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Abstract. 
In this paper, we introduce a novel 3D shape reconstruction method from a single-view sketch image based on a deep neural network. The proposed pipeline is mainly composed of three modules. The first module is sketch component segmentation based on multimodal DNN fusion and is used to segment a given sketch into a series of basic units and build a transformation template by the knots between them. The second module is a nonlinear transformation network for multifarious sketch generation with the obtained transformation template. It creates the transformation representation of a sketch by extracting the shape features of an input sketch and transformation template samples. The third module is deep 3D shape reconstruction using multifarious sketches, which takes the obtained sketches as input to reconstruct 3D shapes with a generative model. It fuses and optimizes features of multiple views and thus is more likely to generate high-quality 3D shapes. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on a public 3D reconstruction dataset. The results demonstrate that our model can achieve better reconstruction performance than peer methods. Specifically, compared to the state-of-the-art method, the proposed model achieves a performance gain in terms of the five evaluation metrics by an average of 25.5% on the man-made model dataset and 23.4% on the character object dataset using synthetic sketches and by an average of 31.8% and 29.5% on the two datasets, respectively, using human drawing sketches.

1. Introduction
3D shape reconstruction as one of the most fundamental problems in computer graphics is playing an increasingly important role in a wide variety of fields such as virtual/augmented reality, computer-aided geometric design, gaming, and medical imaging. However, manually reconstructing 3D models from scratch is a nontrivial task. This is because the procedure generally involves intensive interactions, which will take a designer a lot of time and effort to craft an exquisite 3D model. To alleviate this situation, a large body of approaches have been developed to facilitate the 3D shape reconstruction process. Among them, automatically reconstructing 3D models from sketch images is gaining more and more popularity due to its high efficacy and simplicity of interaction.
To harvest 3D models from free-hand sketches, a crucial factor is how to accurately understand their semantic meaning. Towards this end, conventional sketch-based 3D shape reconstruction methods like [1] rely on hand-crafted features. With the recent advance in deep learning technology, deep neural network-based 3D shape reconstruction has achieved remarkable progress. Despite these achievements, there are still many challenging issues in this area that have not been effectively addressed, which are seriously hindering the adoption of this technique in many domains. These issues are mainly featured in the following three aspects. Firstly, there is a great semantic gap between sketch images and 3D models. Compared with a nature image, a sketch is a visual representation form with a high level of abstraction and can easily cause ambiguity. This character could bring great challenges to the understanding of sketches and will affect the performance of 3D reconstruction. Besides, drawing skills and painting styles of different users vary greatly, which further exacerbate the difficulties of sketch semantic analysis. Secondly, deep learning-based 3D reconstruction models are generally highly dependent on sufficient training data. With the diversity of users’ painting styles, it is very time-consuming and costly to collect tens of thousands of well-labelled sketch images that can be used to feed into deep neural networks for effective training. Last but not least, the dimensionality and features of sketches and 3D models are quite different. How to effectively exploit the very limited visual clues in sketch images to reconstruct 3D shape accurately is another challenging task that has not been adequately addressed by existing studies.
To tackle the aforementioned issues, in this paper, we introduce a novel 3D shape reconstruction framework from a sketch image using a deep neural network. Unlike conventional methods that need several sketch images from multiple views, the proposed approach only takes a single-view sketch image as input. This can significantly reduce the interaction during the reconstruction process, which is a very important factor that is highly concerned by practitioners in real-world applications. However, compared with multiview-based reconstruction methods, extracting meaningful features from a single-view sketch may be insufficient for accurate 3D shape reconstruction. This is because sketches from multiple views are more likely to convey more useful features to infer the underlying structure of a 3D shape. To gain the merit of multiview sketch-based reconstruction frameworks, we formulate the problem as a three-stage task, i.e., we first segment an input sketch into a series of basic units in the first stage and use the units to build a transformation template and create multifarious sketches in the second stage before reconstructing 3D shape in the third stage. Such a strategy paves the way to harvesting high-quality 3D models with less input and human-computer interaction. This work is an extension of our conference paper [2]. In this extended version, we introduce a new network optimization component and conduct more experiments to evaluate the effectiveness of our method.
The rest of this paper is organized as follows. In the next section, we briefly introduce existing researches on 3D shape reconstruction from sketch images. The details of the proposed framework are presented in Section 3. We conduct an extensive experiment to demonstrate the effectiveness of the proposed method in Section 4. Section 5 concludes the paper.
2. Related Work
