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Aim. This study proposes a new artificial intelligence model based on cardiovascular computed tomography for more efficient and
precise recognition of Tetralogy of Fallot (TOF). Methods. Our model is a structurally optimized stochastic pooling convolutional
neural network (SOSPCNN), which combines stochastic pooling, structural optimization, and convolutional neural network. In
addition, multiple-way data augmentation is used to overcome overfitting. Grad-CAM is employed to provide explainability to
the proposed SOSPCNN model. Meanwhile, both desktop and web apps are developed based on this SOSPCNN model. Results.
The results on ten runs of 10-fold crossvalidation show that our SOSPCNN model yields a sensitivity of 92:25 ± 2:19, a
specificity of 92:75 ± 2:49, a precision of 92:79 ± 2:29, an accuracy of 92:50 ± 1:18, an F1 score of 92:48 ± 1:17, an MCC of 85:06
± 2:38, an FMI of 92:50 ± 1:17, and an AUC of 0.9587. Conclusion. The SOSPCNN method performed better than three state-
of-the-art TOF recognition approaches.

1. Introduction

Tetralogy of Fallot (TOF) is a congenital defect that influ-
ences normal blood flow through the heart [1]. It is made
up of 4 defects of the heart and its blood vessels [2]: (a)
ventricular septal defect, (b) overriding aorta, (c) right ven-
tricular outflow tract stenosis, and (d) right ventricular
hypertrophy. Defects of TOF can cause oxygen in the blood
that flows to the rest of the body to be reduced. Infants with
TOF have a bluish-looking skin color [3] since their blood
does not carry enough oxygen.

Traditional diagnosis of TOF is after a baby is born, often
after the infant had an episode of cyanosis during crying or
feeding. The most common test is an echocardiogram [4],
an ultrasound of the heart that can show problems with the
heart structure and how well the heart is working with this
defect. Recently, computed tomography (CT) has shown its
success in the differential diagnosis of TOF [5], since it can

provide detailed images of many types of cardiovascular
issue; besides, computed tomography (CT) can be performed
even if the subject has an implanted medical device, unlike
magnetic resonance imaging (MRI) [6].

Manual diagnosis on CT is lab-intensive, onerous, and
needs expert skills. Besides, the manual results vary due to
intraexpert and interexpert factors. Shan et al. (2021) [7]
mention that “fully manual delineation that often takes
hours” and the modern automatic diagnosis models based
on artificial intelligence (AI) can only take seconds to
minutes to get decisions, which now becomes a hot research
field.

For example, Ye et al. (2011) [8] present a morphological
classification (MC) method. The authors extract morpholog-
ical features by registering cardiac MRI scans to a template.
Later, deep learning (DL) rises as a new type of artificial intel-
ligence (AI) technique and has shown its powerfulness in
many academic and industrial fields. Within the field of
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DL, convolutional neural network (CNN) is one standard DL
algorithm that is particularly suitable for handling images.
Giannakidis et al. (2016) [9] presented a multiscale three-
dimensional CNN (3DCNN) for segmentation of the right
ventricle. Tandon et al. (2021) [10] present a ventricular con-
touring CNN (VCCNN) algorithm.

The difference between this study to previous studies is
that we simplify the problem to a binary-coded classification
problem [11]; that is, given an input cardiovascular CT
image, the AI model should have the ability to give a binary
output, i.e., predict whether the subject is TOF or healthy.
This simplification makes the AI model focus on the predic-
tion task itself and does not need to generate human-
understandable outputs (such as segmentation, contouring,
etc.) in the light of the expectation to make our AI model
more accurate. Furthermore, we propose a new stochastic
pooling CNN (SCCNN) that uses a new pooling techni-
que—stochastic pooling to improve the prediction perfor-
mance. All in all, our contributes are fourfold:

(a) Stochastic pooling is employed to replace traditional
max-pooling

(b) Structural optimization is carried out to fix the opti-
mal structure

(c) Multiple-way DA is introduced to increase the diver-
sity of training images

(d) Experiments by ten runs of 10-fold crossvalidation
show that our method is better than three state-of-
the-art approaches

The rest of this paper is structured as follows: Section 2
describes the dataset. Section 3 contains the rationale of
methodology, including the preprocessing, stochastic pool-
ing, structural optimization, multiple-way data augmenta-
tion, the implementation, Grad-CAM, and evaluation
measures. Section 4 presents the experimental results and
discussions. Section 5 concludes this paper.

