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With the rapid development of high tech, Internet of Things (IoT) and artificial intelligence (AI) achieve a series of achievements
in the healthcare industry. Among them, automatic glaucoma diagnosis is one of them. Glaucoma is second leading cause of
blindness in the world. Although many automatic glaucoma diagnosis approaches have been proposed, they still face the
following two challenges. First, the data acquisition of diseased images is extremely expensive, especially for disease with low
occurrence, leading to the class imbalance. Second, large-scale labeled data are hard to obtain in medical image domain. The
aforementioned challenges limit the practical application of these approaches in glaucoma diagnosis. To address these
disadvantages, this paper proposes an unsupervised anomaly detection framework based on sparse principal component
analysis (SPCA) for glaucoma diagnosis. In the proposed approach, we just employ the one-class normal (nonglaucoma)
images for training, so the class imbalance problem can be avoided. Then, to distinguish the glaucoma (abnormal) images from
the normal images, a feature set consisting of segmentation-based features and image-based features is extracted, which can
capture the shape and textural changes. Next, SPCA is adopted to select the effective features from the feature set. Finally, with
the usage of the extracted effective features, glaucoma diagnosis can be automatically accomplished via introducing the T2

statistic and the control limit, overcoming the issue of insufficient labeled samples. Extensive experiments are carried out on
the two public databases, and the experimental results verify the effectiveness of the proposed approach.

1. Introduction

Internet of Things (IoT) techniques are emerging, which are
known to be among the most critical sources of data streams
that produce massive amounts of data continuously from
numerous applications, such as transportation systems,
security systems, intrusion systems, and fault detection in
industry [1–10]. Among them, anomaly detection has drawn
tremendous interest in the past couple of years. Since science
and technology play a vital role in the medical department,
how to establish an anomaly detection big data analysis
model supported by medicine becomes a hot topic.

With the rapid growth of the worldwide population, the
count of eye diseases is also increased. Among them, glau-
coma is one of the serious eye diseases that can lead to irre-
versible vision loss [11]. According to the recent report [12],
the number of glaucoma patients is predicted to increase to

80 million by 2020 and to 111.8 million by 2040. Since glau-
coma can cause blindness, early detection and timely treat-
ment are good ways to slow down the progress, preventing
further vision loss [13]. In clinical, ophthalmologists always
employ the color fundus images to assess the optic nerve
head (ONH) for diagnosing glaucoma [14] due to its low
cost. Figure 1 depicts the structure of ONH, in which the
optic disc (OD) appears as a bright yellowish elliptical region
consisting of the central bright region as optic cup (OC) and
a peripheral region as the neuroretinal rim. Since ONH
assessment requires the qualified ophthalmologists to delin-
eate the OC and OD, it is subjective, labor-intensive, time-
consuming, and not suitable for population screening [15].

For large-scale glaucoma screening, it is necessary to use
automatic ONH assessment approaches. Since the glaucoma
caused by the enlargement OC, several quantitative indica-
tors are presented to identify the symptoms of glaucoma
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from the fundus images, such as vertical cup to disc ratio
(CDR), disc diameter, rim area, and the ISNT (inferior (I),
superior (S), nasal (N), and temporal (T)) rule [16, 17] (as
shown in Figure 1). Among these indicators, CDR is well
accepted and widely employed indicator by clinicians. The
CDR value can be calculated by the ratio of vertical cup diam-
eter (VCD) to vertical disc diameter (VDD). Normally, a
larger CDR value means the higher risk of glaucoma and vice
versa. Besides, ISNT rule includes inferior (I), superior (S),
nasal (N), and temporal (T) rules, which is used for the detec-
tion of glaucoma. For a normal subject, I has the highest value
of neuro retinal rim configuration followed by S, N, and T.

