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This paper is aimed at studying underwater object detection and positioning. Objects are detected and positioned through an
underwater scene segmentation-based weak object detection algorithm and underwater positioning technology based on the
three-dimensional (3D) omnidirectional magnetic induction smart sensor. The proposed weak object detection involves a
predesigned U-shaped network- (U-Net-) architectured image segmentation network, which has been improved before
application. The key factor of underwater positioning technology based on 3D omnidirectional magnetic induction is the
magnetic induction intensity. The results show that the image-enhanced object detection method improves the accuracy of
Yellow Croaker, Goldfish, and Mandarin Fish by 3.2%, 1.5%, and 1.6%, respectively. In terms of sensor positioning technology,
under the positioning Signal-to-Noise Ratio (SNR) of 15 dB and 20 dB, the curve trends of actual distance and positioning
distance are consistent, while SNR = 10 dB, the two curves deviate greatly. The research conclusions read as follows: an
underwater scene segmentation-based weak object detection method is proposed for invalid underwater object samples from
poor labeling, which can effectively segment the background from underwater objects, remove the negative impact of invalid
samples, and improve the precision of weak object detection. The positioning model based on a 3D coil magnetic induction
sensor can obtain more accurate positioning coordinates. The effectiveness of 3D omnidirectional magnetic induction coil
underwater positioning technology is verified by simulation experiments.

1. Introduction

The continuous development in science and technology is
seeing higher intellectualized sensors that are gaining wider
applications [1]. Particularly, the combined application of
weak object detection [2], positioning technology, and smart
sensors is booming. Meanwhile, the expansion of the global
population is demanding more efficient detection and
exploitation approaches to marine resources. Once, marine
resource exploration, aquatic fishing, and underwater rescue
missions mainly rely on diving technology and professional
divers, which is costly, inefficient, and, worst of all, risky.
Given this situation, the research and application of under-
water weak object detection [3] and positioning technology
[4] based on intelligent sensors might have a cross-era sig-
nificance. In underwater missions, object detection and posi-
tioning [5] is the preliminary step, and relevant technologies
can be used to control and maintain subsequent machinery.

To date, the research on weak object detection algo-
rithms and positioning based on smart sensors [6] has made
further breakthroughs, but the strong object detection algo-
rithm relies on large-scale high-precision datasets for high
performance, which is extremely costly. Thus, the weak
object detection [7] algorithm has become a key research
direction to reduce high-precision data labeling costs; the
weak detection algorithm extracts unlabeled data from the
adversarial network, and then, the effective information is
used to detect the improvement of network performance.
Chen et al. [8] pointed out that the detection network could
detect objects accurately through training datasets with
fewer labeled images. Wei et al. [9] proposed a small and
weak object detection method, which outperformed other
methods in real-time performance. The experimental results
showed that under the worst weather night test conditions,
the expected object under various interference could be suc-
cessfully detected with the accuracy of 0.1 pixels, and the
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centroid accuracy of the static test could be better than 0.03
pixel. In recent years, positioning algorithms based on Wire-
less Sensor Networks (WSNs) are getting popular among
domestic and international researchers. Researchers have
put forward effective solutions for different positioning
scenes. For example, researchers propose the Extended Kal-
man Filter (EKF) method to optimize distance measurement
noise, which, however, is very slow and has a high computa-
tional cost. Currently, the object detection algorithm has
some shortcomings [10]. For example, the underwater image
quality is often affected by occlusion and image darkening,
among other factors, which makes it impossible to collect
data on a large scale and obtain high-precision detections.
Thereupon, this study proposes an underwater weak object
detection [11] and positioning method to solve the short-
comings in the current research.

First, according to the research background and current
situation, this paper puts forward the research on underwa-
ter weak object detection and positioning; then, an in-depth
study is conducted on the underwater object through the
Deep Learning (DL) object detection algorithm and the
underwater positioning technology for three-dimensional
(3D) omnidirectional magnetic induction. This paper inno-
vatively combines object detection and positioning technol-
ogy to study underwater objects, thereby contributing to
improving the accuracy of underwater object detection and
positioning.

