Our
final output is generated from the top 5 predicted categories
for the input image.

Given an image I, denote f iðx, yÞ to be the last convolu-
tional activation of unit i at spatial location ðx, yÞ. When
perform global average pooling, the output Fk is

Fk =〠
x,y

f i x, yð Þ: ð1Þ

For class c, wc
i is the weight of the last classification layer,

which corresponds to unit i.wc
i can consist of aN ×M weight

matrix of the classification layer, where M is the number of
feature maps in the last convolution layer, and N is the
number of categories. Thus, the class score is

Sc = 〠
M

i

wc
i Fc = 〠

M

i

wc
i〠
x,y

f i x, yð Þ =〠
x,y

〠
M

i

wc
i f i x, yð Þ: ð2Þ

It is obvious that wc
i reflects the importance of Fk for class c.

Then, the class activation map for class c is

CAM c, Ið Þ = 〠
M

i

wc
i f i x, yð Þ: ð3Þ

Hence, for an image to c class, CAMðc, IÞ indicates the
importance of the activation at spatial location ðx, yÞ.

Some examples of weakly supervised object location are
shown in Figure 4.

3.4. Masking Strategy.We generate mask map X for an image
with sizew × h × c, wherew, h are the length and width of the
concatenation map, and c is the number of channels. Xx,y is
the pixel value for location ðx, yÞ of the mask map, and each
pixel value of X is compress to 0 or 1. Then, the values of the
mask map are obtained by applying a hard threshold O to the
CAM. If the pixel value of activation map Mc

i is greater than
O, this location ðx, yÞ belongs to discriminative region. Thus,
Xx,y = 0, the value of corresponding spatial location will be
drop out in all channels. To the contrary, the feature values
of general region will be retained. Our strategy is to mine
some strongly responsive areas in feature map and mask
these distinguish regions precisely. This strategy is more
accurate than dropping pixels randomly. Occluded samples
will become the hard examples for training. Some examples
are shown in Figure 4.

Now, we explicate our mask generator more formally. Let
D = ðIi, YiÞNi=1 be a training set including N images, and Pi is
the mask regions for image i. DenoteMc

i is the activationmap
of image i for class c, which is generated by CAMðc, IiÞ, note
that the class c ∈ Yi. The pi,x,y is the pixel value for location
ðx, yÞ of the activation map Mc

i . Once the value of pi,x,y is
greater than hard threshold Om, the region of location ðx, yÞ
will be mined. Then, we mask the mined region and the
new training data set D′ is obtained. The procedure is
detailed in Algorithm 1.

3.5. Context-Aware Information. Work [21] uses a recurrent
neural network (RNN) to extract contextual information. To
connect features from different contextual regions, Zeng et al.
[51] through the gated bidirectional network for feature
expression. Influenced by [52], this method extracts contex-
tual information from different regions of the feature map.
The difference is extract from the feature representation with
richer information.

After RoI-pooling layer, we stack feature from regions of
object feature and contextual information. At the first, the
context region is default as one and a half times of region
of interest (RoIs). The context region of fusion map feed to
RoI-pooling layer and generate a fixed-length feature
descriptor of size 7 × 7 × 512. After that, the object region’s
descriptor is obtained. Our method combines these two
descriptors through adding corresponding value at pixel
level. This method omits additional layers to decrease dimen-
sion, so that improving model efficiency and reducing extra
runtime.

3.6. Detection and Training

3.6.1. Region Generating. For region generating, the region
proposal network (RPN) [9] is used to generate various
boxes. In order to scan to various sized objects, we use 3
scales and 3 aspect ratios to generate various sized boxes.
However, the RPN always generate many redundant region
proposals. To reduce redundancies, nonmaximum suppres-
sion (NMS) is used to filter proposals. For a proposal, when
the value of intersection-over-union (IoU) greater than
threshold, the proposal will be deleted. Our method defines
threshold as 0.7, the top rank three hundred proposals will
be used in the next stage.

3.6.2. Object Detection. After generating proposed regions,
the detection module needs to classify proposed regions into
K + 1 categories (K = 20in PASCAL VOC database) and
achieve bounding box regression. The previous module out-
puts an abundant pooled feature map. We make the maxi-
mum use of the pooled feature by two fully connected
layers, then compute the per-class score with Softmax, and
output an adjustment to the bounding box.