In this section, we briefly review existing researches that are closely related to our work from two aspects: (1) sketch understanding and (2) sketch-based composition and reconstruction.
2.1. Sketch Understanding
Sketch understanding is an emerging branch in the field of artificial intelligence [3–5], aimed at recognizing and extracting the semantic knowledge from sketch images in a fully/semiautomatic fashion. It mainly encompasses two parts, i.e., sketch recognition and semantic understanding [6]. A pioneer work on large-scale sketch recognition is “How do users draw sketches?” [1], in which 20 k sketch images in total were collected. It adopts a Gaussian derivative to estimate the direction of lines and utilizes a bag-of-words model to encode a local curve direction as the feature vector of sketches. Then, the support vector machine (SVM) is employed to classify sketch images. With the great achievement of the deep neural network (DNN) on natural image recognition, the convolutional neural network (CNN) has also been applied to sketch recognition. However, taking sketch images as a 2D pixel array, CNN-based methods usually need to learn a huge amount of network parameters, which is very inefficient to train the network. Compared with natural images, the features of sketch images are sparse. Such spare data can significantly improve the compactness of networks.
2.2. Sketch-Based Composition and Reconstruction
A large body of studies have been carried out to extract features from sketch images and use them to perform a variety of tasks such as 3D model retrieval and shape reconstruction. For example, Chen and Fang [7] proposed to retrieve a 3D model using a sketch by constructing two individual deep CNN and metric networks. One network is for sketch images, and the other one is for 3D models. Interleaved active metric learning (IAML) is used to learn specific features from these two modalities, which is capable of mining important features from samples for training and learning discriminative feature representation effectively. Besides, to reduce the cross-modality difference between sketch features and 3D shapes, it also introduced a modality transformation network to convert sketch features into the feature space of 3D models, which achieves better retrieval performance.
This technique also paves the way for the development of sketch-based 3D shape reconstruction [8, 9]. Wang et al. [10] developed a label-free sketch neural network 3D-GAN. This model is integrated with an embedding latent vector space to harvest a similar feature vector distribution between sketch image and 2D rendered image. Then, it obtains final results by retrieving the  most similar 3D models with a sketch as the prior knowledge. Lun et al. [11] mapped a sketch to 3D shape by training a ConvNet to infer the structure and reconstructed a 3D model using a multiview framework. Unlike conventional methods that adopt voxels to represent 3D models, the shape of 3D objects can be represented with surface-based forms (for example, polygon mesh), which can achieve more accurate prediction by combining feedforward frameworks.
3. The Proposed Deep Neural Network for 3D Shape Reconstruction
3.1. Overview of the Proposed Method
The proposed pipeline is mainly composed of three components: (1) sketch component segmentation based on multimodal DNN fusion, (2) multifarious sketch generation based on nonlinear transformation network, and (3) deep 3D shape reconstruction using multifarious sketches. The first component is a 2D point cloud-based sketch segmentation model, which is used to segment a given sketch into a series of basic units and build a transformation template by the knots between them. The advantage of this component is that it only relies on a small amount of sample data to achieve the learning task of the transformation network. The second component is developed for generating multifarious sketches with the aforementioned transformation template. It creates the transformation representation of a sketch by extracting the shape features of an input sketch and transformation template samples, which can avoid the problems existing in conventional models such as unitary transformation structure and distortion. The third component takes the obtained sketches as input to reconstruct 3D shapes with a generative model. It fuses and optimizes features of multiple views and thus is more likely to generate high-quality 3D shapes. Details of each component will be introduced in the following three subsections.
3.2. Sketch Component Segmentation Based on Multimodal DNN Fusion
Sketch component segmentation net is inspired by work [6]. The sketch network mainly consists of two parts: encoder and decoder. On the one hand, the network obtains the global feature of a sketch through the encoder. As shown in Figure 1, feature representation is learned and extracted using spatial invariance enhanced residual (SIER), which is composed of two modules: residual learning module and spatial transformation module. These features will be combined together in the decoding phrase to generate a pixel-level feature segmentation image. On the other hand, the coordinate information of sketch contour is an important geometry structure. Therefore, a 2D point cloud network can obtain the feature of a sketch by representing each point with 2D coordinates . Let  be the coordinate set of sketch contour, where  represents the coordinate of each sample point; the 2D point cloud network takes  as input and gets the global features by gathering point features with maximum function . Then, the probability of each point in  associated with all semantic units can be obtained by connecting local and global features through a segmentation network. More specifically, let  be a continuous set function regarding Hausdorff distance . For , there exists a continuous function  such that for arbitrary ,
where  and  are continuous functions and  is a vector maximum description operator. Therefore, the general function of the arbitrary 2D point set can be represented as