2. Weak Object Detection and Positioning
Technological Model

2.1. DL Object Detection Algorithm

2.1.1. U-Shaped Network- (U-Net-) Based Underwater Scene
Segmentation. The U-Net image segmentation network is
employed for object detection in the underwater scene
[12], and the traditional U-Net model is improved.

Research and design of underwater scene segmentation
network model: the U-Net [13] is structured with layer hop-
ping as the intermediate module, and then, two symmetrical
paths are interconnected to each other. One path under this
structure is the contraction path, and the other is the expan-
sion path. The layer hopping connection is conducive to
high-level and low-level information fusion and can improve
segmentation precision. Figure 1 shows the structure and
content of U-Net [14].

The segmentation dataset generated by large numbers of
imperfect labeling detection data affects the segmentation
precision of the segmentation network, which is also the rea-
son why the traditional U-Net is inaccurate in underwater
image segmentation [15]. Here, the underwater scene seg-
mentation is studied based on the imperfectly labeled object
detection dataset. The proposed segmentation method can
well separate the background from underwater objects,
which is advantageous over the traditional U-Net network
[16] in the improvement of the loss function and the optimi-
zation of network structure, as explained below. (a) Network
structure design: here, the “encoder-decoder” network struc-
ture is adopted, which has two components: upsampling and

downsampling. The precision of segmented region position-
ing depends on the upsampling part, while the acquisition of
image context information depends on the downsampling
part. There are seven 3 × 3 convolution units in the upsam-
pling, each unit is composed of the Convolution, Leaky, Rec-
tified Linear Unit (ReLU), and Batch Normalization.
Downsampling contains six 3 × 3 deconvolution units, each
of which consists of Deconvolution, ReLu, and Batch Nor-
malization. The underwater scene segmentation convolution
kernel proposed here reduces the parameter space and
greatly optimizes the traditional U-Net network [17].
Figure 2 displays the structure of the underwater scene seg-
mentation network.

(b) Loss function optimization: because the traditional
loss function [18] cannot well segment the underwater scene
area, the loss function is optimized through

L y, y∗ð Þ = 1
N
〠
N

i=0
y∗i − yið Þ2 + λ

1
N
〠
N

i=0
y∗i y∗i − yið Þ: ð1Þ

In (1), y refers to the image output by the underwater
scene segmentation network, y∗ represents the segmentation
value generated by the imperfectly labeled underwater object
detection dataset, i denotes the subscript of the pixel in the
figure, and N stands for the total number of pixels.

The flow of the underwater scene segmentation algo-
rithm is as follows: first, the initial image label information
is read, and the segmentation network model is constructed;
then, the file is loaded, and the model loss is calculated and
updated; finally, whether there are other data are judged. If
so, the operation process is iterated. Figure 3 illustrates an
underwater scene segmentation algorithm.

Water scene segmentation: the underwater object detec-
tion dataset outputs the dataset of the scene segmentation
network. Figure 4 presents the value generation process of
underwater scene segmentation: Figure 4(a) is an input
image, Figure 4(b) indicates the detection data labeled as
the underwater object, and Figure 4(c) signifies the segmen-
tation network value. Obviously, the information labeling
box of the underwater object can generate the segmented
dataset of the object.
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Figure 1: U-Net structure diagram.
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Figure 5 fully manifests the results of the underwater
scene segmentation network: Figure 5(a) is the input image,
Figure 5(b) shows the segmentation result, and Figure 5(c)
demonstrates the segmentation result of the underwater
scene.

The above underwater scene segmentation using U-
shaped network (U-Net) architecture is the basis of weak
object detection. Thereupon, this section further elaborates
on the weak object detection method for scene
segmentation.

2.1.2. Weak Object Detection for Scene Segmentation. The
weak object detection adopts the Faster Region-based Con-
volutional Neural Network (R-CNN) architecture
(Figure 6). Two methods are adopted for weak object detec-
tion: one is the Mean Fill Method-based underwater weak
object detection [19], and the other is the Candidate Region
Optimization Method-based weak underwater object detec-
tion. Faster R-CNN [20] is a popular and widely used object
detection algorithm. The network structure of fast R-CNN
[21] consists of two parts: one is the Region Proposal Net-
work (RPN), and the other is the classification and position-
ing network for candidate regions, which can be used to
extract the candidate regions of the image and judge the
region category and positioning.