Input: training data D = fðIi, YiÞgNi=1, hard threshold Om.
Initialization: I ′ =∅,Pi =∅ði = 1,⋯,NÞ.
for Ii in D do

Calculate Mc
i by CAMðc, Ii) [29];

for pi,j in Mc
i do

while pi,x,y >Om do
Pi = Pi ∪ fpi,x,yg;

end while
end for

Mask the mined regions from training image Ii′= Ii \ Pi;
end for

Output: a set of new training data D′ = fðIi′, YiÞg
N
i=1

Algorithm 1: Weakly supervised mask generator.
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3.6.3. Joint Training. For training way, this paper adopts an
end-to-end way to jointly optimize the loss function. During
training, the detection network and RPN are combined into
one network. For per iteration of training, RPN generate a
set of region proposals for detection network to predict clas-
sification scores and regress locations. This process is the pre-
compute of forward propagation. In the RPN stage, we give
positive label to a box which intersection-over-union (IoU)
higher than 0.7 or highest IoU with a ground-truth box. On
the contrary, box which IoU lowers than 0.3 will be given
negative label. In backward propagation, loss of two networks
generate gradient signal. To achieve this process, the multi-
task loss function is defined as

L pi, tið Þ = 1
Ncls

〠
i

Lcls pi, p∗ið Þ + λ
1

Nreg
p∗i Lreg ti, t∗ið Þ, ð4Þ

where pi is the predicted probability of positive box. The
value of p∗i indicates the ground truth label of anchor i. So,
Lclsðpi, p∗i Þ is classification loss function, and Lregðti, t∗i Þ is
regression loss function:

Lcls pi, p∗ið Þ = − log p∗i pi + 1 − p∗ið Þ 1 − pið Þ½ �, ð5Þ

Lreg ti, t∗ið Þ = R ti − t∗ið Þ, ð6Þ

where R is the robust loss function smooth L1 [2]:

smoothL1 xð Þ =
0:5x2, xj j < 1,
xj j − 0:5, otherwise:

(
ð7Þ

4. Experiment

We conduct experiments based on three detection datasets:
PASCAL VOC 2007, PASCAL VOC 2012 [53], and COCO
[54]. For PASCAL VOC, the union set of PASCAL VOC
2007 trainval and 2012 trainval is used to train all networks,
and PASCAL VOC 2007 and PASCAL VOC 2012 are used to
verify different networks, respectively. For MS COCO, we
trained networks on the trainval set and test on the test-dev
evaluation server. The results are measured by mean average
precision (mAP).

4.1. Experimental Setup. Our networks are design based on
the VGG-16 framework [48] and Fast R-CNN baseline. The
max size of the longest side is 1024 pixels. The test image
scale is the same size as train image. For solver parameter,
stochastic gradient descent (SGD) as the iterative method
used to optimize objective function. We set the initial learn-
ing rate to 0.001, and decreased by a factor of 10 times after
every 50,000 iterations. The weight decay is set to 0.0005
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Figure 5: Visualization of the performance of our model on animals, vehicles, and furniture classes in the PASCAL VOC 2007 test.
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and momentum to 0.9, so that the learning rate is 0.001 for
the first 50 k minibatches and 0.0001 for the next 20 k.
VGG-16 is the pretrained model, which was firstly pretrained
on the ImageNet benchmark; after that, it was fine-tuned on
detection benchmark.

4.2. PASCAL VOC 2007 Test Set. For the PASCAL VOC 2007
detection task, we compare our models with the state-of-the-
art detectors (see Table 1). All parameters are set as Faster
RCNN except for the image size. Our full model with all three
modules improves the performance to 77.4%; the final result
gives 4.2% boost upon Faster R-CNN. The bounding box vot-
ing [55] is also a useful mechanism to improve detection
performance.