			
				
			
		
			
			
			
				
			
			
				
			
			
			
				
			
			
			
			
				
			
			
			
			
				
			
			
				
			
			
			
			
				
			
			
			
			
			
			
				
			
			
			
			
			
			
			
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
				
				
				
				
			
			
				
				
				
				
				
			
			
				
				
				
				
				
			
			
				
				
				
				
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		Figure 1: Sketch component segmentation based on multimodal DNN fusion.


As shown in Figure 1,  can be learned with multilayer perception (MLP), and  can be obtained with single variable function and max pooling.
After performing sketch segmentation, we use the transformation templates of the original sketch to train the network. As illustrated in Figure 2, a sketch is segmented into a series of semantic units. The knot between units is represented with , which is highlighted with a red circle in the figure.




			
				
			
		
			
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
			
			
			
			
			
			
			
		
			
		Figure 2: Sketch segmentation, knots, and transformation template.


3.3. Multifarious Sketch Generation Based on Nonlinear Transformation Network
As shown in Figure 3, the proposed pipeline is mainly composed of two modules, i.e., multiview sketch generation module and 3D model generation module. The aim of segmentation is to obtain small samples of sketches for the use of training the network in Section 3.2. Multiview sketches are generated by the Sketch-VAE network with the input sketch image. The obtained multiview sketches are then fed into the encoder and decoder to harvest a depth image and a normal image, with which we can generate a 3D point cloud. And finally, a 3D polygon model can be obtained by performing remeshing on the point cloud.




			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
			
				
			
				
				
				
				
				
				
				
				
			
			
				
			
			
			
				
			
				
				
				
				
				
				
				
				
				
			
			
			
				
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
			
				
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
			
				
				
				
				
				
				
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
				
			
				
				
			
			
			
				
			
			
				
			
			
				
			
				
			
				
			
			
				
				
				
				
				
				
				
				
				
				
				
			
			
				
			
			
				
					
				
			
			
				
					
				
			
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
				
					
				
				
					
				
			
			
				
				
				
				
				
				
			
			
				
			
			
				
			
			
			
			
			
			
				
			
			
				
				
				
				
				
				
				
			
			
			
			
			
			
			
			
				
			
			
				
			
				
		
			
		
			
				
			
		Figure 3: Deep 3D shape reconstruction using multifarious sketches.


