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The low-power wide-area network (LPWAN) technologies, such as LoRa, Sigfox, and NB-IoT, bring new renovation to the
wireless communication between end devices in the Internet of things (IoT), which can provide larger coverage and
support a large number of IoT devices to connect to the Internet with few gateways. Based on these technologies, we can
directly deploy IoT devices on the candidate locations to cover targets or the detection area without considering multihop
data transmission to the base station like the traditional wireless sensor networks. In this paper, we investigate the
problems of the minimum energy consumption of IoT devices for target coverage through placement and scheduling
(MTPS) and minimum energy consumption of IoT devices for area coverage through placement and scheduling (MAPS).
In the problems, we consider both the placement and scheduling of IoT devices to monitor all targets (or the whole
detection area) such that all targets (or the whole area) are (or is) continuously observed for a certain period of time. The
objectives of the problems are to minimize the total energy consumption of the IoT devices. We first, respectively, propose
the mathematical models for the MTPS and MAPS problems and prove that they are NP-hard. Then, we study two
subproblems of the MTPS problem, minimum location coverage (MLC), and minimum energy consumption scheduling
deployment (MESD) and propose an approximation algorithm for each of them. Based on these two subproblems, we
propose an approximation algorithm for the MTPS problem. After that, we investigate the minimum location area
coverage (MLAC) problem and propose an algorithm for it. Based on the MLAC and MESD problems, we propose an
approximation algorithm to solve the MAPS problem. Finally, extensive simulation results are given to further verify the
performance of the proposed algorithms.

1. Introduction

The Internet of things (IoT) is a flourishing paradigm in the
scenario of modern wireless telecommunications, which has
been provided a wide diversity applications for all walks of
life in modern time, such as home automation, transporta-
tion, industry, agriculture, mobile device applications [1],
and smart systems [2]. IoT applications are required a grow-
ing number of technologies to offer low-power operation
and low-cost and low-complexity end devices that will be
able to communicate wirelessly over long distances. With

the development of the Low Power Wide Area Network
(LPWAN) technologies, such as SigFox, NB-IoT and LoRa,
the low power long-range wide-area communication has
become a reality [3]. Since the long range communication
of the LPWAN technologies is gradually used in the Internet
of things, the IoT devices can only communicate with
LPWAN gateways and not directly with each other. Taking
the LoRa example, a single gateway can support as many
as 105 IoT devices and three gateways are enough to cover
all devices in the urban area within an approximate 15 km
radius [4]. The architecture of the LPWAN-based Internet
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of things is shown in Figure 1 [5], in which IoT devices are
deployed in the monitoring area to observe targets or the
whole monitoring area; the installation of few gateways over
the territory allows to gather data from IoT devices that
are placed at different miles from the gateways. Then,
the received data by the gateways are transmitted to the
users through the Internet or satellite for further computa-
tional analysis to determine the appropriate response
mechanism.

Therefore, we can directly deploy IoT devices to monitor
all targets (or the whole monitoring area) in any region with
the LPWAN-based network without considering other data
transmission methods such as virtual backbone networks
[6, 7] and mobile data collectors [8, 9]. Since many IoT
devices are battery-powered sensors, for example, in wireless
sensor networks (WSNs) and ad hoc networks (ANs), the
power usage profile should be carefully designed in order
to extend the battery lifetime. How to prolong the network
lifetime is a classic problem in WSNs, which is called the
coverage problem [10]. Given the m targets (or the entire
monitoring area) and n IoT devices in the monitoring area,
the coverage problem is to schedule the activity of the IoT
devices such that all targets (or the whole monitoring area)
are (or is) continuously observed and the network lifetime
is maximized. Research on the coverage problem benefits a
lot of applications, such as environment monitoring, battle-
field surveillance, indoor guarding, smart space, industrial
diagnostics, and military facility [11]. Recently, many
researchers proposed various problems and corresponding
algorithms for the coverage problem. In [12], Cardei et al.
studied the target coverage problem with the objective of
maximizing the network lifetime of a power constrained
WSN deployed for detecting of a set of targets with known
locations, in which they did not consider the placement of
sensors. In [13], Akhlaghinia et al. studied the heterogeneous
point coverage problem in sensor placement to cover a large
number of target points with various coverage requirements
using a minimum number of heterogeneous sensors. In the
problem, they only investigated the placement of sensors
without considering network lifetime. In [14], Mini et al.
considered both the deployment locations and scheduling
of the given IoT devices to maximize the network lifetime

with the required coverage level. However, they deployed
all available IoT devices to cover targets randomly without
considering their candidate sites. In [15], Hanh et al. inves-
tigated the problem of maximizing the area coverage in het-
erogeneous WSNs. The goal of the problem is to find an
optimal placement scheme for the given set of sensors so
that the coverage area is maximized. In the problem, they
only consider the placement of sensors without considering
their candidate sites.

In the above literature, they only considered one of the
deployment and scheduling of IoT devices or ignored the
factor that candidate sites can be placed by IoT devices
which has to be considered in some applications, such as a
smart city. Actually, to minimize the total energy consump-
tion of IoT devices, we not only need to consider the deploy-
ment of IoT devices but also their scheduling. Meanwhile,
due to the emergence of wireless charging technologies and
natural energy charging methods (e.g., solar charging) for
the IoT devices, the current applications of IoTs have shifted
from maximizing the network lifetime to working for a cer-
tain period of time. In this paper, we study the problems of
the minimum energy consumption of IoT devices for target
coverage through placement and scheduling (MTPS) and
minimum energy consumption of IoT devices for area cov-
erage through placement and scheduling (MAPS), where
we consider both the placement and scheduling of IoT
devices to monitor all targets or the entire monitoring area
in a region such that all targets or the whole area are or is
continuously observed for a certain period of time and the
total energy consumption of all available IoT devices is
minimized. The contributions of this paper are shown as
follows:

(1) We propose two new practical models of minimizing
the total energy consumption of all IoT devices by
placing and scheduling them for continuously
observing all targets or the entire detection area for
a certain period of time. Then, we define the prob-
lems as the minimum energy consumption of IoT
devices for target coverage through placement and
scheduling (MTPS) and minimum energy consump-
tion of IoT devices for area coverage through place-
ment and scheduling (MAPS) and prove that they
are NP-hard

(2) To solve the MTPS problem, we introduce two other
problems, minimum location coverage (MLC) and
minimum energy consumption scheduling deploy-
ment (MESD). Then, we propose an approximation
algorithm for each of them. Afterwards, an approxi-
mation algorithm for the MTPS problem is proposed
on the basis of the solutions for the MLC and MESD
problems

(3) To solve MAPS problem, we introduce another
problem, minimum location area coverage (MLAC).
Then, we propose an approximation algorithm to
solve the problem. Based on the problems MLAC
and MESD, we propose an approximation algorithm
to solve the MAPS problem
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Figure 1: The architecture of the LPWAN-based Internet of things.
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(4) We illustrate the effectiveness of the proposed algo-
rithms by theoretical analysis and simulations

The remainder of this paper is organized as follows. We
give the related works in Section 2. Section 3 introduces
some models and definitions for the problems MTPS and
MAPS. In Section 5, we propose an approximation algo-
rithm to solve the MTPS problem. In Section 6, we propose
an approximation algorithm to solve the MAPS problem.
Simulations are shown in Section 7. Section 8 concludes this
paper.