To understand the performance of our model in detail,
we use the detection analysis tool from [56]. As shown in
Figure 5, the top row shows that our model can detect various
object categories with high quality (large white area). The
majority of its confident detections are correct. The solid
red line and dashed red line reflect the change of recall with
strong and weak criteria, respectively. The bottom row shows
the distribution of the top-ranked false positive types.
Figure 6 demonstrates that our model is robust to different
object sizes and aspect ratios. Compare with other state-of-
the-art detectors, our model achieves better performance at
three aspects: (1) The location error (Loc) of our model is
less; this means that our model can localize objects better.
(2) Our model with less false positives caused by confusion
with similar categories, because it can exploit more object’s

feature by training with hard examples. (3) Our model with
less false positives caused by confusion with background,
since our model can learn more richness object’s feature
through multiscale feature fusion.

4.3. PASCAL VOC 2012 Test Set. We also test our networks
on PASCAL VOC 2012 and submit results to the public
evaluation server (anonymous URL: http://host.robots.ox.ac
.uk:8080/anonymous/NG67QK.html.). Our models are
trained on set of VOC 2007+2012, but without VOC 2007
test set. Table 2 show our network obtains 74.3% mAP.

4.4. MS COCO Test Set. In addition to PASCAL VOC, we
present more results on the Microsoft COCO and got reports
from the public evaluation server (anonymous URL: https://
competitions.codalab.org/my/competition/submission/461101
/stdout.txt). As shown in Table 3, our network achieves 24.6%
mAP, which is greater than Faster R-CNN. It is noted that
when IoU is 0.5 : 0.95, the mAP of our network is poorer than
DSSD321, SSD300, and ION, but when the area is small, the
result is better. So, our network is good at detection of small
object, due to using the multiscale feature fusion module. Note
that the feature in DSSD321 is extracted by Residual-101, but
our network is by VGG-16.

5. Ablation Analysis

To study the impact of multiscale representation and con-
text-aware, we conduct some comparative experiments with
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Figure 6: Sensitivity and impact of different object characteristics on the PASCAL VOC 2007 test set.
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Faster R-CNN when we remove one addition one after
another. As shown in Table 4, our method improves baseline
from 73.2% to 76.9% when adding a mask generator. Multi-
scale representation and context-aware further improves
the Faster R-CNN mAP to 77.0% and 77.2%, respectively.
But, more importantly, our model achieves a mAP of 77.4%
with the three additions. Note that we use same parameter
settings and image size to guarantee a fair comparison. All
models are trained on the union set of VOC 2007 and VOC
2012 and tested on VOC 2007 test set.

5.1. Analysis for Hard Examples Generation

5.1.1. What Is the Best Value of Hard Threshold O? We pro-
pose a hard threshold O to measure the mask degree. With
suitable O, only the pixel of the discriminative region is
selected and masked, thus, the hard threshold O is crucial.
We find that the detector would be obstructed by mask if
the mask region is too large; this happens because the net-
work saw few discriminative pixels. Oppositely, it would be
useless if it too small. To find a suitable hard threshold O,
we conduct a series of experiments only with a mask genera-
tor branch.

Table 5 gives a brief result of our experiments. Let R is the
value to 256 colors in class activation map, region with high
value of R will be highlight as the discrimination. For a loca-
tion in class activation map, the greater the value of R, the
greater the response of the class. The pixel will be masked,
provided that R is greater thanO. Thus, setting a high thresh-
old means a lower degree of mask. When O is 170, our detec-
tor achieves competitive results (76.9% mAP). But, when we
set O to 160 or 180, the results are not very competitive.

The reason is that the mask generator cannot product
useful hard examples with a too high value of O. Neverthe-
less, it would be break detector if the value of O is too low.
According to results, two keys can be summarized: (1) The
hard threshold O is vital to generate useful mask. (2) Occlud-

ing one-third area (O = 170) of feature map can product a
reasonable mask.

5.1.2. Do Mask Generator Help? To prove that the mask gen-
erator is useful in the object detection network, we conduct a
set of experiments which compare it with the baseline. As
shown in Figure 7(a), our method achieves a better result.
Furthermore, with multiscale representation concatenation
and contextual information module, the performance
becomes well (see Figure 7(b)). We also use three types of
mask area to get different hard examples for training;, the per-
formance for different mask area is shown in Figure 7(c). Our
method performs better when the hard threshold O is 170.

