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The rapidly increasing number of smart devices deployed in the Industrial Internet of Things (IIoT) environment has been
witnessed. To improve communication efficiency, edge computing-enabled Industrial Internet of Things (E-IIoT) has gained
attention recently. Nevertheless, E-IIoT still cannot conquer the rapidly increasing communication demands when hundreds of
millions of IIoT devices are connected at the same time. Considering the future 6G environment where smart network-in-box
(NIB) nodes are everywhere (e.g., deployed in vehicles, buses, backpacks, etc.), we propose a crowdsourcing-based recruitment
framework, leveraging the power of the crowd to provide extra communication resources and enhance the communication
capabilities. We creatively treat NIB nodes as edge layer devices, and CrowdBox is devised using a Stackelberg game where the
E-IIoT system is the leader, and the NIB nodes are the followers. CrowdBox can calculate the optimal reward to reach the
unique Stackelberg equilibrium where the utility of E-IIoT can be maximized while none of the NIB nodes can improve its
utility by deviating from its strategy. Finally, we evaluate the performance of CrowdBox with extensive simulations with
various settings, and it shows that CrowdBox outperforms the compared algorithms in improving system utility and attracting
more NIB nodes.

1. Introduction

The Industrial Internet of Things (IIoT), an important part of
IoT [1], brings Internet access to all industrial assets includ-
ing industrial devices and control systems [2]. As one of the
basic pillars of digital manufacturing, IIoT changes the tradi-
tional manufacturing lines and systems significantly [3].
With the flexibility and scalability brought by wireless links
[4], it paves the way for efficient and sustainable production
in the era of Industry 4.0.

However, the emergence of IIoT applications results in a
tenfold increase in the amount of data generated by indus-
trial devices [5]. It would be a disaster for the network if that
size of data which is produced at the edge of the network is
transferred to the cloud directly. Not only the data volume
but also traditional cloud computing is unable to deal with
the various requirements such as data privacy and response

time limitation. So, it will be more efficient to process the
data at the edge of the network.

Edge computing (EC) is a new architecture [6–8]
extending the cloud paradigm to the network edges, and it
has attracted attention from both academia and industry
recently since a large number of critical problems in IIoT
(e.g., resource limitation [9], latency [10], and privacy [11])
could be solved with it easily. The combination of EC and
IIoT, the so-called edge computing-enabled Industrial
Internet of Things (E-IIoT), enables the design of high-
performance and adaptive systems for IIoT [12]. Therefore,
many edge computing-enabled new IIoT architectures and
platforms have been proposed and devised to improve the
service efficiency [13–15] from different aspects in the last
few years.

With the rapid development of wireless communication
technologies (e.g., the sixth-generation communication
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technology) and new urban infrastructures (e.g., personal
communication devices, edge servers, and smart vehicles),
many new smart devices will emerge. Chen et al. [16] believe
that 6G will merge computation and sensing with communi-
cations, so the functions of new smart devices will be more
complex. In addition, the strong mobility of edge nodes
has become the trend of development [17].

Network-in-box [18, 19] is a burgeoning technology to
enhance network reliability, and its application significance
is becoming more and more obvious with the development
of edge computing and sixth-generation communication
techniques. The design of NIB is focused on portability, so
the NIB can move according to the requirement of the whole
network. An NIB node can work alone as well as cooperate
with other network elements. Some typical use cases of
NIB including after-disaster scenario, connectivity provi-
sioning in challenging contexts, and tactical networks are
investigated in [20]. With the NIB node as the edge server,
a more reliable and more flexible networking environment
can be provided for the E-IIoT system.

1.1. Motivation. Crowdsourcing has been proven to be effec-
tive in task delivering applications including Amazon
Mechanical Turks (AMT) [21–23]. The requirements for
communication resources of devices can be regarded as a
task, and NIB is responsible for fulfilling the task. In this
paper, we propose to utilize the power of crowdsourced
NIB nodes to improve communication capabilities at the
edge layer. Although NIB brings great flexibility to the E-
IIoT system, it is still an urgent problem to motivate NIB
nodes to provide additional communication resources for
devices. In order to better understand the problem, we build
a Stackelberg game between the E-IIoT system and NIB
nodes. By studying the Nash equilibrium, we can find the
best response strategy of an NIB node, and the incentive
problem could be solved at the same time.