The RPN [22] network in the Faster R-CNN network
can obtain the feature graph of the image through a series
of convolution operations to perform window sliding opera-
tions on functions. k anchors are generated around the cen-
ter point according to the original image. Feature graph
obtained by the shared convolution layer is input into the
network as an image that contains the coordinate informa-
tion of the output anchor area and the probability of the

scene. The RPN network in Figure 7 is a complete full con-
volution network.

Equation (2) is the object loss function of the RPN net-
work. RPN network [23] can complete the training of posi-
tioning and classification.

L pif g, tif gð Þ = 1
Ncls

〠Lcls pi, p
∗
ið Þ + λ

1
Nreg

〠piLreg ti, t∗ið Þ:

ð2Þ

In (2), Lcls represents the object classification loss, Lreg
refers to the location regression loss, and pi means the prob-
ability that the i-th anchor may be the object. p∗i denotes the
probability that the i-th anchor is labeled as the object, ti
stands for the transformation parameters of the positive
sample anchor, and t∗i signifies the transformation parame-
ters of the positive sample. λ is the loss coefficient, Ncls indi-
cates the network batch size, and Nreg refers to the number
of anchor positions. Equation (3) means the classification
loss function, Equation (4) shows the regression loss func-
tion, and Equation (5) demonstrates that R is the function
of SmoothL1.

Lcls pi, p
∗
ið Þ = − log p∗i pi + 1 − p∗ið Þ 1 − pið Þ½ �, ð3Þ

Lreg ti, t∗ið Þ = R ti − t∗ið Þ, ð4Þ

R xð Þ = smoothL1 xð Þ =
0:5x2, if xj j < 1,

xj j − 0:5, otherwise:

(
ð5Þ

Mean Fill Method: the positive and negative samples of
object detection are greatly affected by the labeling informa-
tion. The positive samples represent the object samples to be
detected, and the negative samples stand for the samples
with backgrounds. Figure 8 illustrates the labeling diagram
of true samples and false samples.

This study uses the basic architecture of Faster R-CNN
and optimizes the traditional Faster R-CNN. Firstly, the
background without missing region filling is obtained by
segmenting the input images based on the Mean Fill
Method. Secondly, the high-level and low-level information
is fused. Finally, adjacent interpolation is replaced with the
bilinear interpolation method. Figure 9 reveals the network
diagram of the weak object detection algorithm for mean
filling.

Candidate Region Optimization Method: this method
can accurately detect underwater objects while protecting
the original image information to the greatest extent. The
underwater weak object detection for the candidate region
used here is improved on the cardinality of the RPN net-
work. Given the imperfect underwater object detection data,
this study optimizes the RPN network in the traditional Fas-
ter R-CNN. Figure 10 presents the network diagram of the
weak object detection based on the Candidate Region Opti-
mization Method.

The following is a detailed process. (1) First, the back-
ground and scene of the underwater image are segmented,
then the scene area is labeled as a1, the true value of the
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Figure 2: Structure of the underwater scene segmentation network.
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dataset of the detection object is labeled as b1, and finally,
b1 is subtracted from a1 to obtain the missed labeled area
c. (2) In RPN training, positive samples are labeled with
the same method as the traditional method, while negative

samples are labeled differently. Negative samples can be
removed by controlling the implementation process of
negative samples to obtain more accurate positive and
negative samples.
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Figure 3: Water scene segmentation flowchart.
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Figure 4: Generation process of underwater image segmentation dataset.
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The operation process of the object detection algorithm is
as follows: first, the initial data are read to construct the Faster
R-CNN object detection model; then, the file is loaded, the
training data are read, the feature graph is obtained, and the
sliding window operation is used to generate anchor; after-

ward, the model loss is calculated and updated; finally,
whether there are other data is judged. If so, the operation is
iterated. Figure 11 shows the flowchart of the detection model.