2. Related Works

In this section, we briefly review the major problems and
methods related to the investigated problem in IoTs. As we
all know, WSN is a special kind of IoTs. If there is no special
explanation, the sensors in WSNs mentioned below repre-
sent IoT devices. According to the investigated problem,
the related works can be categorized into three categories:
IoT device placement problem, target coverage problem,
and area coverage problem.

2.1. IoT Device Placement Problem. The IoT device place-
ment problem aims at finding the least number of IoT
devices and their locations within all known potential sens-
ing locations for meeting requirements, such as [16–21].

In [16], Altinel et al. investigated the minimum cost
point coverage problem with varying sensing quality and
price and formulated a binary integer linear programming
model for effective sensor placement on a grid-structured
area. In [17], Wang introduced the sensor placement optimi-
zation problem, where the locations of targets to be covered
are known and the candidate locations to place sensors are
limited. The objective of the problem is to minimize the
number of sensors to cover all targets, and the problem
can be solved by the greedy algorithm for solving the set cov-
ering problem as shown in [22]. In [18], Gravalos et al.
investigated the gateway placement problem for IoTs, which
aims at finding the minimum number of gateways along
with suitable IoT devices to optimize the overall installation
cost without compromising the related QoS requirements.
In [19], Jiang et al. proposed a group-greedy method to solve
the sensor placement in linear inverse problems, which can
find suboptimal solutions with near optimality guarantee
using less computational cost compared with convex relaxa-
tion methods. In [20], Hasan and Al-Rizzo investigated the
sensor deployment to improve the connectivity in IoT by
presenting the bioinspired metaheuristics canonical particle
multiswarm optimization algorithm. In [21], Jiang et al.
studied the optimal sensor placement problem for an IoT-
based power grid monitoring system. Then, they proposed
a modified binary particle swarm optimization algorithm
to determine the optimal number and location of sensors
and estimate the ratio of conductor temperature alarms that
can be covered by the proposed sensor placement.

2.2. Target Coverage Problem. In general, IoT devices are
battery-powered sensors and there are often a lot of redun-
dant sensors randomly placed in a region to cover a certain

group of targets. How to schedule deployed sensors to max-
imize the network lifetime is an important problem in IoTs,
which is called the maximum lifetime coverage problem
(MLCP) and was proved NP-hard [12]. Currently, many
researches devoted themselves to investigating the various
problems of the MLCP problem, such as [23–26].

In [23], Berman et al. defined the MLCP problem as a
sensor network life problem (SNLP) and proposed an
approximation algorithm with a performance ratio of 1 +
ln n to solve the problem based on the minimum weigh sen-
sor coverage problem (MWSCP) which aims at finding the
minimum total weight of sensors to cover a certain set of tar-
gets, where n is the number of deployed sensors. In [24],
Ding et al. first improved the algorithm for the MWSCP
problem to 4 + ε, where ε > 0. Then, they proposed an
approximation algorithm with an approximate ratio of 4 +
ζ in the light of the MWSCP problem, where ζ > 0. In [25],
Lu et al. investigated the maximum lifetime coverage sched-
uling (MLCS) problem to address the scheduling problem
for both target coverage and data collection in WSNs for
maximizing the network lifetime. Then, they proposed an
approximation algorithm with a constant factor for the
problem. In [26], Shi et al. defined a new coverage problem
in battery-free WSN, which is not only to maximize cover-
age quality but also to prolong network lifetime. Then, they
proposed two centralized approximate algorithms and a dis-
tributed algorithm for solving the problem.

2.3. Area Coverage Problem. In [27], Xing et al. divided the
detection area into grids and guaranteed the coverage of ver-
tices of each grid to approximate the area coverage. How-
ever, the proposed approach as an approximation solution
can not actually ensure the coverage of the whole area. In
[28], Yu et al. studied the k-coverage problem, where a min-
imum subset of sensors among the deployed ones is selected
such that each point in the detection area is covered by at
least k sensors. In [29], Qin and Chen investigated the area
coverage problem to maximize the coverage lifetime of wire-
less sensor networks for monitoring the area of interest.
They proposed the area coverage algorithm based on differ-
ential evolution, which considered the balanced cost and
minimal energy for sensors.

3. Model and Problem Definitions

In this sections, we introduce some parameters and problem
definitions.

Let A be represented as a two-dimensional plane area;
the whole of which can be observed by IoT devices that work
together. There are m targets located on A . Let Q = fr1, r2,
⋯,rmg represent the set of m targets located on A . Due to
the particularity of some detection areas, such as smart cities
and farmlands, IoT devices can only be deployed on some
fixed locations. We call these fixed locations as candidate
sites of IoT devices. Let L = fL1, L2,⋯,LNg denote the set of
N candidate sites. Suppose that there exists n available IoT
devices that can be deployed in the candidate sites to moni-
tor targets in Q or the whole detection area A . We use S =
fs1, s2,⋯,sng to represent the set of n IoT devices, in which
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each IoT device si can be active continuously at most Ei time
slots. In this paper, we assume that each IoT device si ∈ S
continuously works Ei time slots once it starts working and
Ei ≤ T , where T is the minimum time that the targets (or
the detection area) are (or is) continuously observed. For
any pair of si ∈ S and rj ∈Q (or Lk ∈ L and r j ∈Q), let dsi ,r j
(or dLk ,r j) denote the Euclidean distance between si and r j
(or Lk and r j).

In this paper, we aim to find a subset C ⊆ S of IoT devices
which are deployed on some candidate sites in L to observe
all targets in Q or the whole detection area and to minimize
the total energy consumption of all IoT devices by schedul-
ing IoT devices in C such that all targets or the whole detec-
tion area can be continuously observed by IoT devices at
least T time. More formally, for two different kinds of prob-
lems, target coverage and area coverage, we call the research
problems as the minimum energy consumption of IoT
devices for target coverage through placement and schedul-
ing (MTPS) and the minimum energy consumption of IoT
devices for area coverage through placement and scheduling
(MAPS), respectively, whose detailed definitions are shown
in Definitions 1 and 2.