With the rapid development of pattern recognition and
machine learning, a series of automatic glaucoma diagnosis
approaches have been proposed recently [18–25]. Although
these approaches can achieve automatic glaucoma diagnosis,
there are still two challenges in the practical applications. On
one hand, the data acquisition of abnormal images is
extremely expensive in medical image domain due to the
large variations in appearance of OD. On the other hand,
it is a time consuming and tedious task to labeling the med-
ical images by the experienced clinicians. Therefore, the cost
of obtaining large-scale labeled medical images is often
expensive in clinical. In contrast, collecting a large number
of normal data is relatively easy.

As we all know, human are good at distinguishing the
abnormal images from the normal images [26]. Inspired by this,
this paper designs an automatic approach for glaucoma diagno-
sis, which just uses the normal images for training model. The
main advantages of the proposed approach are given as below:

(1) In order to improve the detection accuracy and
reduce the computational cost, the region of interest
(ROI) in retinal image is extracted by exploring the
OD location with unsupervised boundary extraction
and Hough transform

(2) Segmentation-based features and image-based fea-
tures are extracted from the obtained ROIs to capture
the shape and textural changes of the fundus images

(3) To reduce the effects caused by noises and redundancy
features, an effective feature set can be selected by
combining the elastic net penalty and PCA together

(4) In order to solve the issue of class imbalance, the T2

statistic and the control limit are designed on the
normal images, which can be used to distinguish
the abnormal images from the normal images,
achieving automatic glaucoma diagnosis

(5) Extensive experiments are carried out on the two pub-
lic fundus databases, and the experimental results
indicate that the proposed approach is effective

The remainder of this paper is arranged as below.
Section 2 gives some related works, and then, the proposed
approach is introduced in details in Section 3. Next, the
experimental results and analyses are presented in Section
4. Finally, the whole work is concluded in brief in Section 5.

2. Related Work

The existing automatic glaucoma diagnosis approaches can be
divided into two categories: machine learning- (ML-) based
approaches and deep learning- (DL-) based approaches.

2.1. Machine Learning- (ML-) Based Approaches. ML-based
glaucoma diagnosis approaches follow a fixed procedure
[27], e.g., (1) input an image; (2) preprocessing; (3) feature
extraction; and (4) classification (diagnosis). In preprocess-
ing stage, Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [28] is commonly used to reduce the
negative effects caused by noise and artifact, improving the
quality of the fundus images. In feature extraction stage, a
series of important and distinctive hand-crafted features will
be extracted to explore the concealed pixel variations in the
retinal images. The extracted hand-crafted features are clas-
sified into wavelet decomposition-based features [29],
morphological-based features [30], nonlinear-based features
[31], textural-based features [32], and image descriptor-
based features [33]. After feature extraction, the last process
is classification. Usually, with the usage of the extracted fea-
tures, a classification model can be trained which identifies
the normal class versus abnormal class. Many classifiers have
been employed to distinguish the two classes based on the
extracted features, for instance, artificial neural network
(ANN) [34], K-nearest neighbor (KNN) [32], support vector
machine (SVM) [35], least square support vector machine
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Figure 1: The structures of the optic nerve head. (a) Normal, (b) glaucoma.
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(LS-SVM) [29], and extreme learning machine (ELM) [36].
A major challenge in the machine learning-based
approaches is that the hand-crafted appropriate features
should be set beforehand. Seen from these extracted features,
most of them belong to the image-based features. Neverthe-
less, segmentation-based features are ignored, which can be
regarded as one of the most important clinical indicators
for glaucoma diagnosis. Besides, usually, the number of nor-
mal images is much larger than the abnormal images, lead-
ing to the class imbalance. Under this circumstance, the
classifier of machine learning approaches can hardly train
well, which will affect the final diagnosis performance.

2.2. Deep Learning- (DL-) Based Approaches. DL-based
approaches follow the same sequence as ML approaches
for glaucoma diagnosis. However, the major difference
between them is the deep learning network can self-learn
during the training of the network, without extracting a
series of hand-crafted features for classification. For exam-
ple, convolutional neural network (CNN) is the most com-
monly employed form of deep learning. Generally, a
structure of CNN contains (1) convolutional layers, (2) pool-
ing layers, and (3) fully connected layers. The convolutional
layer is used to extract the nonlinear features. The pooling
layer is utilized to reduce the space dimensionality of sample
and keep the important information unchanged. The fully
connected layer is to connect the every neuron in the previ-
ous layer with the neurons in the current layer of the CNN
model. Furthermore, some variations of DL, e.g., adversarial
learning [37], FCNs [38], and modified U-net [24], are used
to glaucoma diagnosis, improving the diagnosis performance.