5.2. Analysis for Multiscale Representation Concatenation. To
validate the effectiveness of the multiscale representation
concatenation, we design a series of experiments and study
why the detection performance is affected by representation
concatenation. To better understand the importance of mul-
tiscale feature fusion, we have removed the mask generator
branch.

Our network obtains high-level semantic information
through fusion higher convolution layer 6. However, does
the convolution layer 6 really work? This paper designed a
set of experiments to verify this issue. Firstly, we train a
model detect from single layer 5, which achieved 70.0%
mAP. Secondly, we trained model detect from layers 3, 4,
and 5 and 4, 5, and 6, respectively. We evaluate the detection
performance with different layers at the region proposal
number is 100 in Table 6. Fusing layers 3, 4, and 5 gets
73.1%mAP, and fusing layer 4, 5 and 6 gets the best detection
result (mAP = 75:4%). These detection results also show the

Table 3: Detection results from MS COCO test task.

Method Training data
mAP, IoU: mAP, area:

O.5 : 0.95 0.5 0.75 S M L

FRCN trainval 21.9 42.7 — — — —

OHEM trainval 22.6 42.5 22.2 5.0 23.7 37.9

ION train 23.6 43.2 23.6 6.4 24.1 38.3

SSD300 trainval35k 25.1 43.1 25.8 6.6 25.9 41.4

DSSD321 trainval135K 28.0 46.1 29.2 7.4 28.1 47.6

Ours trainval 24.6 46.4 23.5 9.3 27.9 36.4

Table 4: Ablation analysis for three modules.

Module Our model

M: multiscale feature concatenation ✓ ✓ ✓

C: context-aware information ✓ ✓ ✓

H: hard example generation ✓ ✓ ✓ ✓

mAP (%) 77.4 77.2 77.0 76.9 75.0 75.4

Table 5: Influence of different value of hard threshold O:

Hard thresholdO 100 150 170 200

mAP(%) 74.0 75.6 76.9 76.3
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effectiveness of convolution layer 6. Therefore, the new con-
volution layer 6 is useful for the fusion feature map, since it
has richer semantic information compared with layer 5.

As Table 6 has shown, we use different methods to nor-
malize feature map; the first one is L2 normalize; the second
one is local response normalization (LRN) [49]. The last
model achieved 75.4% mAP with L2 normalization and
67.3% mAP with local response normalization (LRN). So,
the L2 normalization is more effective.

5.3. Analysis for Context Information. The context informa-
tion is very important for feature extraction. Therefore, we
design a set of experiments to verify the necessary of context
information. As shown in Figure 7, our model with contex-
tual information achieved better result than baseline. There
are two keys should be concluded: (1) embedding contextual
information is a good way to improve detection performance
and (2) the sum operation at pixel level is vital to embed
operation.
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Figure 7: Precision versus recall for mask generator.

Table 6: Influence of different layer concatenation strategies and normalization.

Concatenation from layer Normalization
3 4 5 6 L2 normalization Local response normalization

✓ 70.0

✓ ✓ ✓ 73.1 70.0

✓ ✓ ✓ 75.4 67.3
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6. Conclusion

This paper proposed a novel architecture to solve the object
occluded problem for object detection. We aim to learn an
object detector that is robust to different occlusions. To
achieve this goal, we propose an end-to-end framework that
generate hard examples during training and achieving com-
petitive performance in the object detection task.

To learn object models that are invariant to occlusions,
we proposed a mask generator which uses weakly supervised
location to generate pixel-wise masks and show that mask
generator is helpful to obtain more realistic hard examples
during training. To exploit more spatial information and
improve the richness of feature map, we design a novel multi-
scale representation concatenation model for the feature
extraction stage and add the context-aware module in the
region proposal network. Our method obtains comparable
results, 77.4% mAP and 74.3% mAP on PASCAL VOC
2007 and VOC 2012, respectively. It also achieves 24.6%
mAP on MS COCO. Our studies demonstrate that hard
examples and rich spatial information is vital for object
detection, promoting smart cities to solve the occlusion prob-
lem of object detection.
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