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Various applications of the Internet of Things assisted by deep learning such as autonomous driving and smart furniture have
gradually penetrated people’s social life. These applications not only provide people with great convenience but also promote the
progress and development of society. However, how to ensure that the important personal privacy information in the big data of
the Internet of Things will not be leaked when it is stored and shared on the cloud is a challenging issue. The main challenges
include (1) the changes in access rights caused by the flow of manufacturers or company personnel while sharing and (2) the
lack of limitation on time and frequency. We propose a data privacy protection scheme based on time and decryption frequency
limitation that can be applied in the Internet of Things. Legitimate users can obtain the original data, while users without a
homomorphic encryption key can perform operation training on the homomorphic ciphertext. On the one hand, this scheme
does not affect the training of the neural network model, on the other hand, it improves the confidentiality of data. Besides that,
this scheme introduces a secure two-party agreement to improve security while generating keys. While revoking, each attribute
is specified for the validity period in advance. Once the validity period expires, the attribute will be revoked. By using storage
lists and setting tokens to limit the number of user accesses, it effectively solves the problem of data leakage that may be caused
by multiple accesses in a long time. The theoretical analysis demonstrates that the proposed scheme can not only ensure safety
but also improve efficiency.

1. Introduction

The development of emerging computing technologies (e.g.,
cloud computing) have brought opportunity for various
industries, such as hyperspectral remote sensing image algo-
rithms [1, 2], classification algorithms [3], matrix operations
under linear systems [4, 5], and data generated by Internet of
Things (IoT) devices. If the data in a solution is stored in the
cloud or the calculation is outsourced to the cloud, the local
storage and calculation pressure will be greatly reduced.
Among them, for IoT big data, because IoT devices generate
huge amounts of data, the structure of the traditional
machine learning model is relatively simple, which can no
longer meet the new needs of IoT applications. Thus, deep

learning technology has been widely used in IoT applications
[6], e.g., smart home [7], smart city [8, 9], and autonomous
driving [10].

In the scenario of applying deep learning technology to big
data in the IoT, in order to train a neural network, large
amounts of data need to be obtained from the IoT devices.
For example, crowdsensing systems collect data that comes
from sensors embedded on personally owned mobile devices
[11]. These data may contain sensitive information of some
users. However, IoT networks are becoming more vulnerable
to various web attacks [12]. Obviously, once they “share” these
IoT data with the same field, they are likely to lose control of
this data. If these data containing private information are
leaked, and there is a lack of effective protection mechanism
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in the process of IoT search [13], it may cause irreversible
harm to the people whose information is leaked. For example,
in the field of healthcare, human physiological data collected
by wearable IoT devices are put into deep learning models,
which can predict the physical condition of patients [14–17].
Once these data are leaked, it will not only cause a patient’s
economic loss but also endanger life [18]. In the field of auton-
omous driving, the prediction system of deep learning may be
maliciously interfered. Once location privacy data is obtained
maliciously, it may cause traffic safety problems and bring
troubles to society [19]. It can be seen that how to protect
users’ private data still faces severe challenges for projects that
use deep learning to assist IoT applications, and it is a problem
that must be solved.

At present, many solutions have been proposed to solve
the big data privacy protection problem in machine learning
[20] or deep learning. Generally, these schemes are divided
into three categories: federated learning [21, 22], encryption-
based technologies [23–26], and differential privacy technolo-
gies [27, 28], as shown in Figure 1. Figure 1 shows the working
principles of three different types of privacy protection.
Among them, encryption-based technologies mainly use
direct encryption of data, such as using homomorphic encryp-
tion algorithms or setting access control on data uploaded to
cloud servers. However, in actual situations, data owners not
only want to share training data with others but also want to
guarantee data security. Although homomorphic encryption
solution realizes the encryption of data, it cannot meet the
needs of multiuser data sharing when sharing data in the same
field, and it cannot achieve one-to-many fine-grained commu-
nication. In attribute-based encryption, only users who meet
the access strategy set by the owner can obtain the data, which
can achieve more flexible access control. Therefore, to handle

the problem of the incompatibility of secure storage and fine-
grained sharing of IoT big data in deep learning, an attribute-
based encryption solution can be introduced. Among them,
the encryption of the ciphertext strategy is more suitable to
be used in this scenario than the key-based encryption due
to the characteristics of the ciphertext contact access strategy
and key contact access structure.