In this step, we first carry out transformation feature extraction and representation. For  sketch images, each of which has  vertexes, let  be the th vertex of an input sketch and  be the one in the transformation template; the transformation gradient  can be obtained by minimizing the energy function below:
where  is the neighborhood set of , , , and  is cotangent weight. The affine transformation matrix can be decomposed into rotation part and scaling part . The rotation difference from  to  is given by

Thus, the energy function is redefined as

where  and  is the number of neighborhood of . Finally, the feature of the transformation template on  can be represented as

The Sketch-VAE network is aimed at finding an encoder and a decoder, where the goal of the encoder is to map the posterior distribution of  to hidden vector , while that of the decoder is to generate a credible . The loss function of the Sketch-VAE model is defined as

where  is the transformed feature after preprocessing and  is the output of the Sketch-VAE model.  is a hidden vector;  and  are prior and posterior probability, respectively; and  is KL divergence.
To avoid incorrect output caused by the separation between sketch components, we add a constrain condition and define the loss function of knots as

Besides, we also add a regularization constrain to the network optimization network to avoid distortion and define the loss function as
where  and  are the vertexes in the original and transformed sketches, respectively.
3.4. Deep 3D Shape Reconstruction Using Multifarious Sketches
The proposed deep 3D shape reconstruction framework is illustrated in Figure 3. For the sketches obtained in the last step, the encoder first extracts the feature of each sketch. It consists of a series of convolution, and all layers use ReLU as an active function. Then, the decoder transforms these features into depth and normal images, which will be fused into a 3D point cloud subsequently. The first step of fusion is to map all foreground pixels to 3D points. If the prediction probability of a pixel is larger than 50%, we consider it as a foreground pixel. Let the depth of a foreground pixel  be , the coordinate set of graph space in the th sketch image be , and the position of a 3D point  can be calculated as
where  is a scaling coefficient, representing the distance between adjacent pixels and the center. Finally, the 3D model can be obtained by transforming it into polygon mesh with the Poisson surface reconstruction algorithm [12].
3.5. Network Optimization
To constrain the two feature vectors, we use the relative cross-entropy to evaluate their similarity and select sigmoid normalization-based cross-entropy as the loss function of the proposed sketch pixel network:

where  indicates whether the label  exists in the obtained segmentation result. If so, we set ; otherwise, .  is the prediction probability that the label  appears in the results. Likewise,  is the feature constrain of the 2D point cloud. We can perform the feature fusion via multiple ways such as cascade and weighted sum. Meanwhile, the weights of different networks have a direct impact on the results. We will study the impact of the normalization of different network components on the results in Table 1. The objective function is formulated as

Table 1: Segmentation accuracy (%) in terms of P-metric under different parameter settings on the SketchSeg dataset.
	

	Loss weight 	Airplane	Bicycle	Candelabra	Chair	Four legs	Human	Lamp	Rifle	Table	Vase	Average
	

		89.3	89.2	91.5	90.4	87.3	84.2	89.4	89.2	93.4	95.8	89.8
		92.1	91.6	93.1	91.8	87.6	84.3	89.6	90.4	88.7	92.1	90.1
		90.3	91.0	91.8	91.7	85.9	82.9	90.2	88.8	87.9	91.3	89.2
		88.7	89.6	89.4	85.3	83.6	80.6	86.9	83.5	81.6	88.5	85.8
		84.0	84.5	85.7	81.6	82.0	74.9	83.0	84.0	76.6	80.7	81.7
	