The dataset of this experiment: the dataset used here
includes four objects: Yellow Croaker, Carp, Goldfish, and

(a) Input image 1 (b) U-Net results

(c) The proposed method results (d) Input image 2

(e) U-Net results (f) The proposed method results

(g) Input image 3 (h) U-Net results

(i) The proposed method results

Figure 5: Result of the underwater scene segmentation network.
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Mandarin Fish, totaling 18,779 underwater images, with
16,866 pieces of training data, 1268 pieces of verification
data, and 868 pieces of test data. In Figure 12, (a) represents
the underwater image taken by the machine, and (b) is the
visualization of labeled images. The disadvantage of this
dataset is that the labeling effect is not very good, and there
are omissions. The advantage is that the amount of data is
relatively large. Figure 12 is a schematic diagram of dataset
labeling.

The experimental parameter setting: based on the Faster
R-CNN [24] architecture, the weak underwater object detec-
tion network is trained. Visual Geometry Group Network
(VGG) 16 is a very important classification network. The
parameters of the detection network are initialized based
on the training on ImageNet [25] dataset. The starting learn-
ing rate of the network is 0.0002, the learning rate is reduced
by 10 times with 50,000 iterations, the momentum value of
the network is 0.9, and the weight attenuation is 0.0005.
Here, Mean Average Precision (mAP) is used to evaluate
the experimental results. Specifically, precision, recall, and
F-measure are feedback indicators of detection performance.
Precision and recall are calculated as in

Precision = TP
TP + FP

, ð6Þ

Recall =
TP

TP + FN
: ð7Þ

In (6) and (7), TP refers to the number of valid positive
samples detected, TN means the number of valid negative
samples detected, FN stands for the number of invalid posi-
tive samples detected, and FP is the number of invalid neg-
ative samples detected.

Equation (8) expresses the integral (AP) of precision to
recall. Equation (9) shows the solution of mAP, C means
the number of object categories, and mAP is the average of
AP. The larger the mAP is, the better the detection perfor-
mance is.

AP =
ð
R
P Rð ÞdR, ð8Þ

mAP =
∑C

c=1AP cð Þ
C

: ð9Þ

Aiming at object detection in the underwater scene, this
section adopts the improved U-Net-architectured image seg-
mentation model. In the improved U-Net architecture, layer
hopping is used as the intermediate module, and then, two
symmetrical paths are connected. The layer hopping con-
nection is conducive to high-level and low-level information
fusion and improves the segmentation accuracy.

2.2. Underwater Positioning Technology for 3D
Omnidirectional Magnetic Induction

2.2.1. Algorithm Principle of 3D Magnetic Induction
Positioning Technology. The framework of inductive position-
ing technology: the smart sensor [26] inductive positioning
technology can generate an orthogonal magnetic field using
the signal source and determine the specific spatial position of
the object according to the different magnetic induction inten-
sities [27]. In Figure 13, coil a indicates that the transmitting coil
is perpendicular to the subcoil of the z-axis, coil b represents
that the transmitting coil is perpendicular to the subcoil of the
y-axis, and coil c denotes that the transmitting coil is perpendic-
ular to the subcoil of the x-axis. CoilA indicates that the accept-
ing coil is perpendicular to the subcoil of the z-axis, coil B
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ConvNet
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Figure 6: Faster R-CNN model architecture.

K anchor boxes 2k Scores 4k Coordinates

256d
Cls layer Reg layer

Intermediate layer

Sliding window

Conv feature map

Figure 7: RPN structural diagram.
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denotes that the accepting coil is perpendicular to the subcoil of
the y-axis, and coil C represents that the accepting coil is per-
pendicular to the subcoil of the x-axis. θ stands for the plane
angle between nodes. Bmeans the magnetic induction intensity
of induction nodes A, B, and C [28], and R is the distance
between transmitting and induction nodes. Figure 14 illustrates
the underwater positioning diagram based on 3D omnidirec-
tional magnetic induction [29].