2. Dataset

This study is a retrospective research, of which ethical
approval is exempted. The imaging protocol is described
below: Philips Brilliance 256 row spiral CT machine, KV:
80, MAS: 138, Layer Thickness 0.8mm, Lung Window (W:
1600 HU, L: -600 HU), Mediastinal Window (W: 750 HU,
L: 90 HU), thin layer reconstruction according to the lesion
display, layer thickness, and layer distance are both 0.8mm
mediastinal window images. Place the patient in a supine
position, let the patient breathe deeply after holding in, and
conventionally scan from the apex of the lung to the costal
diaphragmatic angle. The resolutions of all images are 512
by 512 pixels. Data is available upon reasonable requests to
corresponding authors.

We selected ten children with Tetralogy of Fallot who
were admitted to Nanjing Children’s Hospital from March
2017 to March 2020. We then used a systematic random
sampling method to select ten normal children from healthy

medical examiners within the same period of time. The
Tetralogy of Fallot (TOF) observation group included three
males and seven females, aged 4-22 months, with an average
age of (8:90 ± 5:47) months. Normal children in the control
group included six males and four females, aged from 3
months to 24 months, with an average age of 10:4 ± 8:14
months. Inclusion criteria for children with confirmed
Tetralogy of Fallot are as follows:

(1) CT suggests Tetralogy of Fallot

(2) Surgery confirmed that the anatomical deformity of
the heart is Tetralogy of Fallot

3. Methodology

3.1. Preprocessing. Table 1 lists the abbreviation list for the
ease of reading. A five-step preprocessing was carried out
on all the images to select the important slices, save storage,
enhance contrast, remove unnecessary image regions, and
reduce the image resolution.

First, four slices were chosen by radiologists using a slice-
level selection method. For TOF patients, the slices showing
the largest size and number of lesions were selected. For
healthy control subjects, any level of the image can be
selected. Now, we have in total 40 TOF images and 40 HC
images.

Table 1: Abbreviation list.

Abbreviation Meaning

AP Average pooling

AUC Area under the curve

BN Normalization

CNN Convolutional neural network

CT Computed tomography

DA Data augmentation

DPD Discrete probability distribution

FCL Fully connected layer

FMI Fowlkes–Mallows index

Grad-CAM Gradient-weighted class activation mapping

GUI Graphical user interface

HS Histogram stretching

L2P l2-norm pooling

MCC Matthews correlation coefficient

MP Max-pooling

MRI Magnetic resonance imaging

MSD Mean and standard deviation

PM Probability map

ReLU Rectified linear unit

RLV Random location vector

ROC Receiver operating characteristic

SC Strided convolution

SP Stochastic pooling

TOF Tetralogy of Fallot
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Second, all the images are converted to grayscale images
and stored in tiff format [12] using the compression lossless
method. Third, histogram stretching (HS) was employed to
enhance image contrast. Suppose the kth input and output
of HS is xðkÞ and yðkÞ. HS can be formulated as

y kð Þ = x kð Þ − xmin kð Þ
xmax kð Þ − xmin kð Þ , ð1Þ

where xminðkÞ and xmaxðkÞ stand for the minimum and max-
imum grayscale values in the input xðkÞ.

Fourth, cropping was done in order to eliminate the
check-up bed at the bottom, the subject’s two arms at bilat-
eral sides, the rulers at the bottom and right side, and infor-
mation (hospital, scanning protocol, subject’s information,
image head information, and labeling) at four corners.

(a) TOF (b) HC

Figure 2: Illustration of our dataset.
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Figure 3: A diagram of block-wise pooling.

4 slice images 

Slice level
selection

RGB to
grayscale

Histogram
stretching

Margin
crop

Resizing

Original 
cardiovascular CT

Contrast-enhanced 
image 1

Cropped image 1

Down-sampled 
image 1

Grayscale image 1

Contrast-enhanced 
image 4

Cropped image 4

Down-sampled 
image 4

Grayscale image 4

•••

•••

•••

Figure 1: Diagram of preprocessing.
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Lastly, downscaling was performed to reduce each image
to the size of ½256 × 256�. Figure 1 displays the diagram of our
preprocessing procedure. Figures 2(a) and 2(b) shows two
preprocessed examples of TOF and HC, respectively.