1.2. Contributions. In this paper, we establish a
crowdsourcing-based network-in-box recruitment platform.
As far as we know, our work is the first to conceive a
crowdsourcing-based recruitment platform in the E-IIoT
environment. The main contributions of this paper are sum-
marized as follows:

(i) We present an analytical model for the recruitment
of NIB nodes where they can improve the system
communication capabilities by crowdsourcing

(ii) For the recruitment problem, the utility function for
the system and NIB nodes are formulated; then, the
whole process is described as a Stackelberg game
with two stages

(iii) The Nash equilibrium is defined, and CrowdBox is
proposed to calculate the Nash equilibrium point.
Finally, the best strategy of NIB nodes and E-IIot
are both found

(iv) To prove the effectiveness and feasibility of Crowd-
Box, we both put forward the theoretical explana-

tion and conduct extensive simulations. It turns
out that CrowdBox achieves better performance
than other benchmarks

1.3. Organization of the Paper. The rest of this paper is orga-
nized as follows. Section 2 discusses the related work. We
introduce the system model of our network and the formu-
lated problem in Section 3. Section 4 presents the definition
of CrowdBox and details of the whole game process. Evalu-
ation settings and numerical results are presented in Section
5. Finally, Section 6 concludes the paper.

2. Related Work

By leveraging the concept of crowdsourcing, many IIoT
problems have been solved. The author in [24] emphasizes
the impressive amounts of data by introducing crowdsour-
cing to IIoT which provides the opportunity to perform
more advanced processes and applications. Also, a mobile
crowdsensing and mobile crowdsourcing-based IIoT archi-
tecture is proposed in their work. In the field of the smart
city which is an important application scenario of IIoT,
Kong et al. [25] utilize crowdsourcing to collect and com-
pute decentralized ubiquitous sensing data. The objective is
to solve major urbanization problems in smart cities. As
crowdsourcing is widely used for data collection and com-
puting, privacy protection in this process has also become
a direction of crowdsourcing research. A personalized pri-
vacy protection framework is proposed for mobile crowd-
sensing in [26]. Theoretical analysis and simulations show
that the framework can make a balance between the quality
of crowdsensing services and privacy. When the crowdsour-
cing IIoT data is stored in the cloud, Karati et al. [27] pro-
pose a new identity-based signcryption schema to meet the
requirement of authenticity and confidentiality.

From the perspective of IIoT devices, resources from the
edge servers are shared to enhance the ability of the whole
network. So, our work is also somewhat similar to resource
allocation in the E-IIoT system, and we also summarize it
briefly. In [28], mobile edge computation offloading is con-
sidered on different multiple access technologies. Resource
allocation is formulated as an optimization problem with
mobile energy consumption as the constraint. Sun etal:
[29] discuss the joint optimization problem of network eco-
nomics and resource allocation in mobile edge computing.
They propose two double auction schemes which both use
dynamic pricing to establish connections of IIoT devices
and edge servers. To improve the cognitive ability of edge
intelligent IIoT, an ML-enabled framework is proposed in
[30]. Via this framework, IIoT is able to make reasonable
decisions at the network edge. Furthermore, deep reinforce-
ment learning is invoked and shows good performance in an
observable IIoT environment.

To realize the objective of optimization, game-based
approaches have been applied in communication networks
[31]. The Stackelberg game is a typical one to design interac-
tive schemes in wireless networks. When the problem comes
to resource allocation, Zhang etal: [32] formulate a Stackel-
berg game to analyze the problem and apply a matching
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game to achieve satisfying performance. Yao et al. [33]
invoke the Stackelberg game to model the interaction
between the resource provider and miners. In [34], Jie
et al. transfer the resource allocation problem to a double-
stage Stackelberg game to maximize resource utilization.
The Stackelberg game is also used in [35] to offload
computation in IIoT, and the existence and uniqueness of
equilibrium are analyzed. To sum up, the insight of crowd-
sourcing can help us formulate the problem as a recruitment
problem. After that, the Stackelberg game can be utilized to
motivate the NIB nodes to share their resources and make
sure the IIot devices get the resources they need.