4. Experiment and Discussion
4.1. Experiment Setup
To evaluate the effectiveness of the proposed method for 3D shape reconstruction, we conduct a comparative experiment on a public dataset. To train our neural network, we use the dataset presented in [11], which mainly consists of three different types of 3D models, i.e., human/humanoid, airplanes, and chairs. Among them, human/humanoid involves human models, aliens, and virtual cartoon characters, which come from The Models Resource dataset [13], while airplane and chair models are mainly from 3D ShapeNet [14], which has a large variety in shape geometry. There are 120 sketch images in total in the test dataset. Among them, 90 are synthetic sketches, which are generated from test images with line painting techniques, while the rest 30 sketch images are drawn by two professional artists. They were asked to draw 10 sketch images for each category. The sketch images were scaled to a size of . We train our model for 50 epochs with an SGD optimizer. The size of minibatch, initial learning rate, and momentum was set to 5, 0.01, and 0.9, respectively. The weight parameters of cross-entropy loss are 0 for background and 0.1 for others, which can avoid the interference of the background. The experiment was conducted on a PC equipped with an Intel i7 CPU, 32 GB RAM, and GTX 2080ti GPU. For the weight parameters  and  in Equation (12), we formulate  and set  to 0.3 according to the parameter analysis described in Table 1.
Peer sketch-based 3D shape reconstruction methods selected for comparison include ShapeMVD [11], nearest retrieval, Tatarchenko et al. [15], U-net [16], volumetric decoder, and R2N2 [17], which are state-of-the-art models and widely used by existing studies for performance evaluation. For the nearest-neighbor baseline, we extract the representation of the input test sketches based on our encoder. This is used as a query representation to retrieve the training shape whose sketches have the nearest encoder representation based on the Euclidean distance. We additionally implemented a variant of Tatarchenko et al.’s decoder by adding U-net connections between the encoder and their decoder. The volumetric decoder consisted of five transpose 3D convolutions of stride 2 and kernel size . The number of filters starts with 512 and is divided by 2 at each layer. Leaky ReLU functions and batch normalization were used after each layer. We note that we did not use skip connections (U-net architecture) in the volumetric decoder because the size of the feature representations produced in the sketch image-based encoder is incompatible with the ones produced in the decoder.
4.2. Overall Reconstruction Performance Comparison against Peer Methods
Following the common practice, we also compare the similarity between the reconstructed 3D models and input sketches using the following five distance metrics: Chamfer distance, Hausdorff distance, surface normal distance, depth map error, and volumetric Jaccard distance. The comparison results are illustrated in Tables 2–5, where Tables 2 and 3 are the results of synthetic sketches while Tables 4 and 5 are those of human drawing sketches. Bold values in the tables indicate the best results among all methods. From Tables 2 and 3, we can see that the proposed method achieves smaller distances than peer ones in terms of the five evaluation metrics on both man-made objects and character models. Specifically, compared to the state-of-the-art model ShapeMVD, our model achieves a performance gain in terms of Hausdorff distance, Chamfer distance, normal distance, depth map error, and volumetric distance by 17.4%, 26.7%, 13.7%, 50.0%, and 19.8% on the man-made objects dataset and by 27.0%, 33.3%, 13.5%, 22.2%, and 20.8% on the character model dataset, respectively. Overall, the proposed method improves the performance in terms of the five distance metrics by an average of 25.5% and 23.4% on the man-made objects and character models, respectively, which demonstrates that our method can generate more accurate 3D models. We can find that ShapeMVD performs better than conventional methods like U-net. However, its performance gain is just marginally higher. Our model outperforms all of these methods, and performance gain is significant. The superiority of the proposed method can also be reflected on the human drawing sketch dataset, as shown in Tables 4 and 5. Likewise, the distance reduction compared with other methods is also prominent. For example, compared to ShapeMVD, the proposed method reduces the Chamfer distance by 33.3% and 38.1% on the man-made object objects and character models, respectively. Overall, our method achieves a performance gain on these two human drawing sketch datasets by an average of 31.8% and 29.5%, respectively. These experimental results demonstrate the effectiveness of the proposed method in reconstructing 3D shape from single-view sketches.
Table 2: Man-made objects (synthetic).
	

		Ours	ShapeMVD	Nearest retrieval	Tatarchenko et al. [15]	[15]+U-net	Volumetric decoder	R2N2
	

	Hausdorff distance	0.076	0.092	0.165	0.142	0.121	0.113	0.144
	Chamfer distance	0.011	0.015	0.025	0.022	0.017	0.021	0.026
	Normal distance	26.45	30.66	42.57	35.58	32.32	49.40	48.78
	Depth map error	0.013	0.026	0.049	0.039	0.030	0.038	0.045
	Volumetric distance	0.276	0.344	0.501	0.442	0.374	0.432	0.512
	



Table 3: Character models (synthetic).
	

