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Passive radar (PR) systems use the existing transmitters of opportunity in the environment to perform tasks such as detection,
tracking, and imaging. The classical cross-correlation based methods to obtain the range-Doppler map have the problems of
high sidelobe and limited resolution due to the influence of signal bandwidth. In this paper, we propose a novel range-Doppler
processing method based on compressed sensing (CS), which performs sparse reconstruction in range and Doppler dimensions
to achieve high resolution and reduces sidelobe without excessive computational burden. Results from numerical simulations
and experimental measurements recorded with the Chinese standard digital television terrestrial broadcasting (DTTB) based PR
show that the proposed method successfully handles the range-Doppler map formatting problem for PR and outperforms the
existing CS-based PR processing methods.

1. Introduction

Passive radar [1] (PR) is a kind of radar system which uses
the existing transmitters of opportunity (such as FM [2, 3],
GSM [4], and DVB-T [5, 6]) in space to achieve target detec-
tion and tracking and other tasks without special deployment
or installation of transmitters. In recent years, PR has been
widely concerned in the military and commercial fields
because of advantages in terms of low-cost implementation,
confidentiality, strong antijamming, and reduced electro-
magnetic pollution to the environment.

In this study, we mainly focus on the generation of a pas-
sive radar range-Doppler (RD) map. Based on the matched
filtering theory, the classical method uses the cross-
ambiguity function (CAF) and fast Fourier transform (FFT)
to calculate RD response. However, the classical method
faces some challenges. On the one hand, the generated RD
map has a high sidelobe level, which may get false target posi-
tion and Doppler frequency. On the other hand, the signal
bandwidth of passive radar is usually narrow compared to
that of active radar. It limits range resolution, and this limita-
tion leads to undesirable performance in various applications
[7]. In order to improve the range resolution of PR, the mul-

tiple broadcast channels from a single transmitter were
exploited [8–10], which can be implemented only when the
multiband system is used. Besides, a longer integration time
can improve the Doppler resolution. But that would cause
migration phenomena during integration and require com-
plex compensation [11, 12].

In recent years, the application of compressed sensing
(CS) has been considered in passive radar. CS is a sparse sig-
nal processing technology [13, 14], which can reduce the
amount of sampling data and use a small number of mea-
surements to achieve excellent signal reconstruction. CS has
been widely used in the field of radar signal processing; it
has great potential in improving resolution [15, 16]. With
the increasing attention in the field of PR, the RD map of tar-
gets for PR can be formulated as a sparse recovery problem,
and the works related to CS-based PR processing have been
published [17–19]. In [17, 18], a normal CS-based PR pro-
cessing scheme was proposed to achieve better range and
Doppler resolutions. Due to the fact that the dictionary is
composed of the template signals with discrete delays and
Doppler shifts, this method has high reconstruction accu-
racy, but it needs a large amount of storage and calculations.
[19] proposed a RD map generation algorithm for PR. The
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extended orthogonal matching pursuit (EOMP) algorithm is
employed to obtain the Doppler frequency with an improved
resolution and a reduced sidelobe level. But one-dimensional
cross-correlation is used to obtain the range compressed pro-
file, which is the same as the classical method.

In this paper, we propose a novel range-Doppler process-
ing method for PR. CS is applied to the range domain and
Doppler domain, respectively, which no longer requires huge
storage space occupied by the dictionary. In addition, our
contributions are the following. (1) In the Doppler dimen-
sion, considering the sparse characteristics of the signal, we
present a modified OMP algorithm based on the multiple
measurement vector (MMV) [20] model to improve the pro-
cessing ability. (2) In the range dimension, we use the Fourier
dictionary in the range-frequency domain, which can easily
achieve high-resolution range estimation. Furthermore, a
global search is to find the most relevant atom of the dictio-
nary matrix for sparse reconstruction of the RD map, which
can be treated as another way to use EOMP.

