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Diabetic retinopathy (DR) is a worldwide problem associated with the human retina. It leads to minor and major blindness and is
more prevalent among adults. Automated screening saves time of medical care specialists. In this work, we have used different
deep learning (DL) based 3D convolutional neural network (3D-CNN) architectures for binary and multiclass (5 classes)
classification of DR. We have considered mild, moderate, no, proliferate, and severe DR categories. We have deployed two
artificial data augmentation/enhancement methods: random weak Gaussian blurring and random shift along with their
combination to accomplish these tasks in the spatial domain. In the binary classification case, we have found the performance
of 3D-CNN architecture trained by deploying combined augmentation methods to be the best, while in the multiclass case, the
performance of model trained without augmentation is the best. It is observed that the DL algorithms working with large
volumes of data may achieve better performances as compared to the methods working with small volumes of data.

1. Introduction

Diabetes weakens the blood sugar regulation process inside
the human body. In the year 2017, approximately 451 mil-
lion peoples were suffering from this disease. A higher level
of blood sugar severely cripples human body organs leading
to risky complications such as coronary episode, vision loss,
cataracts, glaucoma, retinopathy, and dementia. A growing
population of peoples, irrespective of age, suffering from

diabetes have problems in vision termed as diabetic retinop-
athy (DR) [1–4].

In clinical settings, four stages are generally involved in
the assessment of DR, which are mild, moderate, severe,
and proliferative retinopathy, respectively. In the earliest
stage, microaneurysms, which are balloon-like structures,
are formed in the small veins of the retina which are
obstructed in the moderate stage. In the final stages, visual
deficiency can occur [2].
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Problems associated with DR can be treated in initial
stages. The human eye is made up of optic nerves/discs,
and the images of the eye can be segmented to get a good
classification accuracy of different stages involved in DR
[2]. Fundus images display the existence of exudates, hemor-
rhages, and other eye deficits and are graded manually by a
limited number of ophthalmologists whose numbers are
shrinking every year [3]. Microaneurysms, hemorrhages,
hard exudates, cotton wool spots, neovascularization, and
macular edema are some of the characteristics of DR [5, 6].
For the screening of DR, at the level of an image, “normal”
category contains no lesion while “abnormal” category con-
tains at least one lesion. A computer-aided diagnostic system
can help health care specialists in alleviating variabilities.
Deep learning (DL) is a popular method for analysing retinal
fundus images [7, 8]. It captures high-level features through-
out the learning process effectively adapting to any type of
noise [9] thus forming a natural solution for identifying
retinal diseases.

Various algorithms have been proposed for the examina-
tion of scan reports to diagnose DR [10–12]. Usually,
researchers have focused on automatic recognition of lesions
associated with DR [13–15]. In [16], the authors deployed
convolutional neural networks (CNNs) to obtain a precision
of 75% on the validation dataset for classifying DR images in
the presence of artificial data augmentation/enhancement
techniques. Shanthi and Sabeenian in [17] classified the
fundus images employing a modified AlexNet architecture
validated using Messidor database. The authors in [18] used
transfer learning architectures, such as AlexNet, VGGNet,
GoogleNet, and ResNet to reach a recognition rate of
95.68% exploiting publicly available Kaggle platform. A full
patch-based CNN architecture is designed in [19] using only
28 retinal images achieving a sensitivity of 0.940. Authors in
[2] constructed a 3D capsule network and validated their
model on the Messidor dataset to achieve an accuracy of
98.64% on the stage 3 fundus images. In [4], a deep and
densely connected network was designed to classify
Messidor-2 and EyePACS datasets to attain a precision of
95% on Messidor-2 and 88% on the EyePACS dataset.
Researchers in [20] used CNNs to achieve a sensitivity of
90% on the EyePACS dataset and a sensitivity of 87% on
Messidor-2 dataset. Sayres et al. [21] deployed DL models
achieving a sensitivity of 91% on Messidor-2 and a sensitiv-
ity of 94.5% on the EyePACS datasets. The work in [22]
employed transfer learning-based VGG-19 architecture to
classify 9 retinal diseases and one normal retina class with
limited number of samples to obtain an accuracy of 30.5%
when considering all the ten categories with the deployment
of translation, rotation, and brightness change augmentation
methods. The researcher used a deep CNN architecture [23]
on the EyePACS dataset achieving a sensitivity of 98%
deploying rotation, shearing, flipping, zooming, cropping,
Krizhevsky augmentation, and translation as augmentation
methods. Shankar et al. [24] proposed a DL model deploying
histogram-based segmentation and a synergic network
achieving an accuracy of 99.28% on the classification task
for the Messidor dataset. Beede et al. [25] conducted a study
on the clinical characterization of eye screening workflows