		Ours	ShapeMVD	Nearest retrieval	Tatarchenko et al. [15]	[15]+U-net	Volumetric decoder	R2N2
	

	Hausdorff distance	0.065	0.089	0.200	0.119	0.092	0.152	0.148
	Chamfer distance	0.010	0.015	0.036	0.025	0.016	0.026	0.032
	Normal distance	26.47	30.61	44.93	34.98	31.00	53.84	53.13
	Depth map error	0.014	0.018	0.040	0.030	0.019	0.031	0.036
	Volumetric distance	0.248	0.313	0.541	0.428	0.329	0.437	0.493
	



Table 4: Man-made objects (human drawing).
	

		Ours	ShapeMVD	Nearest retrieval	Tatarchenko et al. [15]	[15]+U-net	Volumetric decoder	R2N2
	

	Hausdorff distance	0.094	0.116	0.176	0.153	0.153	0.130	0.149
	Chamfer distance	0.011	0.017	0.031	0.024	0.025	0.022	0.028
	Normal distance	21.058	27.04	40.96	32.40	30.45	48.32	48.12
	Depth map error	0.011	0.021	0.042	0.033	0.032	0.032	0.042
	Volumetric distance	0.202	0.311	0.544	0.405	0.403	0.405	0.500
	



Table 5: Character models (human drawing).
	

		Ours	ShapeMVD	Nearest retrieval	Tatarchenko et al. [15]	[15]+U-net	Volumetric decoder	R2N2
	

	Hausdorff distance	0.102	0.117	0.188	0.139	0.136	0.178	0.168
	Chamfer distance	0.013	0.021	0.036	0.025	0.024	0.032	0.036
	Normal distance	28.22	33.44	43.81	36.11	34.74	54.91	54.29
	Depth map error	0.012	0.026	0.040	0.031	0.027	0.037	0.040
	Volumetric distance	0.217	0.298	0.458	0.342	0.307	0.420	0.436
	



4.3. Evaluation of the Effectiveness of the Proposed Sketch Segmentation Method
To further verify the effectiveness of the proposed sketch segmentation method, we conducted an experiment on a public sketch segmentation database, i.e., SketchSeg. The two evaluation metrics used in this paper are pixel-based accuracy (P-metric) and component-based accuracy (C-metric), which is first proposed by Huang et al. [18] and widely used by peer work. Among them, P-metric is targeted for the evaluation of a whole sketch image, i.e., the percentage of the pixels of components that are correctly segmented to the pixels of the entire sketch, while C-metric is defined as the percentage of the number of components that are correctly segmented to the total number of components of the sketch. We treat a component as a correctly segmented one if more than 75% of its pixels are correctly predicted. The comparison between multisource information fusion (MIFNet) and peer methods is shown in Table 6. We can see from the table that the performance of MIFNet is superior to other methods. More specifically, it achieves an accuracy of 90.1% on average, while those of U-Net, LinkNet, FCN, and PointNet are 77.3%, 79.9%, 81.7%, and 80.2%, respectively. In other words, the proposed method improves the performance by 12.8%, 10.2%, 8.4%, and 9.9%, respectively. Besides, the component-based accuracy of peer methods is 68.4%, 75.0%, 77.1%, and 67.3%, respectively. MIFNet outperforms the FCN by 9.1% in terms of segmentation accuracy. Particularly, we can observe that the performance improvement on an airplane, chair, human, gun, and desk is more significant than others. This is because the average number of pixels of these five categories is higher than other ones. As for C-metric, the proposed method also shows an advantage over peer ones. As can be seen from Table 7, MIFNet improves the accuracy by 9.1%, compared to FCN, which demonstrates that MIFNet is more effective in capturing the structural information of sketch components.
Table 6: Segmentation performance of MIFNet against state-of-the-art methods with the P-metric.
	