The rest of this paper is organised as follows. A brief sig-
nal model of PR is introduced in Section 2. In Section 3, a
novel theoretical derivation of CS-based RD map generation
for PR is presented. The comparison with other processing
methods is also discussed in this section. Section 4 demon-
strates experimental results using the simulated data and
the real data. Finally, Section 5 concludes this work.

2. Passive Radar Geometry and Signal Model

Figure 1 schematically illustrates a typical passive radar
geometry, where the system is composed of transmitting sta-
tion T and receiving station R. It is assumed that there is a
moving target P in the scene. RT , RR, and RL represent the
transmitter-target, receiver-target, and transmitter-receiver
distances. v is the velocity vector of the moving target. β is
the bistatic angle. ϕ is the angle between the vector v and
the bistatic angle. θT is the emission angle, and θR is the target
observation angle.

The PR receiver consists of two channels, the reference
channel and surveillance channel. The reference channel
gathers a time-delayed version of the transmitted waveform,
and the surveillance channel records the signals scattered
from targets. Let the transmitted waveform be represented
by xTðtÞ, then the signal collected by the reference channel
can be written as

x tð Þ = ArxT t − τLð Þ + nr tð Þ, ð1Þ

where Ar is the complex amplitude, τL = RL/c represents the
time delay, and nrðtÞ represents the thermal noise in the ref-
erence channel.

Admittedly, the surveillance channel also contains direct
signal and multipath in practice. Here, we assume that distur-
bance has been removed [21–24], and then, the response of
the moving target P can be expressed as

y tð Þ = AxT t − τp
� �

exp j2πf pt
� �

+ n tð Þ, ð2Þ

where A is the complex amplitude, τp is the bistatic time
delay corresponding to the target location, f p is the Doppler
frequency shift related to the target velocity, and nðtÞ is the
thermal noise in the surveillance channel. According to the
geometric relationship between the target and the bistatic
radar system, the time delay and instantaneous Doppler fre-
quency of the target can be expressed as [25]

τp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
R + R2

L + 2RRRL sin θR
p

+ RR

c
,

f p =
2v
λ

cos ϕð Þ cos β

2

� �
:

ð3Þ

Considering an observation scene consisting of K scatter-
ing points, a generalized expression of the surveillance signal
can be written as

y tð Þ = 〠
K

k=1
AkxT t − τkð Þ exp j2πf ktð Þ + n tð Þ, ð4Þ

where Ak, f k, and τk are the complex amplitude, the bistatic
time delay, and the Doppler frequency shift of the kth scatter-
ing point. To simplify the analysis, the thermal fluctuations
nrðtÞ and nðtÞ are neglected, Ar is set to 1, and τL is set to
0. Then, the surveillance signal can be rewritten as

y tð Þ = 〠
K

k=1
Akx t − τkð Þ exp j2πf ktð Þ: ð5Þ

It should be noted that this simplification has no signifi-
cant impact. For example, the condition τL = 0 can be satis-
fied as long as the reference signal is added a corresponding
time delay.

3. CS-Based Processing for PR

In this section, we present our investigation of the following
CS-based method to form a range-Doppler map with passive
radar data.

3.1. Signal Preprocessing. The surveillance signal and the ref-
erence signal first need to be divided into multiple short seg-
ments [26], as shown in Figure 2. It means that the Doppler
frequency change within a segment interval is ignored.
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Figure 1: Simplified bistatic geometry for passive radar.
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Figure 2: Signal segmentation.
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Input: surveillance signal Fyn sub ∈ℂMsub×N

dictionary Ψf sub =
½Ψð1Þ

f sub
,⋯,ΨðlÞ

f sub
,⋯,ΨðNÞ

f sub
� ∈ℂMsub×MgridN

sparsity K
residual threshold Th1

Initialize: iteration count k = 0
residual matrix R = Fyn sub

estimate support collection Λ =∅
coefficient matrix a = 0Mgrid×N

While k ≤ K or kRkkF > Th1 do k = k + 1
(Identification)

vk ⟵ argmaxð∑N
l=1jðΨðlÞ

f subÞ
H
FðlÞyn subjÞ, where vk is

the column index of the largest element in

Ψ ðlÞ
f sub

H
FðlÞyn sub

(Update Index Support) Λk =Λk−1 ∪ vk;