Definition 1 (MTPS). Given a set Q = fr1, r2,⋯,rmg of m tar-
gets located on detection area A , a set S = fs1, s2,⋯,sng of n
IoT devices in which all IoT devices have the same coverage
range R and each IoT device si ∈ S can work Ei time slots, a
set L = fL1, L2,⋯,LNg of N candidate sites to be put on IoT
devices, a positive time T , the minimum energy consump-
tion of IoT devices for target coverage through placement
and scheduling (MTPS) problem aims at finding a subset
C ⊆ S of IoT devices placed on the candidate sites in L and
scheduling the IoT devices in C such that

(1) For any candidate site Lk ∈ L, it can be placed in
more than one IoT device from C

(2) For arbitrary target r j ∈Q, it is continuously
observed by IoT devices in C at least T time

(3) For each IoT device si ∈ C, it continuously works in
Ei time slots once it starts working

(4) The total energy consumption of IoT devices in C,
M =∑si∈CEi, is minimized

Definition 2 (MAPS). Given a detection area A , a set S = f
s1, s2,⋯,sng of n IoT devices in which all IoT devices have
the same coverage range R, and each IoT device si ∈ S can
work Ei time slots, a set L = fL1, L2,⋯,LNg of N candidate
sites to be put in IoT devices, a positive time T , the mini-
mum energy consumption of IoT devices for area coverage
through placement and scheduling (MAPS) problem aims
at finding a subset C ⊆ S of IoT devices placed on the candi-
date sites in L and scheduling the IoT devices in C such that

(1) For any candidate site Lk ∈ L, it can be placed in
more than one IoT devices from C

(2) For arbitrary point p ∈A , it is continuously observed
by IoT devices in C at least T time

(3) For each IoT device si ∈ C, it continuously works in
Ei time slots once it starts working

(4) The total energy consumption of IoT devices in C,
M =∑si∈CEi, is minimized

4. Mathematical Formulation for the Problems

In this section, we will introduce the mathematical formula-
tions for the problems MTPS and MAPS.

We first introduce some notations as follows:
i is the index of IoT devices, where 1 ≤ i ≤ n. j is the index

of targets, where 1 ≤ j ≤m. k is the index of candidate sites,
where 1 ≤ k ≤N . t is the index of active time slots, where T
time is divided into T time slots. We define the binary vari-
ables xik, ajk, and yit as follows:

xik =
1, if si is placed at Lk,
0, otherwise,

(

ajk =
1, if dLk ,r j ≤ R,

0, otherwise,

(

yit =
1, if si is active atT time slot,
0, otherwise:

(
ð1Þ

4.1. Mathematical Formulation for the MTPS Problem. In
this subsection, we will introduce the mathematical formula-
tion for the MTPS problem. The problem can be formulated
into an integer programming (IP) problem as follows:

min 〠
N

k=1
〠
n

i=1
xik · Ei, ð2Þ

s:t:

〠
N

k=1
〠
n

i=1
ajk · xik · yit ≥ 1, j = 1, 2,⋯,m, t = 1, 2,⋯, T ,

ð3Þ

〠
N

k=1
〠

bi+Ei−1

t=bi
xik · yit = Ei ∃bi ∈ 1, 2,⋯,Tf g, i = 1, 2,⋯, n,

ð4Þ
xik ∈ 0, 1f g, i = 1, 2,⋯, n, k = 1, 2,⋯,N , ð5Þ
ajk ∈ 0, 1f g, j = 1, 2,⋯,m, k = 1, 2,⋯,N , ð6Þ
yit ∈ 0, 1f g, i = 1, 2,⋯, n, t = 1, 2,⋯, T: ð7Þ

The function of equation (2) is to minimize the total
energy consumption of IoT devices for continuous observing
of all targets at least T time. Constraint (3) ensures that for
each target r j ∈Q, there at least exists an IoT device si ∈ S
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located at some candidate site Lk ∈ L to cover rj at any tth
time slot. Constraint (4) guarantees that the IoT device si ∈
S located on Lk ∈ L will run out of energy as soon as it starts
working. Constraints (5)–(7) define the domains of the
variables.

4.2. Mathematical Formulation for the MAPS Problem. In
this subsection, we will introduce the mathematical formula-
tion for the MAPS problem. Let Si be the sensing region of
sensor si. We use jjAjj to denote the area of A . The problem
can be formulated as follows:

min 〠
N

k=1
〠
n

i=1
xik · Ei, ð8Þ

s:t:
[
si∈C

Si · 〠
N

k=1
xik · yit

 !\
A

�����
����� = Aj jj j, t = 1, 2,⋯, T ,

ð9Þ

〠
N

k=1
〠

bi+Ei−1

t=bi
xik · yit = Ei ∃bi ∈ 1, 2,⋯,Tf g, i = 1, 2,⋯, n,

ð10Þ
xik ∈ 0, 1f g, i = 1, 2,⋯, n, k = 1, 2,⋯,N , ð11Þ

yit ∈ 0, 1f g, i = 1, 2,⋯, n, t = 1, 2,⋯, T , ð12Þ
The function of equation (8) is to minimize the total

energy consumption of IoT devices for continuous observing
of the whole detection area A at least T time. Constraint (9)
ensures that for any point p ∈A , there at least exists an IoT
device si ∈ S located at some candidate site Lk ∈ L to cover p
at any tth time slot. Constraint (10) guarantees that the IoT
device si ∈ S located on Lk ∈ L will run out of energy as soon
as it starts working. Constraints (11)–(12) define the
domains of the variables.

4.3. NP-Hard Proofness. In the following, we will prove that
the problems MTPS and MAPS are NP-hard. We first prove
that the MTPS problem is NP-hard. Then, based on the
MTPS problem, we prove that the MAPS problem is also
NP-hard.

We consider a special case of the MTPS problem where
we set T = 1, N = n, and Ei = 1 for any IoT device si ∈ S. At
this point, the objective of the MTPS problem can be trans-
formed to find a subset C ⊆ S of IoT devices with minimum
cardinality such that all targets are covered. Since for any
IoT device si ∈ C, it needs to be placed at the corresponding
candidate site to cover targets, the objective of the MTPS
problem changes from finding the minimum subset C to
looking for the minimum subset L′ ⊆ L of candidate sites,
where jCj = jL′j. Therefore, the special case of the MTPS
problem can be equivalently transformed into the minimum
point cover (MPC) problem as shown in Definition 3.

Definition 3 (MPC). Given a set Q = fr1, r2,⋯,rmg of m tar-
gets, a set L = fL1, L2,⋯,LNg of N candidate sites to be put in

IoT devices, and all IoT devices have the same coverage
range R, the minimum point cover (MPC) problem is to find
a subset L′ ⊆ L of candidate sites such that all targets are cov-
ered by IoT devices located on the candidate sites in L′ and
the number of candidate sites jL′j is minimized.

In the MPC problem, for each candidate site Lk ∈ L, we
use Uk to denote the set of targets covered by Lk where for
each target r j, r j ∈Uk if and only if dLk ,r j ≤ R. Let F = fU1,
U2,⋯,UNg. Then, the MPC problem can be equivalently
transformed into the set cover (SC) problem, as shown in
Definition 4.

Definition 4 (SC). Given a set Q = fr1, r2,⋯,rmg of m targets
and a collection F = fU1,U2,⋯,UNg of N sets, where each
Uk ∈ F is a subset of Q, the set cover (SC) problem is to find
a subset F ′ ⊂ F such that

S
Uk∈F

′Uk =Q and jF ′j is

minimum.

Theorem 5. The MPC problem is NP-hard.

Proof. According to the SC and MPC problems, we can
obtain that the decision version of the MPC problem has a
YES answer if and only if the decision version of the SC
problem has a YES answer and jF ′j = jL′j. Since the SC
problem was proved NP-hard [30], the MPC problem is
NP-hard.

Theorem 6. The MTPS problem is NP-hard.

Proof. According to Theorem 5, we can verify that the MPC
is NP-hard. Since the MPC problem is a special case of the
MTPS problem, the MTPS problem is also NP-hard.