	Method	U-net	LinkNet	FCN	PointNet	MIFNet
	

	Airplane	68.9	78.0	78.2	81.0	92.9
	Bicycle	68.1	65.3	71.4	78.0	93.5
	Candelabra	89.3	88.3	90.8	81.1	93.0
	Chair	84.0	89.1	86.9	81.0	88.1
	Four legs	74.1	76.7	80.3	75.5	89.3
	Human	71.9	74.5	75.6	69.2	85.5
	Lamp	92.2	91.2	92.8	86.2	87.8
	Rifle	54.8	59.9	65.2	83.2	89.7
	Table	79.6	82.5	81.4	82.0	88.6
	Vase	89.9	93.8	94.4	84.8	92.8
	Average	77.3	79.9	81.7	80.2	90.1
	



Table 7: Segmentation performance of MIFNet against state-of-the-art methods with the C-metric.
	

	Method	U-net	LinkNet	FCN	PointNet	MIFNet
	

	Airplane	52.6	67.7	66.5	67.3	86.5
	Bicycle	49.7	55.7	59.2	50.9	85.5
	Candelabra	90.3	89.0	94.5	67.9	94.8
	Chair	81.9	89.2	84.8	77.6	85.1
	Four legs	54.5	67.2	73.5	60.9	84.2
	Human	62.6	67.9	72.1	56.6	81.2
	Lamp	92.4	92.4	92.5	86.1	87.0
	Rifle	38.9	44.5	54.7	59.7	82.1
	Table	70.1	80.3	75.3	67.5	82.6
	Vase	90.7	96.6	98.1	78.9	93.1
	Average	68.4	75.0	77.1	67.3	86.2
	



4.4. The Selection of Loss Function Weight
Table 1 illustrates the comparison of different loss function weight  where  is the weight of pixel-based network while 1- represents that of the point cloud-based network. We can see from the table that the segmentation results are less satisfactory when  is large, and the performance gets better gradually with the decrease of , which demonstrates that the point cloud-based network plays a more important role than the pixel-based one. Particularly, when , the performance of the pixel-based network reaches its peak and achieves an accuracy of 90.1%. In light of this, we thus train the model with this setting in our experiment.
5. Conclusion
In this paper, we have introduced a novel 3D shape reconstruction method from a single-view sketch image using a deep neural network. Our model is general and can be easily extended to other applications, such as biomedical and intelligent computing [19, 20]. The proposed method first generates a series of sketch images from different viewpoints by analysing the semantic information of the input sketch image. Then, the obtained sketch images are fed into a deep neural network to reconstruct the 3D shapes. Compared with multiview-based approaches, the proposed method only takes a single sketch image as input, which can significantly reduce time used for drawing sketches and remarkably improve the reconstruction efficiency. Besides, using the input sketch image as visual clues to generate multiview sketch images is helpful to reconstruct 3D shapes more accurately, which is superior to conventional single sketch image-based 3D shape reconstruction methods. Extensive experiments on a public 3D shape reconstruction dataset have demonstrated the efficacy of the proposed model.
One of the most challenging issues related to sketch-based 3D shape reconstruction is that the painting skills and styles of different users vary greatly, which makes it difficult to develop a versatile model to successfully extract meaningful features and infer semantic information from all kinds of sketches. A limitation of the proposed method is that it may fail to accurately reconstruct a high-quality 3D model if the input sketch is painted at a very abstract level or can easily cause ambiguity. Therefore, more powerful deep neural networks and machine learning techniques such as [21, 22] will be a promising way to address the challenges and further improve the reconstruction performance. Besides, the proposed method can be extended to sketch-based dynamic 3D model creation, which is used to be a time-consuming and labour-intensive task in the field of cartoon animation.
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