3.2. Stochastic Pooling. Pooling is an essential operation in
standard convolutional neural networks (CNNs) [13]. Two
types of pooling exist. One is max pooling (MP), and the
other is average pooling (AP). The objective of pooling is to
down-sample an input image or feature map (FM), reducing
their dimensionality (width or height) and allowing for some
assumption about the features to be made in each block.

Suppose we have an input image or FM, which can be
split into O1 ×O2 blocks, where every block has the extent
of Q1 ×Q2. Currently, let us fix on the block Bo1,o2 at o1th
row and o2th column as shown as the red rectangle in
Figure 3.

Bo1,o2 = b x, yð Þ, x = 1,⋯,Q1, y = 1,⋯,Q2f g, ð2Þ

where 1 ≤ o1 ≤O1, 1 ≤ o2 ≤O2, bðx, yÞ means the pixel value
at coordinate ðx, yÞ.

The strided convolution (SC) goes over the input activa-
tion map with the strides that equals the size of the block
ðQ1,Q2Þ. The output of SC is
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Figure 4: Comparison of four different pooling methods.

Input: block Bo1,o2 .
Step 1: produce the PM for each pixel VPM. See Equation (7).
Step 2: create a RLV r! = ðxr , yrÞ. See Equation (8).

Step 3: draw a sample location vector r!0 from the RLV r!. See Equation (9).
Step 4: output pixel at location r!0. See Equation (10)
Output matrix BSP

o1,o2 .

Algorithm 1: Pseudocode of SP.

Table 2: Structures of nine customized neural networks.

Configuration No. of Conv layers No. of FCLs

I 2 1

II 2 2

III 2 3

IV 3 1

V 3 2

VI 3 3

VII 4 1

VIII 4 2

IX 4 3

Bold means the best.
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BSC
o1,o2 = b 1, 1ð Þ: ð3Þ

The l2-norm pooling (L2P), average pooling (AP) [14],
and max pooling (MP) [15] produce the l2-norm, average,
and maximum values within the block Bm1,m2

, respectively.
Their formula can be written as below:

BL2P
o1,o2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Q1

x=1∑
Q2
y=1b

2 x, yð Þ
Q1 ×Q2

s
, ð4Þ

BAP
o1,o2 =

1
Q1 ×Q2

〠
Q1

x=1
〠
Q2

y=1
b x, yð Þ, ð5Þ

BMP
o1,o2 = maxQ1

x=1 maxQ2
y=1b x, yð Þ: ð6Þ

Nevertheless, the AP outputs the average, downscaling
the greatest value, where the important features may lie. In
contrast, MP stores the greatest value but deteriorates the
overfitting obstacle. In order to solve the above concerns,
stochastic pooling (SP) [15] is introduced to provide a reso-
lution to the drawbacks of AP and MP. SP is a four-step
process.

Step 1. It produces the probability map (PM) VPM for each
pixel in the block Bo1,o2 .

VPM x, yð Þ = b x, yð Þ
∑Q1

x=1∑
Q2
y=1b x, yð Þ

,

s:t:〠
Q1

x=1
〠
Q2

y=1
VPM x, yð Þ = 1,

8>>>>><
>>>>>:

ð7Þ

where VPMðx, yÞ stands for the PM value at pixel ðx, yÞ.

Step 2. It creates a random location vector (RLV) r! = ðxr , yrÞ
that takes the discrete probability distribution (DPD) as

where P represents the probability. Shortly speaking, P½ r! =
ðx, yÞ� =VPMðx, yÞ, ∀1 ≤ x ≤Q1&1 ≤ y ≤Q2 or r! ~ VPM ,
namely, the distribution of RLV r! has the DPD as VPM.