(Estimation) ŵΛk =Ψ ðlÞ
f sub½Λk�†FðlÞyn sub, where ð·Þ†

represents the pseudo-inverse of the matrix,aðΛk, nÞ =
ŵΛk ,
(Update Residual)

ðRkÞðlÞ = FðlÞyn sub −ΨðlÞ
f sub

½Λk�ŵΛk .

Output coefficient matrix a
End

Algorithm 1: Pseudocode of modified MMV-OMP algorithm for Doppler reconstruction.

Input: surveillance signal after Doppler processing
ðFym subÞT ∈ℂNsub×Mgrid

dictionary Ψτ sub ∈ℂ
Nsub×Ngrid

sparsity Q
residual threshold Th2

Initialize: iteration count q = 0
residual matrix r = ðFym subÞT
estimate support collection L = 0Q×Mgrid

coefficient matrix α′ = 0Ngrid×Mgrid

While q ≤Q or krkkF > Th2 do q = q + 1
(Identification) ½uq, bq�⟵ arg max jΨτ sub

Hrj,where uq
and bq are the row index and column index of the largest

element in jΨτ sub
Hrj;

(Update Index Support) Lðq, bqÞ = uq;
P = nonzerosfL½bq�g,where nonzerosf•g represents
non-zero elements in the vector;
(Estimation) γ =Ψτ sub½P�†Fym sub½bq�, where ð·Þ†
represents the pseudo-inverse of the matrix, α′½P, bq� = γ;
(Update Residual) r½bq� = Fym sub½bq� −Ψτ sub½P�γ.

Output coefficient matrix α = ðα′ÞT
End

Algorithm 2: Pseudocode of EOMP algorithm for range reconstruction.
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Let t = τ +mT (where T is the segment interval); t can be
called slow time. τ represents time delay, which is called fast
time. Now, the surveillance signal is expressed as follows:

y τð Þ = 〠
K

k=1
Akx τ − τk +mTð Þ exp j2πf kτð Þ exp j2πf kmTð Þ

≈ 〠
K

k=1
Akx τ − τk +mTð Þ exp j2πf kmTð Þ,

ð6Þ

where m = 0, 1,⋯,M − 1 is the slow time index and M
denotes the number of segments. The two-dimensional dis-
crete form of (6) can be expressed as

y m, nð Þ = 〠
K

k=1
Akx nΔτ − nkΔτ +mTð Þ exp j2πf kmTð Þ, ð7Þ

where Δτ is the sampling time interval and τk = nkΔτ. n = 0
, 1,⋯,N − 1 is the fast time index, and N denotes the sample
number of each segment. Similarly, the discrete representa-
tion of the reference signal is expressed as

x m, nð Þ = x nΔτ +mTð Þ: ð8Þ

3.2. Sparse Reconstruction of Doppler Domain. By taking an
FFT of xðm, nÞ with respect to n, we have

Fxn m, lð Þ = 〠
N−1

n=0
x m, nð Þ exp −j2πlΔf nnΔτð Þ = 〠

N−1

n=0
x m, nð Þ exp −jl

2π
N

n
� �

,

ð9Þ

where Δf n = 1/ðNΔτÞ is the range-frequency bin size and
l is the range-frequency index. Similarly, after performing an
FFT of yðm, nÞ with respect to n, we can obtain

Fyn m, lð Þ = 〠
N−1

n=0
y m, nð Þ exp −j2πlΔf nnΔτð Þ

= 〠
K

k=1
AkFxn m, lð Þ exp −j2πlΔf nnkΔτð Þ exp j2πf kmTð Þ

= 〠
K

k=1
AkFxn m, lð Þ exp −jl

2π
N

nk

� �
exp j2πf kmTð Þ:

ð10Þ
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Figure 4: Flowchart of the proposed method.