The magnetic induction distribution model of a magnetic
dipole: the finite element integral model and the magnetic
dipole model can be used to simulate the spatial magnetic field
distribution of the coil. The finite element integral model has
higher precision, better precision, while the magnetic dipole
model has a faster calculation speed, which is in line with
the research of underwater scene objects here. In Figure 13,
the x-axis and y-axis determine a plane where the coil is
located. At the same time, this plane is perpendicular to the
z-axis, and the center of the coil passes through the origin of
the coordinates. R represents the radius of the coil, R′ denotes
the distance from the plane determined by the y-axis and x
-axis to the origin, and R is the distance from any point in
space to the origin. Bp′ represents the magnetic induction

intensity of point p′ [30], and Bx and Bz are its components
on the x-axis and z-axis. Bp means the magnetic induction
intensity of point P, and By stands for its component on the
y-axis. Figure 15 shows the spatial position layout of the mag-

netic induction coil. Figure 13 is a spatial relationship diagram
of point p and point p′.

The magnetic induction intensity of any point p′ on the
plane determined by x-axis and z-axis reads

B
r

p′ =
μ0IπR

2
p′

4π

3z x i
r
+ z k

r
� �

r5
−

1
r3
k
r

2
664

3
775: ð10Þ

In (10), μ0 means permeability, Rp′ represents coil radius,

and p′ denotes the distance from point p′ to the origin. ir, jr,
and kr stand for the unit vector, x, y, and z indicate the spatial
coordinate of point p′, and I refers to current. The expression
of magnetic induction intensity of N-turn coil reads

B
r

p′ =
μ0NIπR2

p′
4π

3z x i
r
+ z k

r
� �

r5
−

1
r3
k
r

2
664

3
775: ð11Þ

The magnetic induction intensity at any point in space can
be expressed as the vector sum on the x-, y-, and z-axes, as
expressed in
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B
r

p = Bx i
r
+ By j

r
+ Bz k

r
: ð12Þ

The magnetic induction intensity Br
p′ of point p′ reads

B
r

p′ = Bx i
r
+ Bz k

r
=
3μ0NIr2zx

4R5 i
r
+
μ0NIr2 3z2 − R2� �

4R5 k
r
:

ð13Þ

The spatial relationship between point p and point p′ can
be expressed by

R
r

p = x i
r
+ y j

r
+ z k

r
= R

r

p′ + y j
r
: ð14Þ

The relationship between the magnetic induction intensity
at different points and the distance of its signal source can be
expressed as
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B
r

p = B
r

p′ + By j
r
: ð15Þ

The relationship between the magnetic induction compo-
nent of any point in space and its space vector can be
expressed as

x
y
=
Bx

By
, ð16Þ

By =
3μ0NIr2zy

4R5 : ð17Þ

Based on Equations (13), (15), and (17), the expression of
magnetic induction intensity at any point p in space can be
expressed as

B
r

p = Bx i
r
+ By j

r
+ Bz k

r
= 3μ0NIr2zx

4R5 ⋅ i
r
+ 3μ0NIr2zy

4R5 ⋅ j
r

+
μ0NIr2 3z2 − R2� �

4R5 ⋅ k
r
:

ð18Þ

The expression of magnetic induction intensity of coil a at
any point in space reads

Ba =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 + B2

2 + B2
3

q
: ð19Þ

The relationship between the spatial magnetic induction
intensity [31] of any point in the induction coil and the spatial
position of the source coil can be expressed by
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cos2θ1 =
4R6B2

a − C2
a

3C2
a

,

cos2θ2 =
4R6B2

b − C2
b

3C2
b

,

cos2θ3 =
4R6B2

c − C2
c

3C2
c

:

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

In (20), θk means the included angles between x, y, and z
and the coordinate origin to the center of the induction coil.
The relationship between them conforms to

cos2θ1 + cos2θ2 + cos2θ3 = 1, ð21Þ

Cε =
μ0Mε

2π
: ð22Þ

In Equation (22), Cε is the coefficient of the subcoil of the
3D source coil.

cos θ1 =
x
R
,

cos θ2 =
y
R
,

cos θ3 =
z
R
,

x
R

� �2
=
4R6B2

a − C2
a

3C2
a

,

y
R

� �2
=
4R6B2

b − C2
b

3C2
b

,

z
R

� �2
=
4R6B2

c − C2
c

3C2
c

,

8>>>>>>>>><
>>>>>>>>>:

x2 + y2 + z2 = R2:

ð23Þ

2.2.2. Positioning Algorithm Based on 3D Magnetic Induction
Coil. The algorithm flow is as follows: the magnetic induction
intensity of the induction point at any point in space is put
into the positioning equation to calculate the coordinates that
are then converted into the ultimate coordinates and distance.
The specific flowchart of the algorithm is shown in Figure 15.