Theorem 7. The MAPS problem is NP-hard.

Proof. Since the continuous region A is made up of an infi-
nite set of points, we can take any set of discrete points in A

as a special case of the MAPS where all the discrete points
can be seen as targets for being observed by IoT devices. In
such a case, the MAPS problem can be transformed into
the MTPS problem. According to Theorem 6, we can verify
that the MTPS is NP-hard. Therefore, the MAPS problem is
also NP-hard.

5. Algorithm for the MTPS Problem

According to the definition of the MTPS problem, we can
obtain that the total energy consumption of the IoT devices
depends on the number of IoT devices with their corre-
sponding initial energy. Therefore, we need to deploy IoT
devices as few as possible to cover targets and schedule the
placement of IoT devices to minimize the total energy con-
sumption such that every target in Q is continuously
observed at T time slots by IoT devices. Based on these con-
siderations, we can find that the MTPS problem consists of
two subproblems, minimum location coverage (MLC) and
minimum energy consumption scheduling deployment
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(MESD), as shown in Definitions 8 and 9. In this section, we
first propose an approximation algorithm for each of the
problems MLC and MESD. Then, based on the problems
MLC and MESD, we propose an approximation algorithm
to solve the MTPS problem.

Definition 8 (MLC). Given a set Q = fr1, r2,⋯,rmg of m tar-
gets, a set L = fL1, L2,⋯,LNg of N candidate sites to be put in
IoT devices with coverage range R, the minimum location
coverage (MLC) problem is to find minimum subset L′ ⊆ L
of candidate sites such that all targets are within the coverage
range of candidate sites in L′.

Definition 9 (MESD). Given a set S = fs1, s2,⋯,sng of n IoT
devices in which each IoT device si ∈ S has active time Ei, a
set P = fL1, L2,⋯,LKg of K sites to be put IoT devices, a pos-
itive time T , the Minimum Energy consumption Scheduling
Deployment (MESD) problem is to find a subset C ⊆ S of
IoT devices placed at the sites in P and to schedule the IoT
devices in C such that

(1) for any site Lk ∈ P, it can be placed more than one
IoT device from C

(2) for arbitrary site Lk ∈ P, the IoT devices located at Lk
can cumulatively work at least T time

(3) for each IoT device si ∈ C, it continuous works Ei
time once it starts working, and

(4) the total energy consumption of IoT devices in C,
M =∑si∈CEi, is minimized

5.1. Algorithm for the MLC Problem. In this subsection, we
propose a greedy algorithm, called MLCA, to solve the
MLC problem. Let Uk denote the set of targets within the
coverage range of Lk. The MLCA algorithm consists of two
steps. Firstly, for arbitrary Lk ∈ L, we compute its coverage
set Uk. For any r j ∈Q, if dLk ,r j ≤ R, then, Uk =Uk ∪ fr jg. Sec-
ondly, we repeat the following steps until one of the condi-
tions L =∅ and Q =∅ is satisfied.

(i) Select Lk with the maximum Uk from L

(ii) Execute the operations L′ = L′ ∪ fLkg, L = L/fLkg
and Q =Q/Uk

(iii) For arbitrary Li ∈ L, update its coverage set by delet-
ing targets in Uk ∩Ui from Ui

After executing the above algorithm, we can obtain a set
L′ ⊆ L of candidate sites, which can cover all targets in Q.
The pseudocode of the algorithm is shown in Algorithm 1.
Then, we will analyze the performance of the MLCA
algorithm.

Theorem 10. Suppose that L∗ is an optimal solution for the
MLC problem. If there exists a solution for the MLC problem,
then, we can verify that the approximation ratio of the MLCA
algorithm is ln m + 1, where m is the number of targets.

Proof. According to the MLCA algorithm, we can observe
that the while loop terminates after at most m steps, since
in each iteration of the while loop, there is at least one target
that is covered by the candidate site Lk. Let Qk denote the
number of targets that are still not covered at iteration k of
the while loop. In each iteration k, we can use all jL∗j candi-
date sites in the optimal solution to cover all targets in Q.
Therefore, there must exist a candidate site in L∗ that covers
at least Qk/jL∗j targets, which means at least Qk/jL∗j targets
are covered in every iteration. In other words, we can obtain
after iteration k; there are left at most Qk −Qk/jL∗j targets
that have not been covered by candidate sites, that is,

Qk+1 ≤ 1 − 1
L∗j j

� �
·Qk ≤ 1 − 1

L∗j j
� �2

·Qk−1≤,⋯ ,

≤ 1 − 1
L∗j j

� �k+1
·Q0 = 1 − 1

L∗j j
� �k+1

·m,

ð13Þ

where the last equality depends on the fact that Q0 =m, since
all m tragets are not covered by candidate sites before the
first iteration of the while loop. Notice that there exists 1 ≤
i ≤m such that after executing i iterations of the while loop,
Qi ≤ 1. Based on the fact that 1 + x ≤ ex for any x ∈ ð−∞, +
∞Þ, we have

1 − 1
L∗j j

� �i

= 1 − 1
L∗j j

� � L∗j j !i/ L∗j j
≤ e−i/ L

∗j j: ð14Þ

Based on inequations (13) and (14), we can obtain

m · e−i/ L∗j j ≤ 1⇔ i ≥ L∗j j · ln m: ð15Þ

Input: Q = fr1, r2,⋯,rmg, L = fL1, L2,⋯,LNg, R;
Output: L′;
1: Sets of L′ =∅, Uk =∅ for any Lk ∈ L;
2: for arbitrary Lk ∈ Ldo
3: for any rj ∈Qdo
4: if dLk ,r j ≤ R then

5: Uk =Uk ∪ frjg;
6: end
7: end
8: end
9: while L ≠∅&&Q ≠∅ do
10: Pick Lk = arg maxLk∈LUk;

11: L′ = L′ ∪ fLkg, L = L \ fLkg, Q =Q \Uk;
12: for any Li ∈ Ldo
13: Ui =Ui \Uk;
14: end
15: end
16: if Q =∅ then
17: There is no solution for the MLC problem;
18: end

Algorithm 1: MLCA.

6 Wireless Communications and Mobile Computing



Therefore, we can obtain that after i = jL∗j · ln m itera-
tions, the remaining number of targets in Qi is smaller or
equal to 1. Thus, the algorithm will terminate after at most
jL∗j · ln m + 1 iterations, which can obtain jL′j ≤ jL∗j · ln m
+ 1 ≤ ðln m + 1Þ · jL∗j, since jL∗j ≥ 1 and only one candidate
site is added into L′ in each iteration based on the algorithm
MLCA.

Theorem 11. The time complexity of the MLCA algorithm is
OðmNÞ, where m and N are the number of targets and the
number of candidate sites, respectively.

Proof. The MLCA algorithm consists of two phases. Firstly,
the algorithm needs N iterations to compute the corre-
sponding coverage sets for all candidate sites in L, as shown
in the first while loop. In each iteration, since the number of
targets is less than or equal to m, at most m steps are needed
to determine which coverage set targets belong to. Therefore,
we need at most mN steps to compute the coverage sets
for all candidate sites in L. Secondly, at most min fN ,m
g iterations are needed in the while loop. In each iteration,
we need to pick the candidate site Lk with the maximum
Uk for executing N steps since 1 ≤ k ≤N . Then, we update
all coverage sets of candidate sites with N steps. Therefore,
we need at most N · min fN ,mg steps in the second while
loop.