Step 3.A sample location vector r!0 is drawn from the RLV r!,
and we have

r!0 = xr0 , yr0
� �

: ð9Þ

Step 4. SP outputs the pixel at the location r0
!, namely,

BSP
o1,o2 = b xr0 , yr0

� �
: ð10Þ

Figure 4 shows a realistic example of four different pool-
ing methods. Algorithm 1 presents the pseudocode of SP.
Take the 3 × 3 block B1,1 (The red rectangle in Figure 4) as
an example, L2P generates the output as 6.98. AP and MP
present 5.99 and 9.9, respectively. Meanwhile, SP first gener-
ates PM matrix

VPM =

0:18 0:18 0:03

0:05 0:1 0:01

0:09 0:18 0:18

2
664

3
775, ð11Þ

and a sample location vector is drawn as r!0 = ð1, 2Þ. There-
fore, the output of SP is BSP

1,1 = bð1, 2Þ = 9:8.

Table 3: Detailed structure of network of configuration V.

Layer Parameters FM

Input 256 × 256 × 1

Conv_1 (BN-ReLU) 32, 3 × 3/2 128 × 128 × 32

SP_1 64 × 64 × 32

Conv_2 (BN-ReLU) 64, 3 × 3/2 32 × 32 × 64

SP_2 16 × 16 × 64

Conv_3 (BN-ReLU) 128, 3 × 3 16 × 16 × 128

SP_3 8 × 8 × 128

Flatten 8192

FCL_1 100 × 8192, 100 × 1 100

FCL_2 2 × 100,2 × 1 2
Output

P r! = 1, 1ð Þ
h i

=VPM 1, 1ð Þ

P r! = 2, 1ð Þ
h i

=VPM 2, 1ð Þ
⋯

P r! = Q1, 1ð Þ
h i

=VPM Q1, 1ð Þ

8>>>>>>><
>>>>>>>:

P r! = 1, 2ð Þ
h i

=VPM 1, 2ð Þ ⋯ P r! = 1,Q2ð Þ
h i

= VPM 1,Q2ð Þ,

Pr r! = 2, 2ð Þ
h i

=VPM 2, 2ð Þ ⋯ P r! = 2,Q2ð Þ
h i

= VPM 2,Q2ð Þ,
⋯ ⋯ ⋯

P r! = Q1, 2ð Þ
h i

=VPM Q1, 2ð Þ ⋯ P r! = Q1,Q2ð Þ
h i

= VPM Q1,Q2ð Þ,

ð8Þ
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Figure 6: Diagram of multiple-way data augmentation.

Input: import raw preprocessed kth training image rðkÞ.
P1 geometric or photometric or noise-injection DA transforms Zp are utilized on rðkÞ.

Step 1: we obtain Zp½rðkÞ�, p = 1,⋯, P1. See Equation (12)
Each enhanced dataset contains P2 new images. See Equation (13).

Step 2: a horizontal mirror image is produced as rðhÞðkÞ = β1½rðkÞ�. See Equation (14).
Step 3: M1-way data augmentation methods are carried out on rðhÞðkÞ,

We obtain Zp½rðhÞðkÞ�, p = 1,⋯, P1. See Equation (15).

Step 4: rðkÞ, rðhÞðkÞ, Zp½rðkÞ�, p = 1,⋯, P1, and Zp½rðhÞðkÞ�, p = 1,⋯, P1 are merged via β2. See Equation (16).
Output A new dataset GðkÞ is produced. The number of images is P3 = 2 × P1 × P2 + 2. See Equation (17).

Algorithm 2: Pseudocode of proposed 18-way DA on kth training image

Input Conv_1 Conv_2 Conv_3SP_1 SP_2 SP_3
Flatten

FCL_1
FCL_2

2
100

8192
8×8×12816×16×12816×16×6432×32×6464×64×32128×128×32256×256×1

Figure 5: FM plot.
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3.3. Structural Optimization.How to obtain the best network
structure [16]? We try to design nine different configurations
in this study. Their hyperparameters of structures are listed
in Table 2. Two hyperparameters are considered in this
study: (i) the number of Conv layers and (ii) the number of
fully connected layers (FCLs). Those two types of layers are
common layers in standard CNN, so we will not introduce
them due to the page limit.

In the following experiment, we will observe that config-
uration V, a five-layer customized neural network, gives the
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Figure 7: Q-fold crossvalidation.

Table 4: Meanings in measures.

Abbreviation Full form Symbol Meaning

P Positive TOF

N Negative HC

TP True positive g 1, 1ð Þ TOF images are classified correctly.

FP False positive g 2, 1ð Þ HC images are wrongly classified as TOF.