AlthoughDL-based approaches have achievedmany break-
throughs in medical image analysis, these approaches mainly
rely on large-scale labeled data. However, in medical image
domain, the samples are always small-scale and unlabeled, so
DL-based approaches can hardly perform well [39, 40].

3. Our Approach

Our approach consists of the following three stages, includ-
ing ROI extraction, features extraction (segmentation-based
features and image-based features), and glaucoma diagnosis.
The flowchart of the proposed approach is shown in
Figure 2.

3.1. ROI Extraction. Generally, the resolution of original fun-
dus image is relatively large. Meanwhile, the region of inter-
est for glaucoma diagnosis is just a small region according to
the clinical prior knowledge. In order to reduce the influence
of the unnecessary background information and the compu-
tation cost, improving the diagnosis accuracy, the extraction
of ROI around the OD is necessary (as shown in Figure 3).

The process of ROI extraction consists of the following
three stages: first, this paper employs our previous proposed
approach named as an adaptive rough OD boundary curve
extraction based on unsupervised learning [16] to extract
the OD region (as shown in Figure 3(b)). After that, in order
to accurately locate the center of OD, the Circular Hough
Transform (CHT) is employed to the extracted OD region

according to the fact that the prior knowledge of OD is circle
in shape, depicted in Figure 3(c). At last, with the usage of
the extracted center of OD as the ROI center, according to
the clinical experience [16], this paper cuts the original
images into small images with the resolution of 400 × 400
on the REFUGE and RIM-ONE r2 databases, which are
called ROIs around the OD. An example from the REFUGE
database is shown in Figure 3(d).

Successful optic disc center localization is considered to
be that the distance between the estimated optic disc center
and the manually selected center is less than the optic disc
radius [41, 42]. Compared with the state-of-the-art OD
detection approaches, our approach is more robust to the
image quality, contrast, brightness, and different lesions.
Since human vision is more sensitive to green color, only
green channel of ROI is extracted from the RGB image for
further processing. Meanwhile, CLAHE is introduced into
the extracted green channel of ROI [28] to enhance the con-
trast (illustrated in Figure 3(e)).

3.2. Feature Extraction. OD with varying intrinsic principal
features, e.g., distinct vessel structures, sizes, and brightness,
gives more challenges for glaucoma diagnosis. To fully
explore the difference between the normal images and
abnormal images, improving the effectiveness and accuracy
of the glaucoma diagnosis, this paper describes the OD from
the following two sides. For one side, inspired by the clinical
glaucoma diagnosis, a series of segmentation-based features
are extracted to accurately capture the shape deformations
to characterize glaucoma. For another, some image-based
features are extracted to capture the shape and textual
changes in OD. We believe that taking the segmentation-
based and image-based features into a united framework
can provide complementary and independent information
for OD descriptions. The detailed descriptions of the
extracted features are given as below.

3.2.1. Extraction of Segmentation-Based Features. Based on
the extracted ROI around the OD, this paper adopts [11]
to segment the OD and OC. In clinical, for a normal fundus
image, the rim is the thickest in the inferior (I) sector and
thinnest in the temporal (T) sector (as shown in Figure 1).
Usually, experienced ophthalmologists observe inferior (I),
superior (S), nasal (N), and temporal (T) quadrants for glau-
coma diagnosis. Therefore, a series of clinical features are
extracted from the segmented OD and OC, denoted as F1
to F5 (as shown in Table 1). F1-F3 are based on rim-disc
ratio, and F4-F5 are calculated by rim profile and ISNT,
respectively. Among them, the calculation of F5 is based
on a disk-shaped region named as the NRR, obtained by
removing the OC from the OD.