In the actual data sharing scenario, due to the numerous
attributes of the visitor, there are many departments in the
enterprise engaged in the IoT, so the attribute fluidity is rela-
tively large. Access users obtain the key through their own
identity attribute information. If the attribute used to repre-
sent the identity does not have a valid period, it means that
even if an employee resigns or a department merges, it will
not affect the access rights of the resigned employee or the
original department staff, and these employees can still
obtain data through their own identity attributes. If a
resigned employee sells IoT big data in exchange for eco-
nomic benefits, it will not only endanger the interests of the
company but also harm people’s personal safety. This shows
that it is necessary to set the validity period for each user
attribute. The attribute will be cancelled when it expires.
Moreover, many current solutions allow users to access
unlimited times within the set time. To prevent the number
of visits from being abused, it is necessary to limit the num-
ber of visits within the set time. By limiting the user’s access
period and access frequency, to a certain extent, it is possible
to reduce the occurrence of data leakage caused by the sale of
data information by employees or outsiders using decryption
attributes to access big data of the Internet of Things.

We consider the data privacy problems of big data gener-
ated in the field of IoT for mobile computing and use attri-
bute revocation idea [29, 30], then propose an IoT big data
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Figure 1: Three different types of working principles.
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privacy protection scheme based on time and the number of
decryption restrictions. This scheme combines homomor-
phic encryption and attribute-based encryption. In sum-
mary, the main contributions of this paper are as follows:

(1) We propose a scheme that limits attribute usage time
and user decryption frequency. By setting the attri-
bute version number for each attribute as a mark, it
is compared with the local time to determine whether
the time has expired and realize the revocation.
Besides, it limits the number of user accesses by
establishing a user decryption frequency table and
setting access tokens.

(2) We combine homomorphic encryption with
ciphertext-based attribute-based encryption technol-
ogy, which makes this solution more effective in
improving data confidentiality without affecting neu-
ral network model training.

(3) We analyse the security of the scheme in a real
deployment.

The remainder of the paper is organized as follows. After
introducing the related work in Section 2, we provide related
technologies used in this paper in Section 3. Section 4
describes the design of our scheme. We analyse security
and effectiveness of our scheme in Section 5. Finally, Section
6 concludes this study.

2. Related Work

Although deep learning has brought great convenience to
human life, its application is inseparable from data. If some
IoT data involves the user’s private information, once it is
leaked, it will cause property and life safety issues. More
and more solutions [31–34] are proposed to solve data secu-
rity issues, which are implemented by not directly processing
data. In addition, people can also protect their privacy by
processing data. Lv et al. [35] proposed a secure transaction
framework based on the blockchain, which uses the encryp-
tion mechanism of the blockchain to ensure information
security, but it does not achieve fine-grained access control.
Lindell et al. [36] proposed that two parties can process data
sets collaboratively without revealing their privacy. Agrawal
et al. [37] proposed a scheme that implements the function
of outsourcing data to others for data mining tasks. This
scheme is confirmed that it does not reveal the data owner’s
private information during the outsourcing process. Homo-
morphic encryption technology is considered to be the most
effective and most direct means of protecting user privacy
[38]. It can directly perform operations, and the results can
be consistent with the results of plaintext operations. In
2007, Orlandi et al. [39] introduced homomorphic encryp-
tion technology andmultiparty secure computing technology
to feed the encrypted data into the neural network model for
training, which not only ensured the consistency of the plain-
text and ciphertext calculation results but also considered
security. In [40], the authors proposed a neural network
model that uses encrypted data for training. At the same

time, in this scheme, it is also proved that cloud services
can be used to put encrypted data into the neural network
for prediction operations, and the results are returned from
the cloud in the form of ciphertext. In [41], the authors
improved the scheme [40] and proved that encrypted data
can also train neural networks.