Consequently, the time complexity of the MLCA algo-
rithm is OðmNÞ =OðmN +N · min fN ,mgÞ.

5.2. Algorithm for the MESD Problem. In this subsection, we
propose an approximation algorithm to solve the MESD
problem, called MESDA. Before describing the algorithm,
we introduce some notations. For any 1 ≤ k ≤ K , we use Ck
to denote the set of IoT devices placed at location Lk and
let Φ = fC1, C2,⋯,CKg. Let Mk represent the total energy
consumption of the IoT devices in Ck.

The MESDA consists of two phases. The first phase is to
find a subset Ck ⊆ S of IoT devices from S for any 1 ≤ k ≤ K
such that ∑si∈Ck

Ei ≥ T . The second phase is to optimize Mk

by replacing the high-energy-consuming IoT devices in Ck
with low-energy-consuming ones from the remaining IoT
devices in S for any 1 ≤ k ≤ K . Afterwards, we compute Φ
= fC1, C2,⋯,CKg, C =S1≤k≤KCk, and M =∑Ck∈ΦMk. The
detailed description of the algorithm is shown as follows.

Initially, we set Φ =∅, C =∅,M = 0, Ck =∅, andMk = 0
for each 1 ≤ k ≤ K . The first phase of the MESD algorithm
repeats the following four steps until the conditions P =∅
and S =∅ are satisfied.

(i) Select si with the maximum Ei from S, where if there
exists two IoT devices si, sj ∈ S such that Ei = Ej,
then, their maximum ID is selected

(ii) Pick Lk with the minimum Mk for any 1 ≤ k ≤ K ,
where if there exist Mk and Ml such that Mk =Ml,
then, their minimum ID is selected

(iii) Add si into Ck, and Mk =Mk + Ei. Then, S = S/fsig

(iv) Compare Mk with T . If Mk ≥ T , then, P = P/fLkg
After executing the first phase of the algorithm, we can

obtain a set Ck of IoT devices for any Lk ∈ P, where the total
working timeMk of IoT devices is greater than or equal to T .
In the following, for any 1 ≤ k ≤ K , we optimize Mk by
replacing the high-energy-consuming IoT devices in Ck with
low-energy-consuming ones in S.

The second phase of the algorithm repeats the following
steps until S =∅.

(i) Select si with the maximum Ei from S

(ii) Compute a tuple < sj, k ≥ arg min
sj∈Ck ,1≤k≤K

ðMk − Ej +

EiÞ such that Mk − Ej + Ei ≥ T

(iii) Compare Ei with Ej. If Ei ≥ Ej, then, si is deleted
from S, otherwise, Ck = Ck ∪ fsjg/fsig, Mk =Mk −
Ei + Ej, and si is removed from S

After executing the second phase of the algorithm, we
can obtain a set Ck of IoT devices located on each Lk ∈ P
and the total energy consumption Mk =∑si∈Ck

Ei of IoT
devices in Ck such that all targets covered by site Lk are con-
tinuously observed at least T time. Finally, we can obtain
Φ = fC1, C2,⋯,CKg, M =∑Ck∈ΦMk, and C =S1≤k≤KCk. The
pseudocode of the algorithm is shown in Algorithm 2.

We use C∗ to represent the optimal set of IoT devices
placed at sites in P for the MESD problem. Let M∗ denote
the total energy consumption of IoT devices in C∗. Without
loss of generality, we use C∗

k to be the optimal set of IoT
devices placed at Lk ∈ P when C∗ has been confirmed. Let
M∗

k represent the total energy consumption of IoT devices
in C∗

k .

Theorem 12. If the MESDA algorithm has the feasible solu-
tion, then, we can verify that the approximation ratio of the
algorithm is 2.

Proof. According to the definition of the MESD problem, we
have M∗

k ≥ T for any 1 ≤ k ≤ K and M∗ =∑1≤k≤KM
∗
k ≥ K · T .

For any 1 ≤ k ≤ K , we let <si, Ei ≥ arg maxsj∈Ck
Ej, where

Ck is obtained by the MESDA algorithm. We analyze the
performance of the algorithm in the light of the following
two cases.

(1) 0 < Ei < ðT/2Þ. Then, we can obtain that for any sj
∈ Ck, Ej < ðT/2Þ. Based on the algorithm, the last
IoT device added into Ck makes Mk be greater than
or equal to T , which means Mk ≤ T + Ej < ð3T/2Þ ≤
1:5M∗

k

(2) ðT/2Þ ≤ Ei < T . If there exists Ej ∈ Ck such that ð
T/2Þ < Ej ≤ Ei, then based on the algorithm, we
can obtain Ck = fsi, sjg and Mk = Ei + Ej < 2T < 2
M∗

k . Otherwise, we can derive Mk ≤ T + Ej ≤ 1:5
M∗

k
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From what have been discussed, we can obtain Mk < 2
M∗

k . Therefore, we have M =∑1≤k≤KMk ≤ ∑1≤k≤K2M∗
k ≤ 2

M∗, which means that the approximation ratio of the
MESDA algorithm is 2.

Theorem 13. The time complexity of the MESDA algorithm
is Oðn3 + nKÞ, where n and K are the number of IoT devices
and the number of sites, respectively.

Proof. According to the MESDA algorithm, we can verify
that the algorithm contains two while loops running and
the other operations with constant running time. The first
while loop consists of at most n iterations, since jSj ≤ n. In
each iteration, at most n steps are needed to select the IoT
device si with the maximum energy and K steps are required
to compute the site Lk with the minimum total energy con-
sumption of IoT devices located on Lk. The other operations
in the iteration can be executed in constant time. Therefore,
the first while loop runs at most Oðn2 + nKÞ time. The sec-
ond while loop runs jSj iterations. In each iteration, the algo-
rithm runs at most jSj steps to select the IoT device si with
the maximum energy. Then, it calculates the total energy
consumption with at most Oðn · jSjÞ running time by replac-
ing each IoT device that has been deployed on site in P with
si and selects sj with the minimum Mk − Ej + Ei among all
IoT devices except IoT devices in S. The other operations
in the iteration can be executed in constant time. Therefore,
the total running time of the second while loop is at most
Oðn3Þ =Oðn · jSj2 + jSj2Þ.

Consequently, we can obtain that the time complexity of
the MESDA algorithm is Oðn3 + nKÞ =Oðn2 + nKÞ +Oðn3Þ.

5.3. Algorithm for the MTPS Problem. In this subsection, we
propose an approximation algorithm, called MTPSA, to
solve the MTPS problem based on the MLC and MESD
problems. The algorithm consists of two steps correspond-
ing to Algorithms 1 and 2. The detailed illustration of the
algorithm is shown in Algorithm 3.