The calculation process of F5 is given as below:
Figure 4(a) is the original image, and Figure 4(f) is the
NRR. The masks employed in this paper are used to measure
the NRR in each quadrant which are depicted in
Figures 4(b)–4(e). The NRR area in superior, nasal, inferior,
and temporal are, respectively, shown in Figures 4(g)–4(j),
which can be used to calculate F5.
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3.2.2. Extraction of Image-Based Features. Since the gray
level of the image on the edge is discontinuous, it has singu-
larity. Recent studies have shown that the multiresolution
features of wavelet coefficients and the localization charac-
teristics of wavelet analysis can be used to obtain the domain
features at different scales. In addition, the high frequency
information decomposed by wavelet can also be used for
multiscale edge detection [43], which is very fit for medical
image processing and analysis. Inspired by the advantages
of wavelet features, this paper employs an adaptive signal
decomposing approach, named as two-dimensional (2D)
EWT with Littlewood-Paley as an empirical wavelet [44] to
decompose the image into various frequency bands. Based
on the decomposed components of (2D) EWT, a series of
image-based features consisting of chip histogram, gray level
cooccurrence matrix (GLCM), and moment invariance are
extracted. Here, the enhanced green channel image is uti-
lized as the input of (2D) EWT. For each input image, four
frequency bands can be decomposed. The detailed image-
based features descriptions are given as below:

(a) Chip histogram features

Chip feature belongs to statistical textural feature, which
can be extracted from the second-order histogram. There are
six features in it including mean, variance, skewness, kurto-
sis, energy, and entropy. For a given gray image, t ðiÞ is the
probability density function of the intensity level i, which
is denoted as tðiÞ = HistogramðiÞ/T , i = 1, 2, 3,⋯,N . T is
the total pixels in the gray image, and N is the total number
of gray levels, in which Q is the gray level vector represented
as ½1, 2, 3,⋯,N�. The expressions of the chip histogram fea-
tures are depicted in Table 2.

(b) GLCM features

GLCM is utilized to extract the texture in an image by
doing the transition of gray level between two pixels, which
is one of the earliest approaches for texture feature extrac-
tion [45]. For each GLCM, four directions can be computed,
in which each direction has four different characteristics, i.e.,

ROI extraction
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Glaucoma No-glaucoma
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Input color
fundus image

OD rough
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OD center
localization 
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F = { F1,F2 ,..., F73 }
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Figure 2: The flowchart of the proposed approach.
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correlation, contrast, energy, and homogeneity. For each
characteristic, we extract the mean value of four different
directions. Therefore, there are four GLCM features for each
image. Suppose that G ðu, vÞ denotes (u, v) entries in nor-
malized GLCM, and the mean and standard deviation along

u and v coordinates are expressed as (μx and μy) and (σx
and σy), respectively. Table 3 gives the expressions of the
GLCM features.

(c) Moment Invariance features

(a) (b)

(c) (d)

(e)

Figure 3: (a) Original image; (b) coarse segmentation image; (c) OD localization-based CHT; (d) extracted ROI; (e) enhanced green channel
image by CLAHE.
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In order to overcome the changes of object shape, posi-
tion, and orientation [46], this paper employs the moment
invariance features for describing the OD and OC. There
are seven features in moment invariant features, and the
mathematical expressions of these features are shown in
Table 4.

The invariants λmn can be calculated by λmn = μmn/
μ1+ðm+nÞ/2
00 , in which μmn and μ00 are, respectively, denoted

as the center moment and the zeroth central moment.
After feature extraction, 73 features in which 5

segmentation-based features and 68 4 × ð6 + 4 + 7Þ image-
based features are computed for each input image, forming
a 73-dimension feature set F = fF1, F2,⋯, F73g. Each fea-
ture Fi is normalized to zero mean and unit variance by
using Fi′= ðFi − μiÞ/σi in which μi is the mean of the ith fea-
ture, and σi is the corresponding standard deviation.

3.3. Anomaly Detection for Glaucoma with SPCA. In this
subsection, we firstly review the (principal component
analysis, PCA) and sparse PCA. Then, T2 statistic of
glaucoma and the corresponding control limit are given for
glaucoma diagnosis.