3. System Model and Problem Formulation

This section first introduces the system model of the edge
computing-enabled Industrial Internet of Things (E-IIoT)
system, then formulates the crowdsourcing-based network-
inbox recruitment problem as a Stackelberg game.

3.1. System Model. Figure 1 is utilized to aid our description
of the E-IIoT system. Similar to the other edge computing
systems, E-IIoT mainly includes three layers—the cloud
layer, the edge layer, and the device layer. To fulfill industrial
missions from factories, E-IIoT devices have to upload their
sensing data to edge/cloud nodes, and the following instruc-
tions will be directed to E-IIoT devices after the uploaded
sensing data are processed by edge and cloud servers.

However, the existing communication resource at the
edge layer may not be enough to satisfy the E-IIoT system
when some edge nodes are broken down or sudden commu-
nication demands (e.g., factory adds many IIoT at the same
time suddenly) are required. To overcome these difficulties,
we propose to recruit crowdsourcing network-in-box nodes
(e.g., box in buses, vehicles, packages, etc.) as temporary
edge nodes to expand the network and offload sensing data
from IIoT devices to servers and meet the communication
needs finally.

Here, we treat the communication resource collection of
the NIB nodes for E-IIoT as a task. To be specific, different
from the general NIB deployment system where NIB nodes
contribute their communication resource passively, the
enterprise (i.e., resource consumer) could buy communica-
tion resources from participating NIB nodes with the total
reward within a specific time period (e.g., one hour). Fur-
ther, the NIB nodes could also select their participating
levels (i.e., how long to contribute their communication
resource) when using CrowdBox during daily life. The NIB
nodes will select to participate only when the received
reward could cover its cost in both data communication
and data processing. Eventually, the NIB nodes could obtain
the corresponding reward based on the participating levels
of the total reward of the system and all NIB nodes.

In a word, crowdsourcing NIB nodes will have some
costs when they provide communication resources to the
system, and E-IIoT will offer some corresponding rewards
to stimulate crowdsourcing E-IIoT nodes who perform the
communication task and provide the communication
resource. Actually, this is a gaming process, and we will for-

mulate it with the Stackelberg gaming theory in the next
subsection.

3.2. Problem Formulation. The E-IIoT system has one com-
munication task (i.e., provide communication resources as
more as possible) for all NIB nodes at the edge layer. To
recruit NIB nodes fulfilling the communication task, the E-
IIoT system announces a total reward R, where R > 0.
According to the reward, each participant will choose their
own participation level. To be specific, the participation level
(strategy) of NIB node i is tið≥0Þ which denotes the time
duration it can provide the communication service. It is
assumed that all NIB nodes are available when they choose
to participate in the task, and they contribute equally at
any time during the task period. The unit cost of NIB node
i is denoted as ci, and we can compute the utility of NIB
node i as

ui =
ti

∑j∈U t j
R − citi, ð1Þ

where ti/∑j∈U t jR is the reward that NIB node i will get after
participating in the task and citi is its total cost for complet-
ing the task. It should be noticed that a rational NIB node
will not cooperate with a negative utility, so NIB node i will
do nothing (i.e., ti = 0) when ti/∑j∈U t jR < citi. Thus, the
equation should be rewritten as

ui =

ti
∑ j∈U t j

R − citi,
R

∑j∈U t j
> ci,

0, R
∑j∈U t j

≤ ci:

8>>><
>>>:

ð2Þ

According to equation (2), it is not hard to find that NIB
nodes would like to choose the same plan (strategy) to max-
imize their utility when they have the same unit cost. Here,
we define the unit cost set S = fs1, s2,⋯, sXg, and we have
ci ∈ S. All NIB nodes with the same unit cost will choose
the same strategy if they want to maximize their utilities.

Cloud layer

Edge layer

Device layer

IIOT device

Edge gateway

NIB

Factory Cloud server
Tasks

Results

Figure 1: The E-IIoT architecture.
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Therefore, the expected participation time duration for a
specific unit cost sx is denoted by t̂xðx ∈ XÞ, and we also have
the expected participation time duration set T̂ = ft̂1, t̂2,⋯,
t̂Xg correspondingly. Besides, the number of NIB nodes
whose unit costs are the same is defined as nxðx ∈ XÞ, and
the set of the number of NIB nodes is N = fn1, n2,⋯, nXg.
Based on the above definitions, the utility function of E-
IIoT can be computed as follows:

u0 = f T̂ ,N
� �

− R, ð3Þ

where f ðT̂ ,NÞ presents the valuation function of all NIB
nodes’ participation time of the E-IIoT system.