Table 1: CS-PR method comparison.

Methods Original method Feng et al.’s method Proposed method

Signal model rD : yvec =ΨrDαvec D : yr =ΨDα
D : Fyn sub

lð Þ =Ψ lð Þ
f suba lð Þ

r : Fym sub =Ψτ subα

Dictionary size
ΨrD

MsubNsub ×MgridNgrid
� � ΨD Msub ×Mgrid

� � D : Ψ lð Þ
f sub Msub ×Mgrid

� �
r : Ψτ sub Nsub ×Ngrid

� �
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In order to make a sparse representation of the range-

frequency bins, a Doppler dictionary ΨðlÞ
f ∈ℂM×Mgrid is con-

structed as

Ψ lð Þ
f = ψ

lð Þ
1 ⋯ ψ lð Þ

q ⋯ ψ
lð Þ
Mgrid

h i
,

ψ lð Þ
q = Fxn m, lð Þ exp j

2π
Mgrid

qm

 !
, m = 0, 1,⋯,M − 1,

ð11Þ

where Mgrid denotes the number of the Doppler grid. And
then, (10) can be expressed as

Fyn m, lð Þ = 〠
K

k=1
AkFxn m, lð Þ exp −jl

2π
N

nk

� �
exp j

2π
Mgrid

qkm

 !
,

ð12Þ

where qk = f k/Δf q and Δf q = 1/ðMgridTÞ represent the size of
the Doppler grid. From this, we may know that Mgrid =M
makes the same resolution level as the classical method, Δ
f q = Δf = 1/ðMTÞ, and the larger Mgrid can generate higher
Doppler resolution.

For each range-frequency bin l, (12) can be rewritten as

Fyn lð Þ =Ψ lð Þ
f a lð Þ, ð13Þ

where

Fyn lð Þ = Fyn 0, lð Þ ⋯ ⋯ Fyn M − 1, lð Þ	 
T ,
a lð Þ = a1 ⋯ aq ⋯ aMgrid

h iT
:

ð14Þ

There are K nonzero elements in aðlÞ, when the scattering
points make different Doppler frequency shifts. And then,
the positions and amplitude values are, respectively,

qk =
f k
Δf q

, k = 1, 2,⋯, K ,

aqk = Ak exp −jl
2π
N

nk

� �
, k = 1, 2,⋯, K:

ð15Þ

If there are the same Doppler frequencies, then the num-
ber of nonzero elements becomes smaller. In turn, the
complex amplitude is the sum of all coefficients related to
the same Doppler.

According to the CS theory, the sparsity of the signal
ensures the feasibility of reducing the amount of data. The

MMV-OMP
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EOMP
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Msub

Mgrid

Mgrid

Nsub
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Ngrid

𝛹f_sub

𝛹𝜏_sub

Λk
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Figure 5: The diagram of signal reconstruction.

Table 2: Frame structure of DTTB signal.

Frame head System information Data

DTTB 945 symbols 36 symbols 3744 symbols

Table 3: System parameter.

Parameters Symbol Value

Carrier frequency f c 674MHz

Bandwidth B 7.56MHz

Sample frequency f s 10MHz

Number of segments M 512

Sample number N 256

Number of range grid Mgrid 50

Number of Doppler grid Ngrid 20
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sensing matrix obtained by multiplying the measurement
matrix Φ and the Doppler dictionary (sparse basis matrix)

ΨðlÞ
f needs to satisfy the restricted isometric property (RIP).