In addition to directly encrypting big data, there are also
many solutions for setting access control to the data protec-
tion layer. In [42], the author created the first CP-ABE solu-
tions, the access policy and ciphertext are sent to the receiver
together. Due to the existence of user or attribute revocation
problems, research on revocation of ABE has always received
extensive attention. Shi et al. [43] proposed a scheme under a
hierarchical cryptosystem. Once the attributes are revoked,
the public key, private key, and ciphertext of the scheme need
to be updated, so the revoking efficiency of this scheme is not
high. In [44, 45], the authors pointed out that the private key
can be divided into two parts. If the attribute is revoked, the
two keys need to be updated, and it is necessary to reencrypt
the ciphertext and header files, so the cost of revocation is rel-
atively large. In [46], the authors proposed a user revocation
scheme based on a time limit, but it did not achieve fine-
grained attribute revocation. In [47], the authors proposed
a scheme for using smart contracts to revoke attributes. In
addition to these revocation schemes, the purpose of revoca-
tion can also be realized by limiting the number of user visits.
In [48], the authors proposed a scheme that decryption fre-
quency can be limited. But the function of this scheme is a
bit single. While sharing IoT big data that can be used for
neural network training, users can adopt a scheme that com-
bines homomorphic encryption and CP-ABE. The solution
proposed in [49] has proved that combining the two technol-
ogies in such scenarios can not only reduce the risk of data
leakage but also reduce the number of key communications.
However, in the field of deep learning-assisted IoT applica-
tions, there are very few solutions that can combine these
technologies to limit user access time and specify the number
of user accesses.

3. Preliminaries

3.1. Bilinear Maps. Suppose there is a large prime number p
and two cyclic groups G1 and G2, their orders are both p,
and g is a generator of G1. Then, there is a mapping e : G1
×G1 ⟶G2 from G1 to G2, and it has the following proper-
ties [50]:

(1) Bilinearity: eðga, gbÞ = eðgb, gaÞ = eðg, gÞab for ∀a, b
∈ Z∗

p and ∀u, v ∈G1

(2) Nondegeneracy: there exists x, y ∈G1, such that eðx,
yÞ ≠ 1, where 1 is the identity element of group G2

(3) Computability: for ∀u, v ∈G1, eðu, vÞ can be calcu-
lated by an effective algorithm.

Then, we call the above mapping e a bilinear mapping. In
general, the cyclic group G1 is an additive cyclic group, and
the cyclic group G2 is a multiplicative cyclic group.
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3.2. Diffie-Hellman Problem. For the additive cyclic group G1
in the above bilinear map e, there are the following difficult
problems in cryptography and discrete mathematics, various
cryptosystems based on bilinear mapping are built on the
basis of these difficult problems.

Definition 1 (discrete logarithm problem (DL)). If there are
any two elements g and Y , g ∈G1, Y ∈G1, and satisfy Y =
gk, where k ∈ Z∗

p , it is difficult to calculate the value of k.

Definition 2 (computational Diffie-Hellman problem
(CDH)). Given that a triplet is ðg, ga, gbÞ, where g is a gener-
ator of group G1, a, b ∈ Z∗

p , it is difficult to calculate the value

of gab.

Definition 3 (decisional Diffie-Hellman problem (DDH)). If
there is a four-tuple ðg, ga, gb, gcÞ, where g is a generator,
a, b, c ∈ Z∗

p , it is difficult to determine whether c = ab mod
p is true.

Because the above three types of problems are based on
group G1, they are all regarded as group G1 problems.

3.3. DBDH Assumption. Given that a five-tuple is
[g, ga, gb, gc,Z], where g is a generator of group G1, a, b, c
∈RZP , Z ∈G2, it is difficult to determine whether Z = e
ðg, gÞabc is true.
3.4. Access Structure. The structure is a set of judgment con-
ditions, usually expressed as Γ, which contains several attri-
bute elements in the attribute set A and threshold logic
operators (such as OR and AND). If there is an attribute set
that satisfies the judgment condition, this attribute set is
called an authorized set, otherwise, we called it an unautho-
rized set. Let P = fP 1,P 2,⋯,P ng be the entity set of n par-

ticipants. For ∀B,C , if B ∈C and B ⊆C , there is C ∈A ,
then, the set A ⊆ 2fP 1,P 2,⋯,P ng is monotonous. An access
structure is a nonempty subset of {P 1,P 2,⋯,P n}, namely,
A ⊆ 2fP 1,P 2,⋯,P ng\{ϕ}. In this proposed solution, the identity
information of each user can be described by multiple attri-
butes, such as company, department, and position, which
are all his attributes.

3.5. Secure Two-Party Computing Protocol. A secure two-
party computing protocol [51–53] means that in a network
environment with a low safety factor, two participants can
obtain the value of a function after collaborative calculation.
Then, they can also obtain the desired value from each other
according to this agreement. However, apart from knowing
the value of oneself, other information cannot be derived.
Through this agreement, it can be ensured that the privacy
of the participants themselves will not be leaked when they
do not trust each other, which improves program security.