3.3.1. PCA. PCA is one of the most popular dimensionality
reduction approaches, which is aimed at maximizing the
variance of projections on the new directions. For PCA, a
series of load vectors can be constructed by the orthogonal
vectors. Supposing that X ∈ RN×D is a given training sample
set, N and D denote the number of the samples and variables
(features), respectively. The objective function of PCA is
given as

max
u≠0

uTXTXu
uTu

, ð1Þ

where u ∈ RD. The solution of Equation (1) can be computed
by singular value decomposition (SVD) as

1ffiffiffiffiffiffiffiffiffiffiffi
N − 1

p X =WΣUT , ð2Þ

where W ∈ RN×N and U ∈ RD×D are unitary matrices, in
which the orthogonal column vectors in matrix U are called
the load vectors. Projecting X on the ith column has the
variance as σ2

i . Σ ∈ RN×D is a diagonal matrix where the
elements in main diagonal are the nonnegative singular

values in descending order ðσ1 ≥ σ2,⋯,≥σmin ðN ,DÞ ≥ 0Þ,
and the others are zeros.

A new load matrix P ∈ RD×A can be obtained by selecting
the first A columns in U , named as the principal component
subspace (PCS), which is represented as T = XP. For a given
new sample x, it can be projected on the PCS as

t = PTx ∈ PCS, ð3Þ

In Equation (3), A is a parameter, which is calculated by
cumulative percent variance (CPV), and this paper adopts
reference [47] to resolve it.

3.3.2. Sparse PCA. Seen from the PCA, its major work is to
acquire the maximum variance on the certain loading vec-
tors. However, in practice, some principal components are
linear relevant with each other and some of them have large
noises, which will weaken the precision of detection.
Inspired by the advantages of sparsity, sparse PCA has been
proposed by performing the maximization of objective func-
tion under the L1 norm constraint as

〠
D

j=1
uj

�� �� ≤ s, ð4Þ

where s is the number of nonzero elements in a load vector.
ujðj ∈ f1, 2,⋯,DgÞ denotes the jth element of the load vec-
tor. By introducing the aforementioned sparse constraint,
each principle component has lesser original variables.
Therefore, it not only enhances the interpretability of the
principal components but also reduces the storage space.

Many approaches have been designed to solve Equation
(4). Among them, Jolliffe and Uddin [48] proposed the most
effective approach to resolve it. The main processes are
depicted as below: first, PCA can be recast exactly by a
regression problem, such as ridge regression. Then, the
regression problem is changed to an elastic-net regression
by introducing the L1 norm constraint. For more details,
please refer to reference [49].

3.3.3. Index and Control Limit. A series of statistics have
been applied to multivariable statistical analysis. Among
them, one of the most preventative ways, namely, Hotelling’s
T2 statistic, is utilized to represent the variability in the PCS,
which is defined as

T2 = xTPΛ−1PTx, ð5Þ

Table 1: Extraction of segmentation-based features and the corresponding expressions.

Segmentation-based features Expressions

F1: vertical CDR vCDR = VCD/VDD

F2: the area ratio of rim to disc Area ratio = Rim Area/OD Area

F3: the major axis length of OD Length Major axis OD = L OD

F4: the area of rim OD Area −OC Area

F5: neuro-retinal rim (NRR) NRR in I quardrant area + NRR in S quardrant area/NRR inNquardrant area + NRR in T quardrant area
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Figure 4: Continued.
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where Λ = ΣTΣ. The sample vector x follows a multivariate
normal distribution.