The commonly used measurement matrices are the random
Gaussian matrix and partial random unit matrix. In order
to facilitate the practical operation, we adopt the method of
random extraction of data, which can be expressed as

Fyn sub
lð Þ =ΦmFyn lð Þ =ΦmΨ

lð Þ
f a lð Þ =Ψ lð Þ

f suba lð Þ, ð16Þ

whereΦm ∈ℝMsub×M is a partial random unit matrix. In order
to obtain the coefficient vector aðlÞ, (16) needs to be solved.
Due to the sparseness of the coefficient vector, it is equivalent
to solving the following minimum norm problem:

a∧ lð Þ = arg min a lð Þ
��� ���

0
s:t:Fyn sub

lð Þ =Ψ lð Þ
f suba lð Þ: ð17Þ

There are many methods to solve (17). The greedy algo-
rithm is widely used in practical application because of its
excellent geometric interpretation, good reconstruction
effect, and fast reconstruction speed. The most representative
greedy algorithm is the OMP algorithm. Considering the
consistency of signal models of multiple range-frequency
bins, the same operation can be carried out for each range-
frequency bin. That is to say, it can solve aðlÞ through OMP
under the single measurement vector (SMV) model accord-

ing to Fyn sub
ðlÞ and ΨðlÞ

f sub, respectively.
We note that 13 is independent of l. It is found that the

positions of nonzero elements of aðlÞ in multiple range-

frequency bins are the same; that is, the support set of each
sparse coefficient vector is the same. This feature means that
it can be considered an MMV model (see Figure 3), and we
can use the joint sparsity to improve reconstruction perfor-
mance. However, the existing OMP algorithm under the
MMV model cannot be directly applied. Considering that

ΨðlÞ
f sub is different for passive radar data, a modified version

of MMV-OMP is proposed here. The pseudocode is shown
in Algorithm 1. In order to facilitate the derivation, the matrix
a = ½a∧ð1Þ,⋯,a∧ðlÞ,⋯,a∧ðNÞ� which is obtained by the modified
MMV-OMP algorithm will be rewritten as Fymðq, lÞ.
3.3. Sparse Reconstruction of Range Domain. After Doppler
reconstruction, the two-dimensional data can be expressed as

Fym q, lð Þ =
〠
k

Ak exp −jl
2π
N

nk

� �
, q = qk,

0, q ≠ qk:

8><
>: ð18Þ

It can be seen from (18) that the signal is independent of
Doppler frequency bin q. Therefore, the same time-delay dic-
tionary Ψτ ∈ℂ

N×Ngrid can be constructed for each Doppler
bin, which can be expressed as

Ψτ = ψ1 ⋯ ψn
′ ⋯ ψNgrid

h i
,

ψn
′ = exp −j

2π
Ngrid

n′l
 !

, l = 0, 1,⋯,N − 1,
ð19Þ
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Figure 6: Result obtained by CAF: (a) the original scene; (b) RD map.

Table 4: Target scenario parameters.

Parameters Target 1
Target 2

Scatterer point 1 Scatterer point 2 Scatterer point 3

Target location index 10 26 28 30

Doppler bin 4 -4 -4 -4

Amplitude 1 0.7 0.9 1
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where Ngrid denotes the number of time-delay (range)
grids. So, the signal of qth Doppler bin can be expressed as

Fym qð Þ =Ψτα
qð Þ, ð20Þ

where

Fym qð Þ = Fym q, 0ð Þ ⋯ ⋯ Fym q,N − 1ð Þ	 
T ,
α qð Þ = α1 ⋯ αn′ ⋯ αNgrid

h iT
:

ð21Þ

In whole range-Doppler plane, there are K nonzero ele-
ments ðK<<MgridNgridÞ, and the positions and amplitude
values are, respectively,
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Figure 7: RD maps obtained by (a, b) original CS-PR method, K = 4; (c, d) Feng et al.’s method, K = 4; (e, f) proposed method, K =Q = 4;
(a, c, e) with full samples; (b, d, f) with partial samples (1/4).
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n′k =
τk
Δτ′

, k = 1, 2,⋯, K ,

αn′k = Ak, k = 1, 2,⋯, K ,
ð22Þ

where Δτ′ = ΔτðN/NgridÞ. It was obvious that Ngrid =N
makes the same or better resolution level as the classical
method; the larger Ngrid can generate finer range resolution.