TN True negative g 2, 2ð Þ HC images are classified correctly.

FN False negative g 1, 2ð Þ TOF images are wrongly classified as HC.

Table 5: Statistical analysis of SOSPCNN model.

Run Sen Spc Prc Acc F1 MCC FMI

1 95.00 92.50 92.68 93.75 93.83 87.53 93.83

2 92.50 90.00 90.24 91.25 91.36 82.53 91.36

3 95.00 92.50 92.68 93.75 93.83 87.53 93.83

4 90.00 92.50 92.31 91.25 91.14 82.53 91.15

5 90.00 95.00 94.74 92.50 92.31 85.11 92.34

6 90.00 97.50 97.30 93.75 93.51 87.75 93.58

7 92.50 95.00 94.87 93.75 93.67 87.53 93.68

8 92.50 90.00 90.24 91.25 91.36 82.53 91.36

9 90.00 92.50 92.31 91.25 91.14 82.53 91.15

10 95.00 90.00 90.48 92.50 92.68 85.11 92.71

MSD 92:25 ± 2:19 92:75 ± 2:49 92:79 ± 2:29 92:50 ± 1:18 92:48 ± 1:17 85:06 ± 2:38 92:50 ± 1:17

1 2
Predicted class

1
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Tr
ue
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as

s 29

31369
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92.2%
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7.3% 7.7%
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Figure 8: Confusion matrix of 10 × 10-fold crossvalidation (Here,
classes 1 and 2 stand for ToF and HC, respectively).
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Figure 9: Continued.
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AUC = 0.9587
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Figure 9: Continued.
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best performance. Here, we briefly give its detailed structure
in Table 3. The input is of size 256 × 256 × 1. The first Conv
layer (Conv_1) is associated with the batch normalization
(BN) layer and rectified linear unit (ReLU) activation. The
parameters of Conv_1 are 32 kernels with sizes of 3 × 3 and
stride of 2. Afterward, the first SP (SP_1) reduce the FM from
128 × 128 × 32 to 64 × 64 × 32.

After three Conv layers and three SP layers, the size of
FM is 8 × 8 × 128. It is then flattened to a vector of 8192 neu-
rons. With two FCLs of 100 and 2 hidden neurons, the neural
network finally outputs whether TOF or HC. All in all, our
model is termed structurally optimized stochastic pooling
convolutional neural network (SOSPCNN). The FM plot is
portrayed in Figure 5.

3.4. Multiple-Way Data Augmentation. The relatively small
dataset (40+40=80 images) may bring the overfitting prob-
lem. To avoid overfitting, data augmentation (DA) [17] is a
powerful tool because it can generate synthetic images on
the training set [18]. Zhu (2021) [19] presented an 18-way

DA method and proved this 18-way DA works better than
the traditional DA approach. Its diagram is shown in
Figure 6. The difference of DA and MDA is that (i) MDA
uses a combination of different DA methods on training
set; (ii) MDA is modular design. The users are easy to add
or remove particular DA methods from a MDA.

Suppose we have the raw training image rðkÞ, where k
represents the image index. First, P1 different DA methods
displayed in Figure 6 are applied to rðkÞ. Let Zp, p = 1,⋯,
P1 be each DA operation, we get P1 augmented datasets on
raw image rðkÞ as

Zp r kð Þ½ �, p = 1,⋯, P1: ð12Þ

Let P2 stands for the size of generated new images for
each DA method, thus,

Zp r kð Þ½ ��� �� = P2: ð13Þ
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Figure 9: Comparison of nine configurations.
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(a) Gaussian noise

(b) Salt-and-pepper noise

(c) Speckle noise

(d) Horizontal shear

(e) Vertical shear

(f) Rotation

(g) Gamma correction

Figure 11: Continued.
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Second, horizontal mirrored image is produced by

r hð Þ kð Þ = β1 r kð Þ½ �, ð14Þ

where β1 means horizontal mirror function.
Third, all P1 different DA methods are carried out on the

mirrored image rðhÞðkÞ and produce P1 new datasets as

Zp r hð Þ kð Þ
h i

, p = 1,⋯, P1,

Zp r hð Þ kð Þ
h i��� ��� = P2, p = 1,⋯, P1:

8><
>: ð15Þ

Fourth, the raw image rðkÞ, the mirrored image rðhÞðkÞ, all
P1-way results of raw image Zp½rðkÞ�, and all P1-way DA

results of horizontal mirrored image Zp½rðhÞðkÞ� are combined.
The final generated dataset from rðkÞ is defined as GðkÞ:

r kð Þ↦G kð Þ = β2

r kð Þ r hð Þ kð Þ
Z1 r kð Þ½ �|fflfflfflffl{zfflfflfflffl}

P2

Z1 r hð Þ kð Þ
h i

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
P2

⋯ ⋯

ZP1
r kð Þ½ �|fflfflfflfflffl{zfflfflfflfflffl}
P2

ZP1
r hð Þ kð Þ
h i

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

, ð16Þ

where β2 stands for the concatenation function. Let augmen-
tation factor be P3, which means the number of images in G
ðkÞ, we obtain

P3 =
G kð Þj j
r kð Þj j =

1 + P1 × P2ð Þ × 2
1

= 2 × P1 × P2 + 2: ð17Þ

Algorithm 2 recaps the pseudocode of this 18-way DA.We
set P1 = 9 to achieve an 18-way DA. We also set P2 = 30, thus
P3 = 542, indicating each raw training image will generate 542
images, which include the raw image rðkÞ itself.

3.5. Implementation and Grad-CAM. Q-fold crossvalidation
[20] is employed. The whole dataset is divided into Q folds
(see Figure 7). At qth trial, 1 ≤ q ≤Q, the qth fold is picked
up as the test, and the rest Q − 1 folds: ½1,⋯, q − 1, q + 1,⋯,
Q� are chosen as training set [21]. In this study, we set Q =
10, namely, a 10-fold cross validation. Furthermore, we run
the 10-fold crossvalidation 10 times, i.e., 10 × 10-fold
crossvalidation.

Gradient-weighted class activation mapping (Grad-
CAM) [22] is employed to explain how our model makes
its decision in classification. Grad-CAM utilizes the gradient
of the classification score with respect to the convolutional
features determined by the network to understand which
parts of the image are most important for classification.
Grad-CAM is a generalization of the class activation map-
ping (CAM) method [23] to a broader range of CNN models
since the original CAM relies on a fully convolutional neural
network structure. The output of SP_3 (see Table 3) is used as
the feature layer for Grad-CAM.

Mathematically, suppose our classification network is
with output yc, standing for the score for class c. We would
like to compute the Grad-CAMmap for a layer with k feature
maps Ak

i,j, where ði, jÞ stands for the indexes of pixels. We can
obtain the neural importance weight as

αck =
1
N
〠
i

〠
j

∂yc

∂Ak
i,j
, ð18Þ

where N stands for the total number of pixels in the feature
map. The Grad-CAM is a weighted combination of the fea-
ture maps with a ReLU as

M = ReLU 〠
k

αckA
k

 !
: ð19Þ

The Grad-CAM map M is then upsampled to the size of
input data.

(h) Random translation

(i) Scaling

Figure 11: Illustration of multiple-way data augmentation.
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3.6. Measures. The confusion matrix of 10 runs of 10-fold
crossvalidation is supposed to be

G =
g 1, 1ð Þ g 1, 2ð Þ
g 2, 1ð Þ g 2, 2ð Þ

" #
=

TP FN

FP TN

" #
: ð20Þ

Note FN = FP = 0 for a perfect classification. The mean-
ing of P, N , TP, FP, TN, and FN are itemized in Table 4.

Nine measures are used: sensitivity, specificity, precision,
accuracy, F1 score, Matthews correlation coefficient (MCC),
Fowlkes–Mallows index (FMI), receiver operating character-
istic (ROC), and area under the curve (AUC).