3.6. Homomorphic Encryption. Definition Eðk, aÞ means
using an encryption algorithm to encrypt a, the key is k,
and F means a certain algorithm of homomorphic encryp-
tion, if there is an effective algorithm I, it can be satisfied: E
ðk, Fða1, a2,⋯, anÞÞ = Iðk, FðEða1Þ, Eða2Þ,⋯, EðanÞÞÞ. It
means that E is homomorphic to F.

4. The Proposed System

4.1. System Solution. In our proposed solution, there exist six
types of entities: IoT device, cloud server, data user, attribute
authorization centre, key generation centre, and time server.
The scheme model is shown in Figure 2.

From Figure 2, we can know that the data owner can
encrypt all kinds of data from IoT devices and upload the
data to CSP. The access user makes an access request to the
cloud server. Legitimate users can download document set
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Figure 2: System model.
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from the cloud server and decrypt it. CSP and KGC jointly
generate keys for users through continuous interaction. The
time server is responsible for detecting whether the time sent
to it by other entities has expired or has been forged or tam-
pered with.

4.2. System Algorithms. We let group G be a bilinear group,
let g be a generator in group G. Let e : G ×G⟶G1 be a
bilinear mapping. We choose three hash functions in this
scheme: H : f0, 1g∗ ⟶G, so that each attribute can be
mapped to the group, H1 : G1 ⟶ Z∗

P , and H2 : f0, 1g∗
⟶ f0, 1g∗. In addition, for any i ∈ Z∗

P , an attribute set A,
the Lagrangian coefficient is defined as Δi,AðxÞ =

Q
j∈A,j≠iðx

− jÞ/ði − jÞ.

(1) SetupðλÞ⟶ ðPKKGC, MKKGCÞ, ðPKCSP, MKCSPÞ, ð
PKsign, MKsignÞ. First, the security parameter λ is used
to generate three pairs of public and private keys,
which are the key generation centre’s key pair
PKKGC, MKKGC, the cloud server’s key pair PKCSP,
MKCSP, and the public and private key pair for digital
signature PKsign, MKsign. KGC randomly selects β∈R
Z∗
P and sets h = gβ, so (PKKGC = h, MKKGC = β). At

the same time, KGC also selects a random number
γ∈RZ

∗
P , so that the public and private key pair used

for digital signature is ðPKsign = gγ, MKsign = γÞ. CSP
randomly selects α∈RZ

∗
P , it sets (PKCSP = eðg, gÞα,

MKCSP = gα). Second, CSP allocates initialization
information other than public and private keys for
users accessing IoT data, including setting the unique
identity of the ith user as ui, where ui ∈ Z

∗
P . A list L is

stored in the cloud server, which contains the user’s
unique mark ui, the number of user visits σ, and the
state-related mark Kc. Third, KGC selects a random
secret value r j ∈ Z

∗
P for the user, and AAC selects a

mark vi ∈ Z
∗
P for each attribute. Therefore, the system

public key is PK = fG, g, h, f = g1/β, eðg, gÞαg, and
the master key is MK = ðα, βÞ. The initial value of σ
is set to 0.

(2) KeyGenðPK, MK, MKsign,A ,Ui, stÞ⟶ ðSKut
Þ. In

this part, the digital signature private key MKsign,
the user’s attribute set A , and the attribute version
key Ui, and outputs the user’s decryption key. The
following four parts are included:

(a) Generate attribute version key. This part is exe-
cuted by AAC. AAC randomly selects any value
ti ∈ Z

∗
P for each attribute, and ti is used as a

parameter for subsequent use, so the attribute
version key is set to Ui = viti, and the attribute
version key is generated and sent to CSP.

(b) Generate partial user keys. This part is formed by
the simultaneous operation of KGC and CSP via
introducing a secure two-party computing proto-
col. First, KGC takes the parameters (rj, β) as
input, and CSP takes the parameter α as input.