Suppose that C∗
opt is an optimal subset of S for the MTPS

problem. Let M∗
opt be the total energy consumption of IoT

devices in C∗
opt. Since each r j ∈Q needs to be continuously

observed at least T time, we divide T into equal T time slots.
We use c∗t to represent the minimum energy consumption of
all active IoT devices for the MTPS problem such that all tar-
gets are covered at the tth time slot, and let L∗t denote the set
of candidate sites placed in the active IoT devices in the tth
time slot.

Lemma 14. For any 1 ≤ t ≤ T , we have c∗t ≥ jL∗j, where L∗ is
the minimum set of candidate sites for the MLC problem.

Proof. In the MTPS problem, all targets need to be covered
by IoT devices placed at candidate sites in L for any 1 ≤ t
≤ T , which means that there exists a subset Lt ⊆ L that can
cover all targets for the arbitrary tth time slot. Thus, based
on the definitions of MTPS problem and MLC problem,
we can obtain that for any such subset Lt , it is a feasible solu-
tion for the MLC problem. Therefore, we have jL∗t j ≥ jL∗j,

Input: S = fs1, s2,⋯,sng, Ei for each si ∈ S, P = fL1, L2,⋯,LKg, T ;
Output: C, M, Φ;
1: Sets of C =∅, M = 0, Ck =∅ and Mk = 0 for each 1 ≤ k ≤ K ;
2: while P ≠∅&&S ≠∅ do
3: Pick si = arg maxsi∈SEi;
4: Pick Lk = arg minLk∈PMk;
5: Ck = Ck ∪ fsig, Mk =Mk + Ei, S = S \ fsig;
6: if Mk ≥ T then
7: P = P \ fLkg;
8: end
9: end
10: while S ≠∅ do
11: Pick si = arg maxsi∈SEi;
12: Select <sj, k > = arg min

sj∈Ck ,1≤k≤K
ðMk − Ej + EiÞ such that Mk − Ej + Ei ≥ T ;

13: if Ei ≥ Ej then
14: S = S \ fsig;
15: else
16: Ck = Ck ∪ fsjg \ fsig, Mk =Mk − Ej + Ei, S = S \ fsig;
17: end
18: end
19: Φ =S1≤k≤KfCkg, M =∑Ck∈ΦMk, C =SCk∈Φ

Ck;

Algorithm 2: MESDA.
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since L∗t is a feasible solution for the MLC problem. There-
fore, we can derive c∗t ≥ jL∗j since c∗t = jL∗t j.

Lemma 15. We can obtain M∗
opt ≥ jL∗j · T .

Proof. According to Lemma 14, we can obtain c∗t ≥ jL∗j for
arbitrary 1 ≤ t ≤ T . Based on the definition of the MTPS
problem, we have M∗

opt ≥∑1≤t≤Tc
∗
t ≥ jL∗j · T .

Theorem 16. The performance ratio of the MTPSA algorithm
is 2 ln m + 2, where m is the number of targets.

Proof. According to the MTPSA algorithm, we have M =
∑Lk∈L

′Mk, where M is the total energy consumption of IoT
devices obtained by the MTPSA algorithm and Mk is the
energy consumption of IoT devices located on Lk. On the
basis of Theorems 10 and 12, we can derive jL′j ≤ ln m · j
L∗j + 1 and Mk < 2T for any 1 ≤ k ≤ jL′j. Based on Lemma
15, we can obtain

M = 〠
Lk∈L′

Mk ≤ L′
�� �� · max Mk ∣ Lk ∈ L′

n o

≤ ln m · L∗j j + 1ð Þ · 2T ≤ 2 ln m + 1ð Þ ·M∗
opt:

ð16Þ

The theorem has been proved.

Theorem 17. The time complexity of the MTPSA algorithm is
Oðn3 +mN + nNÞ, where n is the number of available IoT
devices in S,m denotes the number of targets in Q, and N rep-
resents the number of candidate sites in L.

Proof. Based on Theorems 11 and 13, we can obtain that the
time complexity of the MTPSA algorithm is Oðn3 +mN +
nNÞ =OðmN + n3 + nKÞ, since K = jL′j ≤N .

6. Algorithm for the MAPS Problem

In this section, we propose an algorithm to solve the MAPS
problem.

Similar to the definition of the MTPS problem, the total
energy consumption of the IoT devices depends on the
number of IoT devices with their corresponding initial
energy. Therefore, we also need to deploy IoT devices as
few as possible to cover the whole detection area and sched-
ule the placement of IoT devices to minimize the total
energy consumption such that the whole area is continu-

ously observed T time slots by IoT devices. Therefore, we
can find that the MAPS problem is also composed of two
subproblems, minimum location area coverage (MLAC)
and MESD, as shown in Definitions 18 and 9. The MESD
problem has been solved by Algorithm 2. Thus, in this sec-
tion, we first propose an approximation algorithm to solve
the MLAC problem. Then, based on the problems MLAC
and MESD, we propose an approximation algorithm to solve
the MAPS problem.

We use AðLkÞ to denote the coverage region of Lk when
the coverage range of IoT devices put on Lk is R, that is, for
any point p ∈ AðLkÞ, dLk ,p ≤ R. Let DðLkÞ be the border of A
ðLkÞ.

Definition 18 (MLAC). Given a detection area A , a set L =
fL1, L2,⋯,LNg of N candidate sites, Δ = fAðL1Þ, AðL2Þ,⋯,A
ðLNÞg, the minimum location area coverage (MLAC) prob-
lem is to find a minimum subset L′ ⊆ L of candidate sites
such that jjSLk∈L′AðLkÞ

T
A jj = jjAjj.

In the following, we first introduce the definition of the
Voronoi diagram of candidate sites on L, which is used to
solve the MLAC problem.

6.1. Voronoi Diagram of Candidate Sites. The definition of
the Voronoi diagram of candidate sites in L can be defined
as the subdivision of the detection area A into N cells as
shown in [31]. Any point p ∈A , in the cell corresponding
to a candidate site Lk, is closer to Lk than to any other can-
didate site in L. Formally, the Voronoi cell corresponding
to Lk can be defined as

Cell Lkð Þ =
\n

k=1,j≠k
p ∣ dLk ,p ≤ dLj ,p
n o

: ð17Þ

In equation (17), two Voronoi cells meet along a Voro-
noi edge and three cells meet at a Voronoi vertex. For sim-
plicity, we use GðVV , VEÞ to denote the Voronoi diagram
of candidate sites in L, where VV represents the set of Vor-
onoi vertices and VE denotes the set of Voronoi edges.

6.2. Algorithm for the MLAC Problem. In this subsection, we
propose an approximation algorithm to solve the MLAC
problem, which is called the MLAC Algorithm (MLACA).

Before describing the algorithm, we introduce some def-
initions and parameters as follows:

Input: Q = fr1, r2,⋯,rmgS = fs1, s2,⋯,sng, Ei for each si ∈ S, L = fL1, L2,⋯,LNg, R, T ;
Output: C, M, Φ;
Step 1: Compute the set L′ of candidate sites to cover all targets in Q by executing Algorithm 1;
Step 2: Compute Φ, C, M based on L′ by executing Algorithm 2,
where P = L′;

Algorithm 3: MTPSA.
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Definition 19 (neighbor Voronoi diagram). The Neighbor
Voronoi diagram of a candidate site Lk is the Voronoi dia-
gram of the Voronoi neighbors of Lk when Lk is excluded,
where we call a site Lj a Voronoi neighbor of Lk if their cells
share an edge.