Here, MATLAB is used to simulate and verify the mag-
netic field distribution of the magnetic induction coil. Gauss-
ian white noise is added to any spatial point to simulate a
real underwater environment, thereby achieving more accu-
rate results. The specific parameters are as follows: the radius
of the source coil is set to 10 cm, the number of turns is 200,
the current of the energized coil is 100A, the permeability is
μ0 = 4π ∗ 10−7, and the resolution is set to 1 cm. After the
parameters are set, noise is added, and the simulated mag-
netic field distribution is drawn using the magnetic dipole
model. Here, 20 different sets of coordinate data values are
selected randomly, and the coordinate results are calculated
through the 3D magnetic induction positioning algorithm.
Afterward, the results are compared with the actual
coordinates.

3. Results

3.1. Analysis of Experimental Results of Object Detection.
Figure 16(a) suggests that the trend of the Mean Fill Method
and Faster R-CNN curve is very similar, but the mAP of Fas-
ter R-CNN is always below that of the Mean Fill Method in
the iterative process. This shows that when the number of
iterations increases, the Mean Fill Method-based underwater
weak object detection can well remove the influence of false-
negative samples on model implementation and further
improve the precision of object detection.

Figure 16(b) implies that the curve trend of the Mean Fill
Method is very similar to that of Faster R-CNN and
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Figure 13: Underwater positioning chart for 3D omnidirectional
magnetic induction.
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Candidate Region Optimization Method, but the mAP of
Mean Fill Method is always below that of the Candidate
Region Optimization Method during the iteration process.
This indicates that when the number of iterations increases,
the underwater weak object detection method based on the
Candidate Region Improvement Method can well remove
the influence of false-negative samples on model implemen-
tation and further improve the precision of object detection.

Figure 16(c) reveals that the curve trend before and after
the enhancement of the underwater weak object detection
based on the Candidate Region Improvement Method is

similar, but the mAP of the image before enhancement is
always below that of the image after enhancement in the iter-
ative process. This shows that when the number of iterations
of the process increases, the enhanced image can further
improve the precision of underwater weak object detection.

After many iterations, the Mean Fill Method-based
underwater weak object detection model shows its advan-
tages in terms of detection precision for different objects.
In Figure 17, the precision of the four objects under the
Mean Fill Method is significantly higher than that of the Fas-
ter R-CNN method. Under the Mean Fill Method, the detec-
tion precision of Yellow Cracker, Carp, Goldfish, and
Mandarin Fish is 65.7%, 69.0%, 57.4%, and 63.1%,
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Figure 17: Comparison of precision between Mean Fill Method-
based underwater weak object detection and benchmark method
in different types of objects.
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based underwater weak object detection, Candidate Region
Improvement Method-based underwater weak object detection,
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Figure 21: Continued.

13Wireless Communications and Mobile Computing



respectively. Compared with Faster R-CNN, the Mean Fill
Method-based underwater weak object detection algorithm
improves the precision of Yellow Croaker, Carp, Goldfish,
and Mandarin Fish detection by 6.1%, 7.4%, 3.6%, and
5.7%, respectively.

After many iterations, the Candidate Region Improve-
ment Method-based detection model has shown more
advantages in terms of detection precision for different
objects. In Figure 18, the precision of the four objects under
the Candidate Region Improvement Method is significantly
higher than that of the Mean Fill Method. Under the Mean
Fill Method, the detection precision of Yellow Cracker, Carp,
Goldfish, and Mandarin Fish is 73.0%, 78.0%, 58.2%, and
69.7%, respectively. Compared with the Mean Fill Method,
the object detection precision of underwater weak object
detection model based on Candidate Region Improvement
Method for Yellow Croaker, Carp, Goldfish, and Mandarin
Fish has improved by 13.4%, 16.4%, 7.3%, and 12.3%,
respectively.