The goal of E-IIoT is to choose the optimal value of
reward R to maximize equation (3). It is assumed that the
utility function of E-IIoT is a strictly concave function in
variables T for any fixed N and increasing monotonically
for every ti of NIB node i, and this is a general assumption
in many other related papers [36]. Each NIB node i ∈U
decides its strategy (i.e., ti) to maximize equation (2) with
a given reward value R.

In the next section, we will model the whole NIB node
recruitment process as a Stackelberg game with two stages
and depict how to determine the optimal reward value R∗

to maximize the utility of the E-IIoT system. Besides,
detailed explanations of employed notations in this paper
are concluded in Table 1.

4. CrowdBox

The crowdsourcing-based network-in-box recruitment for
edge computing-enabled Industrial Internet of Things pro-
cess is modeled as a Stackelberg game (CrowdBox), and it
has two stages. In the first stage, the E-IIoT system posts
its reward R for the communication task and recruit NIB
nodes to participate. Accordingly, the NIB node chooses a
response strategy (i.e., service time duration it could pro-
vide) to maximize its own utility based on the given reward
R in the second stage. Essentially, the E-IIoT system is the
leader and the NIB nodes are the followers.

The Nash equilibrium is a stable status and very impor-
tant for a game since no players can obtain extra profits by
changing their strategy. For the NIB node, we first define
the Nash equilibrium and its best response strategy. We
prove that NIB nodes have a unique Nash equilibrium for
any given reward R. Based on the utility function of the
NIB node, we analyze the best response strategy of NIB
nodes and show how to compute it. For the E-IIoT system,
we also define its Nash equilibrium and the corresponding
best response strategy and propose how to calculate the opti-
mal reward R∗ (i.e., the best response strategy for the E-IIoT
system) to maximize the E-IIoT system’s utility.

In sum, we show that the Stackelberg game we proposed
has a unique Stackelberg equilibrium and how to calculate
the optimal reward value to maximize E-IIoT’s utility in this
section.

4.1. NIB Node Nash Equilibrium. To study the NIB node
strategy, we first define the Nash equilibrium of NIB node
i as below.

Definition 2 (Nash equilibrium of NIB nodes). A strategy set
ðtne1 , tne2 ,⋯, tnen Þ is a Nash equilibrium, when any NIB node i
meets equation (18):

u tnei , tne−ið Þ ≥ u ti, tne−ið Þ: ð4Þ

We also give the definition of the best response strategy
for NIB node i as the following.

Definition 3 (best response strategy of NIB nodes). Strategy
ti for NIB node i, denoted by Bi, is the best response strategy
if it maximizes uðti, t−iÞ over all ti ≥ 0.

Given a reward R from the E-IIoT system, NIB node i
would like to choose the best response strategy to maximize
its utility (i.e., equation (2)). An NIB node would like to play
its best response strategy in Nash equilibrium.

To study the best response strategy of NIB node i, we
compute the derivatives and second order of utility function
ui with respect to ti as

∂ui
∂ti

= R
∑j∈U t j

−
tiR

∑j∈U t j
� �2 − ci, ð5Þ

Table 1: Major notations employed in this paper.

Notation Explanation

R Reward of the E-IIoT system

R∗ Optimal reward value

Rothers Feasible reward values

U Crowdsourcing NIB node set

U−i NIB nodes except i

ui Utility function of NIB node i

u0 Utility function of the E-IIoT system

n Number of crowdsourcing NIB nodes

t Strategy profile of all users

t−i Strategy profile of all users except NIB node i

ti Participation level (strategy) of NIB node i

ci Unit cost of NIB node i

S Unit cost level set

X Number of unit cost levels

sx xth unit cost level

T̂ Expected participation time duration set

t̂s Expected participation time duration for sx
N Set of the NIB node number at different unit cost levels

nx Number of NIB nodes at the same unit cost level
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∂2ui
∂t2i