Through calculation, x = ðα + rjÞβ is obtained,
and the result is output to CSP. CSP selects a ran-
dom number δ ∈ Z∗

P, calculates A = gxδ = gðα+r jÞβδ,
and sends the calculation result to KGC. When

KGC receives the result, calculate B = A1/β2
=

ðgðα+r jÞβδÞ1/β
2

= gðα+r jÞδ/β, and finally, the result
B is sent to CSP. CSP calculates SKC = B1/δ =
gðα+r jÞ/β from the received result B. KGC inputs
the set attribute version key and outputs partial
user’s private key (SKk = ð∀λ ∈A ,Dλ = grjH
ðλÞUi ,D∗

λ = gUiÞ). The partial user’s decryption
key is composed of a combination of the private
key generated by CSP and KGC: SK = ðSKC ,
SKkÞ = ðD = gðα+r jÞ/β,∀λ ∈A ,Dλ = grj ·HðλÞUi ,
D∗
λ = gUiÞ

(c) In this part of the algorithm, Kp = g1/ðH2ðstÞ+uiÞ,
Kc = E1/ðH2ðstÞ+uiÞ,Kc is the output value of the
algorithm VRF [54], Kp, Kc refer to the calcula-
tion and detection scheme of the algorithm
VRF. Therefore, the final decryption key is SKut

= fSK, st, Kc, Kpg = fD = gðα+r jÞ/β,∀λ ∈A ,Dλ =
grj ·HðλÞUi ,D∗

λ = gUi , st, Kc, Kpg, the generated
decryption key is sent to the user.

(d) Set the expiration time Tt for each attribute and
digitally sign Ttξ = g1/ðH2ðTtÞ+γÞ.

(3) HKeyGen (). This algorithm generates the key of a
homomorphic encryption algorithm. This scheme
uses the DGHV encryption algorithm. In this algo-
rithm, the key is selected as follows: we choose a ran-
domly generated positive prime number as the key p,
where p ∈ ½2η2−1, 2η2Þ.

(4) EncryptionðPK, Γ,M, pÞ⟶ ðCT∗Þ. This algorithm
first inputs the system public key and access policy
tree Γ, homomorphic encryption key p, and plaintext
message M. Then, this algorithm outputs encrypted
ciphertext CT∗. First, the data owner uses the homo-
morphic encryption key p to encrypt the plaintextM.
The specific operation is as follows: they choose two
random numbers q, r, where p ∈ ½2ηs−1, 2ηsÞ, r ∈ ½2η−1,
2ηÞ, p/2 > j2rj, q≫ p. The ciphertext of the document
set is calculated by formula pq + 2r +M, M is
expressed in binary, and the generated ciphertext is
uploaded. Second, the data owner encrypts the
homomorphic key and uploads the key with attribute
access control to the cloud. The data owner regards
the attributes as leaf nodes, the root node of the tree
is R, and the other nodes are threshold logic opera-
tors. The encryption operation performs from the
root node and, from top to bottom, produces a linked
order for each node, which is dx polynomial qx. If nx
is the threshold of nonleaf nodes, then there is a rela-
tion dx = nx − 1. Then, they select a random value s
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∈ Z∗
P , set the polynomial on the root node to qRð0Þ

= s, and use the homomorphic encryption key p to
encrypt the plaintext, and use the encryption result
to calculateC = EncðpÞ · eðg, gÞαs, Ĉ = hs. Let the poly-
nomial of other nodes be qxð0Þ = qpðxÞðindexðxÞÞ,
where indexðxÞ represents the number associated
with any node x. The order of nodes is indicated from
left to right. In the entire access policy tree, the infor-
mation carried by each leaf node must be calculated,

Cλ = gqλð0Þ, C∗
λ =HðλÞqλð0Þ. Then, the final CT∗ is

CT∗ = fΓ, C = EncðpÞ · eðg, gÞαs, Ĉ = hs,∀λ ∈ J : Cλ

= gqλð0Þ, C∗
λ =HðλÞqλð0Þg.

(5) TimeCheckðSKut
, S, Tt , ξ, PKsignÞ. In this part of the

algorithm, after the time server receives the validity
period of the attribute, it first needs to verify it with
digital signature technology to check whether it has
been forged or tampered with and verify it with the
following calculation method:

e gH2 Ttð Þ · PKsign, ξ
� �

= e gH2 Ttð Þ · gγ, g1/H2 Ttð Þ+γ
� �

= e gH2 Ttð Þ+γ, g1/H2 Ttð Þ+γ
� �

= e g, gð Þ:

ð1Þ

If the verification is successful, it means that the attri-
bute has not been forged or tampered with. The time
server compares the validity period Tt with the present
time to determine whether the attribute has exceeded
the validity period. If it has not expired, you need to
continue to execute step 6. If it expires, the attribute
needs to be revoked. On the contrary, if the verifica-
tion fails, it means that the validity period Tt has been
maliciously modified, then return ⊥.