The first four measures are defined as

Sen =
g 1, 1ð Þ

g 1, 1ð Þ + g 1, 2ð Þ Spc =
g 2, 2ð Þ

g 2, 2ð Þ + g 2, 1ð Þ ,

Prc =
g 1, 1ð Þ

g 1, 1ð Þ + g 2, 1ð Þ Acc =
g 1, 1ð Þ + g 2, 2ð Þ

g 1, 1ð Þ + g 2, 2ð Þ + g 1, 2ð Þ + g 2, 1ð Þ :

8>>><
>>>:

ð21Þ

F1, MCC [24], and FMI [25] are defined as

F1 = 2 ×
Sen × Prc
Sen + Prc

=
2 × g 1, 1ð Þ

2 × g 1, 1ð Þ + g 1, 2ð Þ + g 2, 1ð Þ ,

MCC =
g 1, 1ð Þ × g 2, 2ð Þ − g 2, 1ð Þ × g 1, 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g 1, 1ð Þ + g 2, 1ð Þ½ � × g 1, 1ð Þ + g 1, 2ð Þ½ � × g 2, 2ð Þ + g 2, 1ð Þ½ � × g 2, 2ð Þ + g 1, 2ð Þ½ �p ,

FMI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sen × Prc

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 1, 1ð Þ

g 1, 1ð Þ + g 1, 2ð Þ ×
g 1, 1ð Þ

g 1, 1ð Þ + g 2, 1ð Þ

s
:

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

The above measures are calculated in the mean and stan-
dard deviation (MSD) format. Furthermore, ROC is a curve
to measure a binary classifier with varying discrimination
thresholds [26]. The ROC curve is created by plotting the
sensitivity against 1-specificity. The AUC is calculated based
on the ROC curve [27].

4. Experimental Results

4.1. Statistical Analysis. The result of the SOSPCNN model
using configuration V is itemized in Table 5. The model
arrives at a performance with a sensitivity of 92:25 ± 2:19, a
specificity of 92:75 ± 2:49, a precision of 92:79 ± 2:29, an

(a) Manually delineated (b) Heatmap

Figure 12: Heatmap of one TOF image.

Table 6: Statistical analysis without multiple-way data augmentation.

Run Sen Spc Prc Acc F1 MCC FMI

1 87.50 90.00 89.74 88.75 88.61 77.52 88.61

2 90.00 87.50 87.80 88.75 88.89 77.52 88.90

3 87.50 87.50 87.50 87.50 87.50 75.00 87.50

4 90.00 87.50 87.80 88.75 88.89 77.52 88.90

5 85.00 90.00 89.47 87.50 87.18 75.09 87.21

6 85.00 90.00 89.47 87.50 87.18 75.09 87.21

7 82.50 92.50 91.67 87.50 86.84 75.38 86.96

8 87.50 87.50 87.50 87.50 87.50 75.00 87.50

9 85.00 90.00 89.47 87.50 87.18 75.09 87.21

10 82.50 92.50 91.67 87.50 86.84 75.38 86.96

MSD 86.25± 2.70 89.50± 1.97 89.21± 1.58 87.87± 0.60 87.66± 0.82 75.86± 1.16 87.70± 0.79
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accuracy of 92:50 ± 1:18, an F1 score of 92:48 ± 1:17, an
MCC of 85:06 ± 2:38, and an FMI of 92:50 ± 1:17.

Figure 8 shows the confusion matrix of 10 × 10-fold
crossvalidation, where we can see the TP = 369, FN = 31,
TN = 371, and FP = 29, indicating 31 TOF are wrongly clas-
sified as HC while 29 HC are misclassified to TOF. Hence,
the sensitivity is 369/ð369 + 31Þ = 92:25%, and specificity is
371/ð29 + 371Þ = 92:75%.

4.2. Configuration Comparison.We compare nine configura-
tions (see Table 2). The validation is the same as previous
experiment. Due to the page limit, the detailed statistical
analysis is not shown. The ROC and AUC values are displayed
in Figure 9. The AUC values of nine networks with different
configurations are: 0.9502, 0.9511, 0.9504, 0.9532, 0.9587,
0.9577, 0.9360, 0.9419, and 0.9389 (as shown in Figure 10).
We can observe from Figure 10 that the best network is with
configuration V, whose structure is shown in Table 3.

4.3. Effect of Multiple-Way Data Augmentation. Figure 11
shows the multiple-way DA results if we take Figure 2(a) as
the raw training examples. Due to the page limit, the
multiple-way DA results on the horizontally mirrored image
are not displayed. As we can see from Figure 11, multiple-
way DA increases the diversity of the training images.

If we remove the multiple-way data augmentation from
our model, the performances are decreased, as shown in
Table 6, where MSD stands for mean and standard deviation.
Comparing Table 5 with Table 6, we can observe multiple-
way DA is efficient in improving the classification perfor-
mance. The reason is that it helps our model resist overfitting
by enhancing the diversity of the training set.