Similarly, the signal is randomly extracted, and the obser-
vation equation can be expressed as

Fym sub
qð Þ =ΦnFym qð Þ =ΦnΨτα qð Þ =Ψτ subα qð Þ, ð23Þ

where Φn ∈ℝNsub×N is a partial random unit matrix. It is
important to note that the randomness has a constraint.
For range-frequency bins, the frequency range is determined
by the sampling rate f s, which usually satisfies f s ≥ B (B is the
signal bandwidth). This means that some range-frequency
bins contain invalid information. Therefore, the random
extraction only considers the effective part of the signal
bandwidth.

The coefficient vector αðqÞ can be solved as follows:

α∧ qð Þ = arg min α qð Þ
��� ���

0
s:t:Fym sub

qð Þ =Ψτ subα
qð Þ: ð24Þ

To effectively solve the problem, we utilize a sparse
matrix recovery algorithm. Its pseudocode is described in
Algorithm 2, which can be seen as another way of using
EOMP. Similarly, the matrix α = ½α∧ð1Þ,⋯,α∧ðqÞ,⋯,
α∧ðMgridÞ�T is rewritten as Iymðq, n′Þ.

The signal processed by the reconstruction algorithm can
be expressed as

Iym q, n′
� �

=
Ak, q = qk, n′ = nk′ ,
0, others:

(
ð25Þ

Obviously, (25) is the distribution of the scattering coef-
ficient in the time-delay Doppler grid. Therefore, based on
the above analysis, we can see that the range-Doppler map
for passive radar can be obtained by using the proposed
CS-based processing method.

3.4. Summary of Method Flow. In order to intuitively show
the processing technique, the flowchart of the proposed
method is shown in Figure 4. The steps are briefly summa-
rized as follows.

Step 1. After segmentation of reference signal and surveil-
lance signal, perform FFT on xðm, nÞ and yðm, nÞ in the fast
time n direction, respectively.

Step 2.According toΦm, construct Doppler dictionaryΨf sub
by using the reference signal of the range-frequency domain
and observation vector Fyn sub by using the surveillance signal
of the range-frequency domain, and then perform

Algorithm 1 (MMV-OMP) to reconstruct Doppler frequency
distribution.

Step 3. According to Φn, construct time-delay dictionary
Ψτ sub and observation matrix Fym sub, and then perform
Algorithm 2 (EOMP) to reconstruct range-Doppler map.

There are two points which remain to be explained. In
Step 2, we actually only need to process Nsub range-
frequency bins related to Φn. In addition, the grid sizes
(Δf q, Δτ′) and grid numbers (Mgrid, Ngrid) of dictionaries
(Ψf sub, Ψτ sub) can be set in accordance with the actual
condition.

3.5. Comparative Analysis. We compare the proposed
method with the time-delay/Doppler combination
dictionary-based CS-PR method (named as original method
here) presented in [17, 18] and Feng et al.’s method presented
in [19]. Table 1 demonstrates the signal model, dictionary
size of the original method, Feng et al.’s method, and the pro-
posed method, respectively.

The major difference among these three methods lies in
the signal model and method implementation. In the original
method, the reflectivity map matrix is reconstructed by a cas-
cade of 1-D CS reconstruction. All measurements are stacked
into a single observation vector yvec, the state of each time-
delay/Doppler combination is stacked into the state vector
αvec, and the dictionaryΨrD by discretizing the delay Doppler
plane on a grid takes up the most memory. The size is Msub
Nsub ×MgridNgrid, which leads to the memory occupation
being too large and the computational burden being huge.

In both Feng et al.’s method and the proposed algorithm,
the range reconstruction and the Doppler reconstruction are
separately completed, which means that the dictionaries ΨD,

ΨðlÞ
f sub, Ψτ sub have much smaller size. The difference

between the two methods is that the former only uses CS to
estimate Doppler frequency while the latter uses CS in both
directions, even though the use of EOMP is sameness. We
can obtain high-resolution capability in the range coordinate.
This is just what Feng et al.’s method does not have.