(6) GenTokenðui, st, ctrmaxÞ⟶ ðBTÞ: after verifying the
attribute validity period Tt , it also needs to verify the
user’s access times, but the difference is that even if a
certain attribute fails, the user still has the possibility
of access rights, but if the access times exceed the set
threshold, then the user does not have the right to
access IoT resource data. This algorithm makes the
user’s unique identity ui, the user’s current state st,
and the maximum allowed number of decryption
ctrmax into a token and sends the token to the cloud
server.

(7) PredecryptionðSKut
, BTÞ⟶ ðtimeindexÞ. In this

part, the cloud server first detects eðgH2ðstÞ ∗ gui , KpÞ
= E and Kc = eðg, KpÞ after receiving the token with
information. If it meets the verification conditions,
CSP will detect the number of decryption σ + 1 ≤
ctrmax in the list L, if it is satisfied, let σ = σ + 1,
update Kc at this time and store it in the list L, and
then, the user and CSP continue to perform step 8.
Then, let timeindex = 1, otherwise, timeindex =⊥. If

timeindex =⊥, it means accessing users can no longer
access IoT big data even if they have access rights.

(8) DecryptionðSKut
, CT∗Þ⟶ ðpÞ. This part of the

algorithm is executed by the decryption user and is
divided into the following four parts:

(a) When the node x in the access policy tree belongs
to the leaf node in the access policy tree, let i =
attðxÞ, it means that the attribute corresponding
to the node x computes

DecryptNode SKut
, CT∗, x

� �
=

e Di, Cxð Þ
e D∗

i , C∗
xð Þ =

e g, gð Þqx 0ð Þ r j+Uið Þ
e g, gð Þqx 0ð Þ Uið Þ

= e g, gð Þr jqx 0ð Þ:

ð2Þ

If the attribute is not in the user’s attribute set,
return ⊥.

(b) When λ belongs to a nonleaf node in the struc-
ture tree, we let Sx be the set of child nodes of
each node z of size kx. When Fz exists and the
user’s current decryption frequency meet the
requirements, then compute

Fx =
Y
z∈Sx

Fz
timeindexð ÞΔi ,Sx′ =

Y
z∈Sx

e g, gð Þr jqz 0ð Þ
� �Δi ,Sx′

=
Y
z∈Sx

e g, gð Þr jqparent zð Þ index zð Þð Þ
� �Δi ,Sx′

= e g, gð Þr jqλ 0ð Þ:

ð3Þ

If the root node R in this structure tree is replaced
by the x node in the above formula, it can be
computed as A = DecryptNodeðSKut

, CT∗, RÞ =
eðg, gÞr js.

(c) When the user’s attribute set meets the require-
ments, decryption is performed:

Dec
C

e Ĉ,D
� �

/A

 !
= Dec

e g, gð Þαs · Enc pð Þ
e hs, g α+r jð Þ/β� �

/e g, gð Þr js

0@ 1A
= Dec

e g, gð Þαs · Enc Mð Þ
e hs, g α+r jð Þ/β� �

/e g, gð Þr js

0@ 1A
= Dec

e g, gð Þαs · Enc Mð Þ
e g, gð Þαs

� �
= p

ð4Þ

(d) After the data visitor obtains the homomorphic
key p, users can obtain the document set by using
the homomorphic key p.
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(9) RevocationðÞ. When the attribute is revoked, this
algorithm is executed. In the algorithm, it consists
of three parts:

(a) First, KGC randomly selects a reencryption
parameter ψ, which is assigned to AAC, CSP,
and users whose attributes have been revoked,
so that they can update relevant component
information in time. Receiving the update
information, AAC updates the attribute ver-
sion keys Ui′ of the revoked attributes that it
manages, Ui′= viti′.

(b) The next step is to update the user key. CSP
obtains the reencryption parameters allocated
in the previous step and regenerates the user’s
latest version key together with KGC. The

updated user key is SKut
= fD = gðα+r jÞ/β,Dλ′

= grj ·HðψλÞUi
′ ,D∗

λ′ = gUi
′ ,∀λ ∈A \ fλ′g: Dλ

= grj ·HðλÞUi ,D∗
λ = gUi , st, Kc, Kpg.