= −
2Rti

∑j∈U t j
� �3 : ð6Þ

It is very obvious that the second-order derivative ∂2ui/
∂t2i ≤ 0, so the utility function of NIB node i is a strictly con-
cave function. By setting the first-order derivative ∂ui/∂ti = 0,
we have

R
∑j∈U t j

−
tiR

∑j∈U t j
� �2 − ci = 0: ð7Þ

Sorting out equation (7), we can obtain

ti =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑j∈U−it j

� �
R

ci

vuut
− 〠

j∈U−i

t j: ð8Þ

Obviously, the best response strategy of node i can be sum-
marized as

Bi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑j∈U−i

t j
� �

R

ci

s
− 〠

j∈U−i

t j, R ≥ ci × 〠
j∈U−i

t j,

0, R < ci × 〠
j∈U−i

t j:

8>>>><
>>>>:

ð9Þ

The above analysis shows that any NIB node ið0 < i < nÞ
has its best response strategy Bi for any given reward R > 0
and strategy profile t−i of other NIB nodes. Next, we define
the NIB node set ~U = fi ∈U ∣ ti > 0g, and it is easy to get that
∑j∈~U t j =∑j∈U t j. Therefore, we can get

R
∑j∈~U t j

−
tiR

∑j∈~U t j
� �2 − ci = 0: ð10Þ

Adding up equation (10) over all NIB nodes in ~U , we have

−R + ~U
�� �� × R − 〠

j∈~U

kj

0
@

1
A × 〠

j∈~U

t j

0
@

1
A = 0: ð11Þ

Therefore, we obtain

〠
j∈~U

t j =
~U
�� �� − 1
� �

R

∑j∈~U kj
: ð12Þ

To calculate ti for NIB node i, equation (10) can also be
rewritten as

ti = 〠
j∈~U

t j −
ki
R

× 〠
j∈~U

t j

0
@

1
A

2

: ð13Þ

Substituting equation (12) into equation (13), we can cal-
culate the best response strategy for NIB node i as

ti =
~U
�� �� − 1
� �

R

∑j∈~U kj
− ki × R ×

~U
�� �� − 1
� �
∑j∈~U kj

 !2

: ð14Þ

In addition, the unit cost set is denoted as ~C = f~c1,~c2,⋯
,~clg, where ci ∈ ~C for any NIB node i. The distribution of ~C
usually could be learned from the historical data by the E-
IIoT system, and it is also a realistic assumption adopted in
the literature [37]. According to equation (14), we can com-
pute the Nash equilibrium of NIB nodes.

So far, we have known how to calculate the Nash equilib-
rium for any NIB node i with any given reward value R in
the E-IIoT system. In the next subsection, we will show
how to choose the optimal reward value R∗ to maximize
the E-IIoT system’s utility.

4.2. Maximizing Utility of E-IIoT. Obviously, the E-IIoT sys-
tem, which is the leader of the Stackelberg game, can know
the existing NIB node Nash equilibrium based on the above
analysis. To be specific, E-IIoT can select the optimal
reward value R to maximize its utility based on the follow-
ing equations:

u0 =
f T̂ ,N
� �
R − 1

 !
R, ð15Þ

where

T̂ = tne1 , tne2 ,⋯, tneXf g,
N = n1, n2,⋯, nXf g:

ð16Þ

For each tnei ∈ T̂ , we have

tnei
R

=
~U
�� �� − 1
� �
∑j∈~U kj

− ki ×
~U
�� �� − 1
� �
∑j∈~U kj

 !2

, ð17Þ

where u0 is a strictly concave function, T̂ could be obtained
by Algorithm 1, and N could be calculated according to the
previous statistics by analyzing the historical data.

Next, we define the Nash equilibrium of the E-IIoT sys-
tem as below.

Definition 4 (Nash equilibrium of the E-IIoT system). The
chosen reward value R is a Nash equilibrium of the E-IIoT
system if it can make the E-IIoT system reach the maximum
utility.

Besides, the best response strategy of the E-IIoT system
is defined as below.