After many iterations, the Candidate Region Improve-
ment Method-based detection model has shown advantages
in terms of detection precision after image enhancement. In
Figure 19, the detection precision of the Candidate Region
Improvement Method for the four objects after image
enhancement is significantly higher than that before image
enhancement. After the image enhancement, the detection
precision of Yellow Cracker, Carp, Goldfish, and Mandarin
Fish is 76.2%, 77.9%, 59.7%, and 71.3%, respectively. Com-
pared with that before image enhancement, the precision
of underwater weak object detection based on Candidate
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Figure 21: Comparison histogram of actual coordinates and positioning coordinates of the underwater object.
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Region Improvement Method for Yellow Croaker, Goldfish,
and Mandarin Fish detection is improved by 3.2%, 1.5%, and
1.6% after image enhancement.

3.2. Simulation Analysis of Random Coordinate Positioning.
Further, the distance and related coordinates are calculated
based on the measured value of the random spatial position,
the 3D magnetic induction intensity of the transmitting coil,
and the proposed positioning algorithm. Multiple groups of
coordinates are randomly selected and are given a noise with
a Signal-to-Noise Ratio (SNR) of 10 dB, 15 dB, and 20 dB,
respectively. Under such conditions, the corresponding
coordinates are simulated, and the specific results are shown
in Figures 20 and 21: Figure 20 is a comparison diagram of
the positioning distance and actual distance of the induction
coil, and Figure 21 shows a comparison histogram of the
actual coordinates and positioning coordinates of the under-
water object.

Figure 20 presents that when the SNR is 15 dB and 20dB,
the curve trend of the actual distance and positioning dis-
tance is very similar. However, when the SNR is 10 dB, there
is a great deviation between the actual distance and position-
ing distance under the proposed positioning algorithm.
Figure 21 suggests that when the positioning precision is
within 20 cm, the SNR is 20 dB; when the positioning preci-
sion is within 30 cm, the SNR is 15 dB.

When the SNR is 15 dB, a region of 0-1200 cm is
designed with an interval of 50 cm, and 19 groups of coordi-
nates with the same x, y, and z components are chosen.
Then, the specific coordinate is calculated according to the
proposed positioning algorithm, and the deviation between
the actual coordinates and the positioning object is observed
by gradually increasing the distance. Figure 22 shows the
simulation results.

In Figure 22, when the SNR is 15 dB, the positioning
coordinates will slowly deviate from the actual coordinate
trajectory with the increase of the distance.

4. Conclusion

With the continuous development of science and technol-
ogy, sensors are becoming ever more intelligent and are see-
ing broader applications. As the world population remains at
a high expansion speed, the efficient detection and develop-
ment of marine resources begin to concern both researchers
and all nations. Traditionally, marine resource exploration,
aquatic fishing, and underwater rescue mainly rely on diving
technology and relevant personnel, which was risky, ineffi-
cient, and costly. Object detection and positioning technol-
ogy is an important link in underwater missions, and their
applications can be used to control, plan, and use subsequent
underwater machinery.

Here, the technology for underwater weak object detec-
tion and positioning is studied, which is of great significance
to underwater work. Specifically, the problem of object
detection and positioning in underwater scenes is analyzed
through the underwater scene segmentation-based weak
object detection algorithm and the positioning technology
for the smart sensor. As a result, the conclusions read as fol-

lows: in terms of invalid underwater object samples from
poor labeling, an underwater scene segmentation-based
weak object detection method is proposed; given imperfectly
labeled objects, the proposed method can effectively segment
the background from underwater objects, remove the nega-
tive effects of invalid samples, and improve the precision of
weak object detection. The 3D magnetic induction coil
sensor-based positioning model can obtain more accurate
positioning coordinates. The effectiveness of 3D omnidirec-
tional magnetic induction coil-based underwater positioning
technology is verified by simulation experiments. The limita-
tion of this study is that the real-time performance of the
proposed algorithm is not fully considered, so the detection
of underwater objects and the real-time detection of posi-
tioning speed are the next research direction. The proposed
underwater weak object detection and positioning method
has very important practical significance; it plays a positive
role in the shipbuilding and marine engineering industries;
weak object detection and positioning can detect and locate
underwater objects autonomously; this technology breaks
the traditional operation mode, greatly improves the work
efficiency, and plays a certain role in assisting safety
production.
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