Definition 20 (redundant candidate site). A candidate site Lk
is said to be a redundant candidate site if jjSLj∈L/LkAðLjÞ

T
A jj = jjAjj.

Definition 21 (neighbor Voronoi vertices). The neighbor
Voronoi vertices of a candidate site Lk are the Voronoi ver-
tices of the neighbor Voronoi diagram of Voronoi neighbors
of Lk.

Definition 22 (neighbor Voronoi intersection vertices).
Neighbor Voronoi intersection vertices of Lk are the inter-
sections between edges of the neighbor Voronoi diagram
and the circumcircle DðLkÞ of AðLkÞ.

We use regðLÞ = fcellðL1Þ, cellðL2Þ,⋯,cellðLNÞg to repre-
sent the set of all cells for GðVV , VEÞ. Let NVðLkÞ be the set
of Voronoi neighbors of Lk. We use GðVVðLkÞ,NEðLkÞÞ to
represent the neighbor Voronoi diagram of Voronoi neigh-
bors of Lk, where VVðLkÞ denotes the set of the neighbor
Voronoi vertices and NEðLkÞ represents the set of the Voro-
noi edge of GðVVðLkÞ,NEðLkÞÞ. We use NIðLkÞ to be the set
of the neighbor Voronoi intersection vertices of Lk.

Based on Theorem 10 in the work [31], we can obtain
the following lemma.

Lemma 23. A candidate site Lk is a redundant candidate site
if and only if all the neighbor Voronoi vertices and neighbor
Voronoi intersection vertices of Lk are covered by the Voronoi
neighbors of Lk.

In the following, we will introduce the detailed descrip-
tion of the MLACA algorithm.

Initially, we set L′ = L, VV =∅, VE =∅, and NVðLkÞ
=∅ for any Lk ∈ L. The execution of the algorithm consists
of three steps as follows.

Firstly, we compute the Voronoi diagramGðVV ,VEÞ and
regðL′Þ of candidate sites in L′ by using the algorithm in [32].

Secondly, we delete all redundant candidate sites from L′
. For any Lk ∈ L′, we compute the set NVðLkÞ based on Gð
VV , VEÞ and RegðL′Þ. Then, we construct the Voronoi dia-
gram GðVVðLkÞ,NEðLkÞÞ on NVðLkÞ by using the algo-
rithm in [32]. Next, we compute the set NIðLkÞ based on
GðVVðLkÞ,NEðLkÞÞ. Afterwards, we judge whether or not
all points in VVðLkÞ and NIðLkÞ are covered by coverage
regions of all Voronoi neighbors. If yes, we delete Lk from
L′ and update the Voronoi diagram GðVV , VEÞ of candi-
date sites in new L′ by using the algorithm in [32].

Finally, the algorithm returns L′.
The pseudocode of the algorithm is shown in

Algorithm 4.

Theorem 24. The time complexity of the MLACA algorithm
is OðN2 log NÞ, where N represents the number of candidate
sites in L.

Input: The dimensions of A , the coverage range R, L = fL1, L2,⋯,LNg;
Output: L′;
1: Sets of L′ = L, VV =∅, VE =∅, NVðLkÞ =∅ for any Lk ∈ L;
2: Compute the Voronoi diagram GðVV ,VEÞ and RegðL′Þ of candidate sites on L′ by using algorithm in [32];
3: for any Lk ∈ L′do
4: Compute NVðLkÞ based on GðVV ,VEÞ and RegðL′Þ;
5: Construct GðVVðLkÞ,NEðLkÞÞ on NVðLkÞ by using algorithm in [32];
6: Compute NIðLkÞ based on GðVVðLkÞ,NEðLkÞÞ;
7: if VVðLkÞ ∪NIðLkÞ ⊂

S
Lj∈NVðLkÞ AðLjÞ then

8: L′ = L′ \ fLkg;
9: Compute the Voronoi diagram GðVV ,VEÞ of candidate sites in L′ by using algorithm in [32];
10: end
11: end for

Algorithm 4: MLACA.

Input: S = fs1, s2,⋯,sng, Ei for each si ∈ S, L = fL1, L2,⋯,LNg, R, T ;
Output: C, M;
Step 1: Compute the set L′ of candidate sites to cover the whole area by executing Algorithm 4;
Step 2: Compute C, M based on L′ by executing Algorithm 2,
where P = L′;

Algorithm 5: MAPSA.
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Proof. According to the MLACA algorithm, we can find that
the algorithm consists of three steps. Firstly, we compute the
Voronoi diagram of candidate sites in L with OðN log NÞ
time by using the algorithm in [32]. Secondly, we need at
most N iterations in the for loop since jLj =N . In each iter-
ation, we first need at most N times to compute the set N
VðLkÞ of Voronoi neighbors of Lk. Then, we need at most
OðjNVðLkÞj log jNVðLkÞjÞ time to compute the neighbor
Voronoi diagram on NVðLkÞ. Next, we need at most N

times to compute NIðLkÞ. We need at most another OðN
log NÞ time to update the Voronoi diagram by using the
algorithm in [32] when Lk is a redundant candidate site.
Therefore, we need at most OðN2 log NÞ =OðN ∗ ðN + jN
VðLkÞj log jNVðLkÞj +N log NÞÞ time for the for loop since
jNVðLkÞj ≤N .

From what has been discussed, we can verify that the
time complexity of the MLACA algorithm is OðN2 log NÞ.
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Figure 2: A coverage solution for an instance of the MTPS problem, where targets are deployed on the 2000m × 2000m detection area.

100 200 300 400 500 600 700

 Number of targets

20000

40000

60000

80000

100000

120000

140000

160000

Ti
m

e c
on

su
m

pt
io

n 
of

 Io
T 

de
vi

ce
s

R = 100
R = 120
R = 140

R = 160
R = 180

(a) Performance of MTPSA

100 200 300 400 500 600 700

Number of targets

100

200

300

400

500

600

700

N
um

be
r o

f p
la

ce
d 

Io
T 

de
vi

ce
s

R = 100
R = 120
R = 140

R = 160
R = 180

(b) Effects of m and R

Figure 3: Simulations by varying m from 100 to 700 under different R.
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6.3. Algorithm for the MAPS Problem. In this subsection, we
propose an approximation algorithm to solve the MAPS
problem, which is called MAPSA. Similar to the MTPSA
algorithm, the MAPSA algorithm consists of two phases.
The first phase is to find a subset L′ ⊆ L of candidate sites

by using Algorithm 4 such that the whole area A is covered
by the coverage region of candidate sites in L′. The second
phase is to find a subset C ⊆ S of IoT devices placed at the
sites in L′ by executing Algorithm 2 such that for any point
p ∈A , it is observed by IoT devices in C at least T time. The
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Figure 4: Results by varying T from 800 to 2000 under different m.
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Figure 5: Simulations by varying Ei from [100, 200] to [700, 800] under different monitoring areas.
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detailed illustration of the algorithm is shown in
Algorithm 5.