Definition 5 (best response strategy of the E-IIoT system).
The optimal reward value R∗ is the best response strategy
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with the given NIB node Nash equilibrium strategy set ðtne1
, tne2 ,⋯, tnen Þ, and R∗ meets

u0 R∗ð Þ ≥ u0 Rothersð Þ: ð18Þ

In summary, it can be concluded that the Nash equilib-
rium exists in this Stackelberg game, and the optimal reward
R∗ can maximize the utility function u0 in equation (15)
over R ∈ ½0,+∞Þ. To calculate R∗, many efficient methods
could be leveraged, such as Newton’s method [38].

5. Performance Evaluation

We have studied CrowdBox theoretically, and this section
evaluates the performances of CrowdBox in realistic prob-
lem settings. In the following, we mainly elaborate on the
simulation settings, compared algorithms, performance met-
rics, and results separately.

5.1. Simulation Settings. We assume that the E-IIoT system
has been widely deployed in the industry, and a large
amount of IIoT devices require the communication
resources to communicate with the edge and cloud servers.
To satisfy the demands, a set of NIB nodes could be
employed at the edge layer to improve the communication
capacity of the system with a given reward value R.

The default values of simulation settings are defined as
the following. In the E-IIoT system, the costs of NIB nodes
are distributed uniformly over S = f1, 2, 3,⋯, 10g, and the
number of NIB nodes is equal to n = 1000. We set the f ðT̂ ,
NÞ = λ log ð1 +∑cj∈S ðnj log ð1 + t jÞÞÞ, where nj ∈N and t j ∈
T̂, since j log ð1 + t jÞ represents E-IIoT’s diminishing return
on the work of an NIB node with unit cost cj, and log ð1 +
∑cj∈S ðnj log ð1 + t jÞÞÞ denotes E-IIoT’s diminishing return

on the number of participating NIB nodes. Unless otherwise
specified, we use the default values to conduct the following
simulations.

5.2. Compared Algorithms (Strategies). In order to evaluate
the performances of CrowdBox, we adopted two compared

strategies (benchmarks)—random and best effort strategy.
Both two strategies are general game theory-based methods
adopted in many related fields, and the basic ideas are as
follows.

5.2.1. Best Effort Strategy. NIB node i is always trying its best
to provide the communication resource (i.e., ti = tiðmaxÞ,
where tiðmaxÞ could be computed by setting ui = 0 for NIB
node i) only if it can obtain the profit (i.e., the NIB node util-
ity is larger than zero) from the E-IIoT system.

5.2.2. Random Strategy. The strategy of NIB node i is
selected by itself based on its own preferences at random.
For each NIB node i, we define a maximum cooperation
time duration tiðmaxÞ, and NIB node i can choose the random
value in ½0, tiðmaxÞ�.

5.3. Performance Metrics and Results. Four major metrics are
leveraged to measure the effectiveness of our proposed algo-
rithm and benchmarks, including the system utility, total
participation level, average participation level, and the num-
ber of participating NIB nodes during the whole Stackelberg
game process.

The system utility uo has been introduced in Section 3,
and it is the main metric to measure the algorithm perfor-
mance; the total participation level is defined as the sum of
NIB node strategy ti; the average participation level can be
computed by the total participation level divided by the
number of participating NIB nodes; the number of partici-
pating NIB nodes is the number of nodes whose ti > 0 dur-
ing the game process.

By changing the value of NIB nodes and the number of
NIB nodes’ maximum cost for the system, we show the per-
formances of CrowdBox and the other two benchmarks in
the following.

5.3.1. The Number of NIB Nodes. Here, we verify the effec-
tiveness of CrowdBox with different numbers of NIB nodes.
In particular, the number of NIB nodes is changed from 100
to 1000 with the increment of 100 nodes, and the results are
depicted in Figure 2.

Input: E-IIoT Reward R, NIB node set U and ~U .
Output: Nash equilibrium strategy set for all NIB nodes tne = ftne1 , tne2 ,⋯, tnen g
1: tne ⟵Φ;
2: for i⟵ 1 to n do

3: ttmp ⟵ ðj~U j − 1ÞR/∑j∈~Ukj − ki × R × ððj~Uj − 1Þ/∑j∈~UkiÞ
2
;

4: if ttmp > 0 then
5: tnei ⟵ ttmp;
6: else
7: tnei ⟵ 0;
8: end if
9: tne ⟵ tne:addðtnei Þ;
10: end for
11: return tne;

Algorithm 1: Computing the Nash equilibrium of all NIB nodes.
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To be specific, Figure 2(a) shows that CrowdBox has the
highest system utility contrasting with the other two algo-
rithms, and this is our key goal to design CrowdBox which
chooses the best response strategy to maximize the system
utility. As it is expected, the total participation level of the
best effort strategy is the highest as shown in Figure 2(b).
The main reason here is that all NIB nodes try their best
to do the task, but this is not a Nash equilibrium status in
practice. Besides, CrowdBox is better than random strategy
in the total participation level, and it is more obvious with
the increase of the number of NIB nodes.