4.4. Explainability. Figure 12 shows the manual delineation
and the heat map of Figure 2(a) via Grad-CAM described in
Section 3.5. The manual delineation showed the radiologist
make decisions on “TOF” diagnosis based on all the areas of
the abnormal heart, while the heat map shows the proposed
SOSPCNN model also puts more focus on the heart region
other than the surrounding tissues and background areas.

4.5. Comparison with State-of-the-Art Approaches. We com-
pare the proposed SOSPCNN model with three other
approaches: MC [8], 3DCNN [9], and VCCNN [10]. The
results are shown in Table 7. Note that some comparison
methods are not suitable for our dataset, so we modify them
to adapt to our dataset.

The error bar comparison is drawn in Figure 13, which
clearly shows that the proposed SOSPCNN outperforms all
three comparative approaches. The reason is three folds: (i)
we use stochastic pooling to replace traditional max-
pooling; (ii) we use structural optimization to determine the
optimal structure of our SOSPCNN model; (iii) multiple-
way DA is included to increase the diversity of training
images. In the future, more advanced techniques [28–30] will
be tested and integrated into our model.

4.6. Desktop andWeb Apps.MATLAB app designer is used to
create a professional application for both desktop and web.
The input to this web app is any cardiovascular CT image,
and the aforementioned SOSPCNN model is included in
our app. Figure 14(a) displays the graphical user interface
(GUI) of the standalone desktop app. The users can upload
their custom images, and the software can show the results
by turning the knob into the correct texts: TOF, HC, or none.

Table 7: Comparison with state-of-the-art approaches.

Approach Sen Spc Prc Acc F1 MCC FMI

MC [8] 86:25 ± 3:58 80:75 ± 3:55 81:88 ± 2:32 83:50 ± 0:79 83:92 ± 0:97 67:25 ± 1:56 84:00 ± 0:98

3DCNN [9] 91:00 ± 3:16 89:50 ± 3:29 89:77 ± 2:70 90:25 ± 1:42 90:32 ± 1:42 80:63 ± 2:79 90:35 ± 1:41

VCCNN [10] 90:75 ± 1:69 90:00 ± 2:36 90:14 ± 1:95 90:38 ± 0:84 90:41 ± 0:78 80:80 ± 1:64 90:43 ± 0:76

SOSPCNN (ours) 92:25 ± 2:19 92:75 ± 2:49 92:79 ± 2:29 92:50 ± 1:18 92:48 ± 1:17 85:06 ± 2:38 92:50 ± 1:17

Sen Spc Prc Acc F1 MCC FMI
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VCCNN [10]
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Figure 13: Error bar comparison.
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Figure 14(b) shows the GUI of the web app that is
accessed through a “Google Chrome” web browser. The
web app is based on a client-server modeled structure [31],
i.e., the user is provided services through an off-site server
hosted by a third-party cloud service, Microsoft Azure in
our study. Our developed online web app can assist hospital
clinicians in making decisions remotely and effectively.

5. Conclusion

This paper proposes a web app for TOF recognition. Our
proposed model is termed structurally optimized stochastic
pooling convolutional neural network (SOSPCNN) with
explainable property achieved by Grad-CAM. The results
by ten runs of 10-fold crossvalidation show that this
SOSPCNN model yields a sensitivity of 92:25 ± 2:19, a spec-
ificity of 92:75 ± 2:49, a precision of 92:79 ± 2:29, an accuracy
of 92:50 ± 1:18, an F1 score of 92:48 ± 1:17, an MCC of
85:06 ± 2:38, an FMI of 92:50 ± 1:17, and an AUC of
0.9587. Further, we develop both desktop and web apps to
realize this SOSPCNN model.

The shortcomings of our method are as follows: (i) our
model is trained on a small dataset; (ii) our model does not
go through strict medical verification; (iii) our model only
considers TOF and HC.

Therefore, we shall attempt to solve the above three weak
points in the future. We shall try to collect more TOF and HC
cardiovascular CT images. We shall invite clinicians to use
our web app and return feedbacks so that we can continue
to improve our model. We shall try to collect data of other
heart diseases, so make our model can identify more types
of diseases.
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