Theorem 25. The time complexity of the MAPSA algorithm is
Oðn3 + nN +N2 log NÞ, where n is the number of available
IoT devices in S, and N represents the number of candidate
sites in L.

Proof. Based on Theorems 13 and 24, we can verify that the
time complexity of the MAPSA algorithm is Oðn3 + nN +
N2 log NÞ.

7. Simulations

In this section, we evaluate the average performance of the
approximation algorithms MTPSA and MAPSA depending
on simulations with several critical performance metrics
under different configurations. The code of the algorithms
is implemented using MATLAB 2016a. For every group of
parameter settings, we create 100 instances, execute the sim-
ulations, and obtain the average results.

7.1. Simulations for the MTPSA Algorithm. In order to
ensure that all targets can be covered by candidate sites, we
use a grid to cover the detection area where the distance
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Figure 6: The executing process of the MLACA.
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between neighbor grid points is R except for all grids in the
boundary of the area. As an instance shown in Figure 2(a),
all targets are randomly deployed on a 2000m × 2000m
detection area and the grid points as the candidate sites are
located on the area, where we set T =1000, n =2000, and R
= 200 m; pick the active time slots Ei of each IoT devices
si ∈ S from range [100, 200]. After executing the algorithm
MTPSA for the instance, we can verify that the number of
the placed sites of IoT devices is 42, as the green nodes
shown in Figure 2(b); the number of IoT devices placed at
the sites is 252 and the total time consumption of all used
IoT devices is 4:2072e + 04.

In the following, we will evaluate how the network set-
tings, such as the number of targets m, the certain period
of time T , the active time slots Ei for each IoT device si ∈ S,
the coverage range R and the size of the detection area, affect
the performance of the MTPSA algorithm.

Firstly, we evaluate how the number of targets m and the
coverage range R affect the performance of the MTPSA algo-
rithm when we set n = 1000 and T = 1000; use the interval
[200, 300] to pick a uniformly distributed random active
time slots Ei for each IoT device si ∈ S; change R to 100,
120, 140, 160, and 180m; and vary m from 100 to 700 in
the 2000m × 2000m detection area, as shown in Figure 3.
It is observed that the total time consumption of IoT devices
increases with the increasing of m, as shown in Figure 3(a).
This is because the number of IoT devices that are placed
at candidate sites increases as m grows and the active time
slots of IoT devices are fixed, as shown in Figure 3(b).
Figure 3(a) also shows that the total time consumption of
the used IoT devices decreases with increasing R since the

less candidate sites are used to place IoT devices as R grows,
which leads to a decline in the number of IoT devices being
used, as shown in Figure 3(b).

Figure 4 illustrates the impact of the certain period of
time T and the number of targets m on the performace of
the MTPSA algorithm when we set n = 2000; pick the active
time slots Ei of each IoT device si ∈ S from [200, 300], R =
100m, m=100, 200, 300, 400, and 500; and change T from
800 to 2000 in the 2000m × 2000m detection area.
Figure 4(a) shows that the total time consumption of used
IoT devices is becoming larger with increasing T , since more
IoT devices are needed to be placed on candidate sites for
continuously observing targets as T increases when the
active time slots of IoT devices are fixed, as shown in
Figure 4(b). It is also observed that the performance gap is
becoming smaller with the increasing of m. This is because
the increase of the number of sites placing IoT devices is
becoming smaller as more and more targets are randomly
deployed on the detection area, which results in a reduction
of the number of IoT devices placed at the sites, as shown in
Figure 4(b). We also find that the number of used IoT
devices increases as T grows since each IoT device si ∈ S con-
tinuously works Ei time slots once it starts working.

Figure 5 evaluates the impact of the active time slots of
IoT devices and the size of the detection area on the perfor-
mance of the MTPSA algorithm when we set n = 2000, R =
200m, m=600, and T =2000; deploy targets in the monitor-
ing area 1500m × 1500m, 2000m × 2000m, 2500m ×
2500m, 3000m × 3000m, and 3500m × 3500m; and
assign the active time slots of each IoT device si ∈ S from
[100, 200], [200, 300], [300, 400], [400, 500], [500, 600],
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[600, 700], and [700, 800], respectively. Figure 5(a) shows
that the total time consumption of used IoT devices levels
off when Ei < ½700,800� with increasing of the active time
slots of IoT devices and increases as the size of the monitor-
ing area increases. This is because when Ei < ½700,800�, at
least three IoT devices should be placed at each placement
site to continuously observe target T time, which is obvi-
ously greater than T .

7.2. Simulations for the MAPSA Algorithm. In order to
ensure that the whole area can be covered by candidate sites,
we select candidate sites evenly in the monitoring area. As an
instance shown in Figure 6(a), given a 2000m × 2000m
monitoring area, 100 candidate sites are located on the area
and we set R=200. The process of the MLACA algorithm is
shown in Figures 6(b)–6(d). Firstly, we construct the Voro-
noi diagram of the candidate sites in L, as shown in
Figure 6(b). Secondly, we find all redundant candidate sites
from L such that all remaining candidate sites can cover
the whole area, as the red points shown in Figure 6(c).
Finally, we can obtain the placed sites of IoT devices, as
shown in Figure 6(d).

In the following, we will evaluate how the network set-
tings, the active time slots, and the size of the detection area
affect the performance of the MAPSA.

Figure 7 evaluates the impact of the active time slots of
IoT devices and the size of the detection area on the perfor-
mance of the MAPSA algorithm when we set n = 3000, R =
200m, and T =2000; deploy targets in the monitoring area
1500m × 1500m, 2000m × 2000m, 2500m × 2500m,
3000m × 3000m, and 3500m × 3500m; and assign the
active time slots of each IoT device si ∈ S from [100, 200],
[200, 300], [300, 400], [400, 500], [500, 600], [600, 700],
and [700, 800], respectively. Figure 7(a) shows that the total
time consumption of used IoT devices increases with the
increase of the active time slots of IoT devices when Ei < ½
400,500�. This is because when Ei < ½400,500�, at least five
IoT devices should be placed at each placement site to con-
tinuously observe the area T time and their total energy con-
sumption increases with Ei increasing. When Ei > ½400,500�,
the total time consumption decreases with the increasing of
Ei, since as Ei grows, the less devices are needed for working
a certain time. Figure 7(b) shows that the number of used
devices decreases with the increasing of Ei for each device.
We also find that the number of placed devices decreases
as the size of area decreases.

8. Conclusion

In this paper, we investigate the problems minimum energy
consumption of IoT devices for target coverage through
placement and scheduling (MTPS) and minimum energy
consumption of IoT devices for area coverage through place-
ment and scheduling (MAPS), which focuses on finding the
placement locations of IoT devices from candidate sites and
scheduling them to cover all targets or the whole monitoring
area such that all targets or the entire area are (or is) contin-
uously observed for a certain period of time and the total
energy consumption of the placed IoT devices is minimized.

We first propose the mathematical models for the proposed
problems and prove that they are NP-hard. Then, we pro-
pose an approximation algorithm for each of them. Finally,
extensive simulation results are shown to further verify the
performance of the proposed algorithm.
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