In terms of the average participation level depicted in
Figure 2(c), both CrowdBox and best effort strategy reach a
stable state. In contrast, the average participation level of
random strategy varies as the number of NIB nodes
increases, and this is mainly because the NIB nodes ran-
domly choose how to cooperate (e.g., whether participate
or not and how to participate). Similar to the result of system
utility, the number of participating nodes for CrowdBox also
achieves the highest with the number of NIB nodes increas-
ing according to Figure 2(d). This is mainly because Crowd-
Box is a Nash equilibrium status and an NIB node will

cooperate only if it can obtain profits from it. In addition,
the random strategy is still the worst case among the three
algorithms, and we notice it results from that it is not a Nash
equilibrium status.

We can see that CrowdBox has the highest system utility
and the number of participating nodes compared with the
other two benchmarks. Although the participation level of
the best effort strategy is higher than CrowdBox and the ran-
dom strategy, it is difficult to reach since nodes are rational
in practice. Thus, CrowdBox outperforms the other two
strategies with the increase in the number of NIB nodes.

5.3.2. The Number of NIB Nodes’ Maximum Cost. Then, we
evaluate all three strategies with different numbers of NIB
nodes’ maximum cost. In particular, the maximum cost
value varies from 5 to 10 with the increment of 1, and
Figure 3 depicts the final results.

From the perspective of system utility (i.e., Figure 3(a)),
CrowdBox still outperforms the other two strategies (i.e.,
random and best response strategy) since it is the Stackel-
berg Nash equilibrium status. Furthermore, the best effort
strategy is better than the random strategy in system utility
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with different maximum costs, and this is mainly because
those NIB nodes with best strategy effort are always doing
their best to provide communication resources.

The participation levels (i.e., Figures 3(b) and 3(c)) of the
three strategies show similar trends where the best strategy is
the highest and the random strategy is the lowest in most
cases. The number of participating NIB nodes depicted in
Figure 3(d) concludes that CrowdBox also can stimulate
more nodes to participate in providing extra communication
resources under different maximum costs of NIB nodes, and
this is also the main goal of this paper. Specifically, Crowd-
Box can reach a Stackelberg Nash equilibrium where all par-
ticipating NIB nodes cannot obtain more extra profits if it
derives from the current strategy.

Similar to the last simulation, we can get that although
CrowdBox does not perform as well as the best effort strat-
egy in the participation level (i.e., total and average), Crowd-
Box also has the highest system utility and number of
participating nodes compared with the other two bench-
marks with varying maximum costs of NIB nodes.

To summarize, CrowdBox can achieve the highest sys-
tem utility and number of participating NIB nodes, the two

key metrics of this paper, contrasting with the other two
benchmarks under various settings based on the realistic
simulation scenario. CrowdBox also performs better than
random strategy in the other two metrics (i.e., total and aver-
age participation level), and the best effort strategy is not
practiced since NIB nodes are usually rational (selfish).

6. Conclusion

The edge computing-enabled Industrial Internet of Things
(E-IIoT) has aroused strong attentions recently since it cre-
ates a favorable communication environment to realize the
concept of smart industry under the 6G scenario. In this
paper, we propose CrowdBox, a crowdsourcing-based NIB
node recruitment algorithm, leveraging the Stackelberg
game theory, to improve the communication capacities with
the power of crowds. CrowdBox shows the Nash equilibrium
of the Stackelberg game and can choose the best response
strategy for both E-IIoT and NIB nodes. Finally, extensive
evaluations are conducted to verify the performance of
CrowdBox under different realistic simulation scenarios,
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and the result shows that CrowdBox outperforms the other
two strategies.

Data Availability
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