In addition, we can consider the fact that the input of
EOMP is the output of MMV-OMP, which records the sup-
port set information. Therefore, the input data size of EOMP
can be adjusted according to the size of the support set. As
shown in Figure 5, there are two execution modes to obtain
the range-Doppler map. The second execution mode can
further reduce the computational burden due to the small
amount of data.

Table 5: Run times for different CS-PR methods.

Methods Full samples Partial samples

Original method 3.365 s 0.615 s

Feng et al.’s method 0.069 s 0.054 s

Proposed method 0.161 s 0.123 s
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Figure 10: Gram matrices of refined dictionaries (Δf q = Δf /2, Δτ′ = Δτ/2): (a) Gf; (b) Gτ.
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Figure 8: Range profiles obtained by different methods: (a) target 1; (b) target 2.
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Figure 9: Gram matrices of original dictionaries (Δf q = Δf , Δτ′ = Δτ): (a) Gf; (b) Gτ.
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4. Experimental Results

In this section, we present experimental results with simu-
lated data and real data. The effectiveness of the proposed
processing method is demonstrated.

4.1. Simulation Data. We have conducted numerical experi-
ments to investigate the performance of the proposed pro-
cessing method. A digital television terrestrial broadcasting
(DTTB) signal is simulated. The frame structure of signal is
shown in Table 2, which includes frame header (945 sym-
bols) and frame body (3780 symbols).

The parameters used in the simulation experiment are
shown in Tables 3 and 4. In the observation scene, the reflec-
tion mechanisms are assumed to be a point-like target (target
1) and a line-like target (target 2). Target 2 consists of three
scatterer points, which are located in the same Doppler bin
and become neighbors in the range direction.

At the beginning, the result obtained by the classical CAF
is shown in Figure 6. As can be seen from Figures 6(a) and
6(b), the CAF can achieve the target scene recovery, but the
reconstructed map is out of clarity due to the large sidelobes.

On the contrary, the CS-PR methods can be used to remove
the sidelobes. The processing results by using the CS-PR
methods listed in Table 1 are shown in Figure 7, which are
the RD maps obtained by using full samples and partial sam-
ples from the same scenario. For the partial sample case, in
order to ensure the same amount of data, the original method
and the proposed method perform one-half data undersam-
pling processing in the range direction and Doppler direc-
tion, respectively, while Feng et al.’s method only performs
one-quarter data undersampling processing in the Doppler
direction.

Figure 7 demonstrates that these processing methods
based on CS can effectively suppress the sidelobe. The
run times of different methods are summarized in
Table 5. Apparently, the original CS-PR method uses much
longer running time than the other two methods, due to
the usage of the dictionary by the discretizing RD plane.
In order to more intuitively observe the effect of different
methods on the sidelobe suppression, the range profiles
obtained by different methods are shown in Figure 8. From
the figures, it shows that Feng et al.’s method cannot
clearly identify the scatterer points in the range direction.
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Figure 11: Result obtained by the proposed method with fine grid: (a) refining grid with 2 × 2; (b) RD map.
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Figure 12: Results of sparse reconstruction of Doppler domain (SNR = 10 dB) by (a) SMV-OMP and (b) MMV-OMP.
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It indicates that the range resolution of the method is lim-
ited, even though its run time is the least. Fortunately, the
proposed processing method can reconstruct the target
scene with a good performance both in accuracy and in
computational efficiency.