(c) The third step is to update the ciphertext. In
this part, CSP first selects a random cipher
value s′ ∈ Z∗

P to ensure forward security and
then updates the relevant components of the
ciphertext after receiving the reencryption
parameters. The updated ciphertext is

CT∗ =
n
Γ, C = e g, gð Þα s+s′ð Þ · Enck Mð Þ, Ĉ

= h s+s′ð Þ,∀λ ∈ J : Cλ = gqλ 0ð Þ+s′ , C∗
λ

=H ψλð Þqλ 0ð Þ+s′ λ = λ′
� �

, C∗
λ

=H λð Þqλ 0ð Þ+s′ λ ≠ λ′
� �o

ð5Þ

5. Safety and Efficiency Analysis

5.1. Solution Security Analysis

5.1.1. Confidentiality. The confidentiality of this scheme is
achieved through two aspects. On the one hand, the attri-
butes of the user must be able to meet the policy set by data
owner. If the access policy is not met, then the attributes can-
not be used to calculate eðg, gÞr js, so it can prevent unautho-
rized users from stealing sensitive data. On the other hand,
while generating the user’s key, to reduce the condition
impact of low safety factor and untrustworthy, a secure
two-party computing protocol is used to protect the related
information of the private key from being obtained by any-
one other than itself.

5.1.2. Forward Security. Since each user is set to limit decryp-
tion frequency, when users access data, if they meet the
requirements of the access policy, they also need to send a
token carrying the number of times of decryption to the cloud

server. If the number of accesses exceeds the limit, then the user
can no longer be decrypted, which ensures forward security.

5.1.3. Collusion Resistance. Users need to use their own attri-
butes to calculate eðg, gÞr js. If users with different permis-
sions want to create a conspiracy attack, then KGC and
CSP will generate partial decryption keys through a secure
two-party calculation protocol D = gðα+r jÞ/β,Dλ = grj ·H
ðλÞUi ,D∗

λ = gUi , where ui is a unique random value for each
user, so even if the attackers collude, they cannot calculate
the value of eðg, gÞr js.
5.1.4. Chosen-Plaintext Attack

Proof.We consider that there exists a polynomial adversary A
that is able to break this solution and algorithm B that can
overcome the DBDH problem with the advantage of ε.

Initialization: adversary A selects an access structure tree
Τ and sends this access strategy tree to challenger B, and
challenger B executes the Setup () initialization algorithm.
This part of the process is as follows:

Randomly select four values to calculate eðg, gÞabe
ðg, gÞx = eðg, gÞα, where a, b, c, xϵZ∗

P .
For each attribute λϵA , select a random value ℓiϵZ

∗
P ,

when the attribute does not exist in the access structure tree
T , we set Yi =H1/ℓi , yi = b/ℓi, if the attribute exists in the
access structure tree T , we let Yi = gℓi and yi = ℓi.

The public key PK = fG, h, g, f = g1/β, eðg, gÞαg is pub-
lished, and challenger B keeps the private key MK= ðα, βÞ.

Phase 1: after challenger B obtains the public key, adver-
sary A can issue a query request. Adversary A selects an attri-
bute set s = fλi ∣ λi ∈ Tg and ui and submits the information
to challenger B to apply for a private key. Challenger B ran-
domly selects ri,Ui generates the corresponding private
key. The calculation process is as follows:

SK = D = g ab+x+r jð Þ/β,Dλ = grj ·H λð ÞUi ,D∗
λ = gUi

� �
: ð6Þ

If the number of decryptions meets the requirements, st,
Kc, Kp will not affect the final decryption effect.

Challenge: adversary A has obtained the access control
tree Τ at this time and then submits two plaintexts of the
same length to challenger B. By comparing the attribute sets,
if the attribute set sent in the previous step does not meet the
structure tree Τ, then the two plaintexts are set tom0,m1, and
the two plaintexts are sent to challenger B along with the
access strategy tree. Then, B randomly selectsp ∈ fa, bg, cal-
culate:

C0 = Enc Mp

� �
· e g, gð Þαs = Enc Mp

� �
· e g, gð Þ ab+xð Þs

= Enc Mp

� �
· e g, gð Þabse g, gð Þxs = Enc Mp

� �
· e g, gð Þabs · e gx , gsð Þ,fC0 = hs,∀λ ∈ J : fCλ = gqλ 0ð Þ,fC∗

λ =H λð Þqλ 0ð Þ:

ð7Þ

Challenger B sends this information to A.
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Phase 2: A can always ask B for private key-related infor-
mation, and then, A guesses the ciphertext and needs to give
his own guess value p′.