N N − Að Þ
A N2 − 1
� �T2 ∼ FA,N−A, ð6Þ

where FA,N−A is an F distribution with A and N − A degrees
of freedom. For a given significance level α, the detected
image is regarded as glaucoma if

T2 ≤ T2
α ≡

A N2 − 1
� �

N N − Að Þ FA,N−A;A: ð7Þ

The whole process of the proposed glaucoma diagnosis
approach can be divided into the following four stages. In
the first stage, an unsupervised boundary curve extraction
model and Circular Hough Transform (CHT) are used to
extract ROI. In the second stage, a series of features contain-
ing segmentation-based and image-based features are
extracted from the ROI, forming the feature matrix. The
third stage is the offline training. In this part, the glaucoma
model is constructed based on spares PCA, and the control
limit L is also given. The last stage is the online testing. For
a new fundus image, first, repeat the process of stages one
and two, and then, compute the corresponding statistic; at
last, compare them with the control L for distinguishing
glaucoma from normal.

4. Experiments and Results

4.1. Databases. In experiment, we employ two public data-
bases to verify the effectiveness of the proposed approach.
The detailed descriptions of the databases are given as below:

Retinal Fundus Glaucoma Challenge (REFUGE) data-
base [50] consists of 1200 color retinal fundus images stored
in JPEG format, in which 120 are glaucomatous and 1080
are nonglaucoma images. REFUGE database is divided into
three parts: 400 training images, 400 validation images,
and 400 testing images, in which 400 training images are
acquired with a Zeiss Visucam 500 fundus camera with the
resolution of 2124 × 2056 pixels, and the 400 validation
images and 400 testing images are acquired with Canon
CR-2 device with the resolution of 1634 × 1634 pixels. In
REFUGE database, only 400 training images and 400 valida-
tion images which are labeled as “ground truth” with the
segmentation results of OD and OC and the rest 400 testing
images without labeling the ground truth. Therefore, in this
experiment, we adopt 400 training images (40 glaucoma
images and 360 nonglaucoma images) and 400 validation
images (40 glaucoma images and 360 nonglaucoma images)

(i) (j)

Figure 4: (a) Original color fundus image; (b–e) the masks in superior, nasal, inferior, and temporal, respectively. (f) NRR; (g–j) NRR in
superior, nasal, inferior, and temporal, respectively.

Table 2: Expressions of chip histogram features.

Chip
histogram
features

Expressions

Mean 〠N

i=1 t ið Þ ×Q ið Þð Þ
Variance 〠N

i=1 t ið Þ ×Q ið Þ2� �

Skewness 〠N

i=1 t ið Þ ×Q ið Þ −Meanð Þ3
h i

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p� �−3
� 	

Kurtosis 〠N

i=1 t ið Þ ×Q ið Þ −Meanð Þ4
h i

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p� �−4
� 	

Energy 〠N

i=1t ið Þ × t ið Þ
Entropy −〠N

i=1t ið Þ × log t ið Þ

Table 3: Expressions of GLCM feature.

GLCM features Expressions

Contrast 〠
u=1〠v=1 u − vð Þ2 × G u, vð Þ

Correlation 〠
u=1〠v=1uv × G u, vð Þ − μxμy/σxσy

Energy 〠
u=1〠v=1G u, vð Þ2

Homogeneity 〠
u=1〠v=1G u, vð Þ/1 + u − vð Þ2
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to train and verify the effectiveness of the proposed approach.
In total, there are 80 glaucoma images and 720 nonglaucoma
images. In experiment, 500 nonglaucoma images are ran-
domly selected constructing the training set. 20 glaucoma
images and 160 nonglaucoma images are regarded as the val-
idation set (20 + 160). And the rest 60 nonglaucoma images
and 60 glaucoma images are regarded as the testing set
(60 + 60). The random sample selection process is repeated
10 times, and the average result is regarded as the final result.

RIM-ONE r2 database [51] comprises of 455 retinal fundus
images, in which 255 are normal images and 200 are glaucoma
images. In experiment, first, all of the images in this database
are resized in the same dimensionality. And then, the ROI
extraction depicted in Section 2 is used to these images. At last,
a series of features are extracted from the obtained ROIs, which
are regarded as the inputs for our approach.

In experiment, 200 nonglaucoma images are randomly
selected constructing the training set. 25 glaucoma images
and 25 nonglaucoma images are randomly selected as the val-
idation set (25 + 25). The rest 30 nonglaucoma images and 175
glaucoma images are regarded as the testing set (30 + 175).
The random sample selection process is repeated 10 times,
and the average result is regarded as the final result.