It is known that the CS approach offers great potential for
better resolution by using a finer dictionary. The grid sizes
are set to be the same as CAF in previous experiments
(Δf q = Δf , Δτ′ = Δτ). Now, the Doppler grid and time-delay

grid are only half the original size (Δf q = Δf /2, Δτ′ = Δτ/2).
As the grid is refined, the challenge is that the dictionary cor-
relation will increase, which may lead to the performance
degradation for CS. The Gram matrix is used to verify the
dictionary coherence, and results are depicted in Figures 9
and 10. Gf =ΨH

f subΨf sub and Gτ =ΨH
τ subΨτ sub represent

Gram matrices in Doppler direction and range direction,
respectively. As can be seen from Figures 9 and 10, each
Gram matrix is close to the unit matrix. Due to this coher-
ence characteristic, CS is able to produce superresolution
radar images. Figure 11 shows the RD map obtained by the
proposed method when the grid is refined. It is observed that
the resolution improvement is achieved by utilizing a fine
grid.

In order to demonstrate the advantages of OMP under
the MMV model, we compare the Doppler reconstructions
by SMV-OMP and MMV-OMP at different signal-to-noise
ratios (SNR). The values of SNR are 10 dB, 0 dB, and −10
dB. The parameters of target 1 use the following settings.
The location index is 10, the Doppler bin is 4, and the ampli-
tude is 0.3. Other parameters remain unchanged. The results
are shown in Figures 12–14. For SMV-OMP, there are a
number of Doppler reconstruction errors, which will lead
to insufficient energy accumulation in the range direction.
Figure 15 shows the final RD maps when SNR is −10 dB. It
can be found that target 1 is not visible in the RD map
obtained by SMV-OMP. On the contrary, MMV-OMP has
robust performance because it considers the information of
multiple observations.

4.2. Real Data.We use real data from an DTV-based PR sys-
tem to further verify the proposed method. The parameters
used are shown in Table 6. We obtain results for CAF and
the proposed method. The RD map obtained by the CAF
approach is shown in Figure 16; Figures 17 and 18 show
the results of CS reconstruction if 25% of the full data is used.
In comparison to the CAF, the proposed method shows good
performance owing to CS.
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Figure 14: Results of sparse reconstruction of Doppler domain (SNR = −10 dB) by (a) SMV-OMP and (b) MMV-OMP.
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Figure 13: Results of sparse reconstruction of Doppler domain (SNR = 0 dB) by (a) SMV-OMP and (b) MMV-OMP.

12 Wireless Communications and Mobile Computing



302 304 306
Delay (𝜇s)

120

140

160

180

200

220

D
op

pl
er

 (H
z)

0.5

1

1.5

2

2.5

×1011

Figure 16: RD map obtained by CAF.
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Figure 17: RD map obtained by the proposed method.

Table 6: System parameters.

Parameters Symbol Value

Carrier frequency f c 674MHz

Bandwidth B 7.56MHz

Sample frequency f s 10MHz

Number of segments M 2048

Sample number N 2048

Number of range grid Mgrid 50

Number of Doppler grid Ngrid 200
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Figure 18: RDmap obtained by the proposed method with fine grid.
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Figure 15: RD maps (SNR = −10 dB) obtained by (a) SMV-OMP and (b) MMV-OMP.
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For a more illustrative comparison, two cuts are made
along the location of the target in the range and Doppler
directions shown in Figures 19(a) and 19(b). The proposed
method has a considerably lower sidelobe level than the
CAF and indeed allows for improved range and Doppler
resolutions by the fine gridding.

5. Conclusion

In this paper, the problem of compressed sensing-based
range-Doppler processing for passive radar is investigated.
In order to reduce the sidelobes and improve the resolution,
we have proposed a novel CS-PR method, in which the mod-
ified MMV-OMP algorithm is used to perform sparse recon-
struction of Doppler dimension, and then, the EOMP
algorithm is used to perform sparse reconstruction of range
dimension. Compared to previous CS-PR methods, we can
achieve a high-quality reconstruction of the range-Doppler
map of target scenario and do not suffer from the heavy com-
putational burden. The effectiveness of the proposed method
is verified by experiments with simulated data and real data.
The improved resolution capability will be helpful to widen
the extent of application.
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