Guess: if p′ =p′, then DBDH is established, the advan-
tage is pr½p′ =p′ ∣ eðg, gÞabc� = ε + 1/2, if p′ ≠p′, the

ciphertext cannot be judged, and the advantage is pr½p′ ≠
p′ ∣ eðg, gÞϑ� = 1/2. In summary, pr½ðg, ga, gb, gc, eðg, gÞabcÞ
= 1� − pr½ðg, ga, gb, gc, eðg, gÞϑÞ = 1� ≥ ε. It shows that this
scheme can realize that no adversary can break the scheme
with a nonnegligible advantage in polynomial time.

5.2. Theoretical Comparison. Our scheme is compared with
other schemes in terms of revocation mechanism, time limit,
number of decryption limits, and anticollusion. The compar-
ison results are shown in Table 1.

From Table 1, it can be seen that in [46–49, 56], the rev-
ocation schemes proposed by the authors do not fully meet
the revocation needs. Although in [55] the authors proposed
a scheme that can support user revocation and attribute rev-
ocation, in the scenario we mentioned, it is also a require-
ment that the ciphertext can be operated. This scheme in
[49] realizes that users can operate on ciphertext, but it is
not suitable for scenarios where attributes need to be
revoked. Our scheme realizes two revocation functions,
solves the basic system security problem, and achieves the
ciphertext operable function. What is more, we also consider
two factors: time and frequency of decryption.

Our scheme is compared with other schemes in terms of
key generation efficiency, decryption efficiency, and revoca-
tion efficiency. e is the exponential calculation cost, and p is
the bilinear pair calculation cost. The comparison results
are shown in Table 2.

It can be seen that in [55] only the user performs the
decryption operation and in [56] only CSP performs the
decryption operation, which will cause one-side pressure.
Our scheme can effectively reduce the amount of user tasks

by placing part of the decryption task on the cloud server.
Also, in [55], while realizing user revocation, the cost is np.
However, in our scheme, if the user is revoked after judg-
ment, the user only needs to be removed from the list L, thus,
its computational complexity is better than the schemes [55,
56]. Although the cost of generating the key is relatively high
due to the use of a two-party security protocol, the security of
the key is guaranteed through this multiparty cooperation
method.

6. Conclusions

Since important personal privacy may be leaked while storing
and sharing IoT big data on the cloud, we have proposed an
IoT big data privacy protection scheme based on time and
decryption frequency limitation, the solution realizes the rev-
ocation within the time range and the revocation within the
range of decryption times. The access control is set by the
combination of homomorphic encryption and attribute-
based encryption. In our scheme, legitimate users with a
homomorphic encryption key can obtain the original data,
and users without a homomorphic encryption key can per-
form operation training on the homomorphic ciphertext.
Our scheme does not only affect the training of the neural net-
work model but also improves the confidentiality of the data.
At the same time, the security of the system is improved by
introducing a secure two-party agreement. Through theoreti-
cal analysis, we found that our scheme realizes two revocation
functions, solves the basic system security problem, and
achieves the ciphertext operable function. While realizing user
revocation, the computational complexity is preferable to
other schemes. Besides, our scheme can effectively reduce
the amount of user tasks by placing part of the decryption task
on the cloud server. Therefore, our scheme can not only
ensure safety but also improve efficiency. In the next step, we
plan to combine the advantages of decentralization and ano-
nymity of blockchain to protect big data in the Internet of
Things in a distributed storage environment.

Table 1: Functional comparison.

Schemes Revocability Time Number Collusion Ciphertext operability

[55] User and attribute × × ✓ ×
[46] User ✓ × ✓ ×
[48] User × ✓ ✓ ×
[47] Attribute ✓ × ✓ ×
[49] None × × ✓ ✓

[56] Attribute × × ✓ ×
Our scheme User and attribute ✓ ✓ ✓ ✓

Table 2: Cost comparison.

Schemes Secret key cost
Decryption cost Revocation

User CSP Attribute-cost User-cost

[55] 3e 3p × 3 n + 1ð Þp np

[56] 4e × e e ×
Our scheme O 5nð Þ O nð Þ O nð Þ O 5nð Þ O 1ð Þ
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