The proposed approach is trained and tested by using
a desktop computer having 16GB random access memory
(RAM), Intel ® Core™ i7 CPU950@3.7GHz. We develop
our approach using MATLAB 2021a for training and
testing.

4.2. Evaluation Criterion. In order to evaluate the effective-
ness of the proposed approach, three evaluation criteria,
namely, accuracy, sensitivity, and specificity, are employed

Table 4: Expressions of moment invariance features.

Moment invariance features Expressions

MV1 λ20 + λ02

MV2 λ20 − λ02ð Þ2 + 4λ211
MV3 λ30 − 3λ12ð Þ2 + 3λ21 − λ03ð Þ2

MV4 λ30 + λ12ð Þ2 + λ21 + λ03ð Þ2

MV5
λ30 − 3λ12ð Þ λ30 + λ12ð Þ λ30 + λ12ð Þ2 − 3 λ21 + λ03ð Þ2� �

+ 3λ21 − λ03ð Þ λ21 + λ03ð Þ 3 λ30 + λ12ð Þ2 − λ21 + λ03ð Þ2� �
MV6 λ20 − λ02ð Þ λ30 + λ12ð Þ2 − λ21 + λ03ð Þ2
 �

+ 4λ11 λ30 + λ12ð Þ λ21 + λ03ð Þ

MV7
3λ21 − λ03ð Þ λ30 + λ12ð Þ λ30 + λ12ð Þ2 − 3 λ21 + λ03ð Þ2
 �

− λ30 − 3λ12ð Þ
λ21 + λ03ð Þ 3 λ30 + λ12ð Þ2 − λ21 + λ03ð Þ2
 �
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Figure 5: The classification performance (AUC) with different values of sparsity on the REFUGE and RIM-ONE r2 databases. (a) REFUGE
database, (b) RIM-ONE r2 database.
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in this experiment. The corresponding mathematical expres-
sions of these evaluation criteria are depicted as below:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, ð8Þ

Sensitivity =
TP

TP + FN
× 100%, ð9Þ

Specificity =
TN

TN + FP
× 100%, ð10Þ

where true positive (TP) is the number of glaucoma images
that are correctly identified; false negative (FN) is the
number of incorrectly found as nonglaucoma images; false
positive (FP) is the number of incorrectly found as glaucoma
images. true negative (TN) is the number of nonglaucoma
images that are correctly identified.

In order to evaluate the effectiveness of the proposed
approach, receiver-operating characteristics (ROC) curve
is utilized in this paper. In ROC curve, the vertical axis
is the sensitivity and the horizontal axis is (1-specificity).
The area under the ROC curve denotes as the AUC value
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Figure 6: The ROC curves of the proposed glaucoma diagnosis approach with three different kinds of feature extraction ways on the
REFUGE and RIM-ONE r2 databases.
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for measuring and describing the algorithm performance.
A higher AUC indicates that the performance of the
approach is better.

4.3. Parameter Settings and Analysis. There are two hyper-
parameters, i.e., the sparseness criterion for the SPCA stage
and the sigma-like threshold on the actual classification
stage. Here, sparsity will make principal component coeffi-
cients (the coefficients in front of each variable when form-
ing principal components) be sparse. In other words, most
of the coefficients will become zero values. In this way, we
can highlight the major parts of principal components, so
that the principal components will become easier to explain.
In order to choose suitable sparstiy, this paper employs the
commonly used ROC curve. In our experiment, the valida-
tion set is employed for parameter selection and validation.
For REFUGE database, 160 nonglaucoma images and 20
glaucoma images construct the validation set. For RIM-
ONE r2 database, the validation set consists of 20 nonglau-
coma images and 20 glaucoma images.

In our experiment, we tune the values of sparsity param-
eter by searching the grid {20, 25, 30, 35, 40, 45, 50, 55} for
REFUGE and RIM-ONE r2 databases. We test the diagnosis
performance (AUC) of the proposed approach under differ-
ent values of sparsity parameter on the REFUGE and RIM-
ONE r2 databases (as depicted in Figures 5(a) and 5(b)).
As seen from these figures, we can learn that the proposed
glaucoma diagnosis approach can achieve maximum AUC
values on the REFUGE and RIM-ONE r2 databases when
the values of sparsity are set as 40 and 30. After the sparsity
is determined, the threshold for T2 can be computed by
Equation (7).

4.4. Experimental Results and Analysis. In this subsection, we
will carry out two experiments to verify the effectiveness of
the proposed approach. For one side, the proposed approach
with different features including segmentation-based fea-
tures, image-based features, and their fusion features will
be tested, respectively, and the obtained diagnosis perfor-
mances are shown in Figure 6.

Seen from the results depicted in Figure 6, we can learn
that when the proposed approach employs the fusion fea-
tures, it can achieve the best performance on the testing
set. The main reason is that the segmentation-based and
image-based features can capture the shape and textural

changes, respectively. Nevertheless, the fusion of these fea-
tures provides complementary information for glaucoma
diagnosis, which can improve diagnosis performance.

For another, the performance of the proposed approach
is compared against the state-of-the-art approaches, i.e.,
wavelet features [52], superpixel segmentation [53], semisu-
pervised clustering [54], deep learning [55], and AWLCSC
[31]. Table 5 shows the diagnosis results obtained by differ-
ent algorithms on the REFUGE database and RIM-ONE r2
database, respectively. Among them, superpixel segmenta-
tion, wavelet features, and deep learning are supervised
learning approaches; semisupervised clustering is the semi-
supervised learning approach; AWLCSC and the proposed
approach belong to unsupervised learning approaches. For
supervised learning approaches, they can achieve good per-
formance when a large number of labeled samples are used
to train model. However, a large number of labeled data
are hard to obtain, especially for medical domain. Under this
situation, semisupervised learning and unsupervised learn-
ing have gained tremendous attention. Although these
approaches can overcome the problem of insufficient
samples, the class imbalance problem still lies in these
approaches reducing their classification performance.
Different from the existing glaucoma diagnosis approaches,
this paper just employs one-class normal data for construct-
ing model and designs the control limit for detecting the
abnormal data. Therefore, the aforementioned two limita-
tions can be avoided. According to the comparison results
depicted in Table 5, we can learn that the proposed approach
is more reliable than other tested approaches in terms of
diagnosis accuracy, indicating the effectiveness of the
proposed approach.

5. Conclusions

In this paper, we propose an unsupervised anomaly detec-
tion approach via sparse PCA for glaucoma diagnosis. Since
the ODs vary in sizes, shapes, and appearances for glaucoma
images, it can hardly construct an effective model to diag-
nose glaucoma. Instead of using the glaucoma images, this
paper just constructs the diagnosis model based on the non-
glaucoma images. Therefore, the proposed approach
overcomes the class imbalance issue, which is a hard
problem in classification. Furthermore, a series of features
including segmentation-based features and image-based
features are designed, which can capture the shape and
textural changes, respectively, improving the discrimina-
tion of the OD and OC. Experimental results indicate that
the proposed approach can achieve good glaucoma diag-
nosis performance.

The main disadvantage of the proposed approach is that
the fundus images were obtained by different equipment and
institutions, so that the trained model parameters by our
proposed approach cannot perform stable detection results.
Therefore, it is necessary to improve the generalization of
the model from different datasets, which is one of our future
research directions. Besides, more large-size databases will
be introduced to further verify the effectiveness of the
proposed approach.

Table 5: Comparison of the proposed approach against the state-
of-the-art approaches on the testing set of REFUGE database and
RIM-ONE r2 database.

Methods
Accuracy (%)
REFUGE

Accuracy (%)
RIM-ONE r2

Wavelet features [52] 58.70 59.81

Superpixel segmentation [53] 63.53 78.64

Semisupervised clustering [54] 81.95 82.76

Deep learning [55] 80.12 84.46

AWLCSC [31] 85.54 85.56

Ours 92.44 93.65
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