for the detection of diabetic eye disease. They discovered fac-
tors such as gradability, Internet speed and connectivity,
nursing workflows, and patient experience to be responsible
for the model’s performance. Khare et al. [26] proposed a
firefly algorithm for dimensionality reduction, principal
component analysis for feature extraction, and a deep neural
network (DNN) model for the classification of DR to
achieving an accuracy of 97%, precision and recall of
96%, specificity of 95%, and a sensitivity of 92% for the
binary classification task. Qureshi et al. [27] proposed a
DL architecture based on active learning for multiclass
(e.g., 5 classes) classification of DR images from EyePACS
benchmark for achieving a sensitivity of 92.2%, specificity
of 95.1%, F-measure of 93%, and an accuracy of 98% on
a wide range of fundus images. Das et al. [28] utilized maxi-
mal principal curvature, adaptive histogram equalization,
morphological opening, and a CNN-based classifier to
achieve an accuracy of 98.7% on DIARETDB1 dataset. Li
et al. [29] presented a deep ensemble algorithm for the detec-
tion of DR using retinal fundus images. They exploited
Inception-v4 architecture on Messidor-2 dataset to achieve
an area under the curve of 0.994, sensitivity of 0.930, and a
specificity of 0.971. Limwattanayingyong et al. [30] com-
pared the screening of DR in a longitudinal setting via DL
and human grading. They achieved a prevalence rate of
5.1% using DL while they observe a reduction in prevalence
rate on a two-year follow-up. Tsiknakis et al. [31] provided
an overview of DR detection based on fundus images
discussing several aspects such as datasets, preprocessing
techniques, and DLmodels for the characterization of impor-
tant lesions. Karakaya and Hacisoftaoglu [32] compared
different smart phone-based solutions such as iExaminer,
D-Eye, Peek Retina, and iNview finding that field of view is
the most important parameter for the detection of DR where
iNview provides the largest and iExaminer provides the
smallest value for this field.

Few-shot learning has been a topic of considerable
interest where very few examples are used to categorize clas-
ses especially those classes that are not presented during
training [33–35]. Fine-tuning is a common approach for
few-shot learning. These systems require complex inference
mechanisms due to the processing of complex inductive
bias. Meta learning, augmentation/generative met-hods,
transfer learning, and semisupervised methods are some of
the typical approaches for this type of learning.

Besides health issues, researchers in academia and indus-
try also investigated other problems in science, technology,
and engineering using various DL-based approaches [36–50].

Although the reported studies offer competitive solu-
tions to the binary and multiclass classification of DR, most
of them are geared towards utilizing information in the 2D
domain. Higher dimensions, such as 3D, offers rich scale
and geometry information, which are challenging solutions
for computer vision algorithms [51–53]. There is a need
for studies to utilize the information offered by higher
dimensions for these tasks. To take advantage of these repre-
sentation learning methods on a limited number of samples
[54] in the presence of data augmentation, we have used a
3D-CNN architecture [55] in the spatial domain for one
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binary and one multiclass classification task on the DR data-
sets. We have employed random weak Gaussian blurring
and random shift as data augmentation/enhancement tech-
niques along with their combination to study the impact of
these methods on both classification tasks.

This work contributes to the existing literature on the
classification of DR in the following ways. To the best of
authors’ knowledge, very few researches have been carried
out in the literature to solve this problem in the 3D domain.
This study is designed to achieve that which offers the
advantage by considering both spatial and temporal dimen-
sions simultaneously. Impact of different data augmentation
schemes on the final classification performance is also worth
investigating especially in the 3D domain. Few-shot learning
is also a problem worth investigating as limited number of
samples is a bottleneck in achieving good classification per-
formances using DL methods.

The remaining sections of this paper are organized as
follows. A brief description of the datasets is given in Section
2, while Section 3 provides the details of the methods used in
this study. Section 4 presents the details of the conducted
experiments. Section 5 provides results and a thorough dis-
cussion. Finally, conclusions are drawn in Section 6 from
the work presented.

2. Dataset Description

We have used two datasets to carry out the experiments. The
first one named TeleOphta [3] is a database of fundus images
with exudates and microaneurysm lesions. Using this data-
base, we have constructed 99 3D volumes of healthy subjects
and 83 3D volumes of diseased class that show signs of exu-
dates and microaneurysms, and these volumes are split at
the subject level [56]. Random shifting and random weak
Gaussian blurred augmentation techniques are deployed to
enhance the dataset. Some samples of the images are shown
in Figure 1. The volume size is 210 × 210 × 12.

The second dataset has Gaussian filtered retina scan
images to detect DR with five categories, which are no, mild,
moderate, severe, and proliferate. The size of the 3D volumes
is 512 × 512 × 2. In this database, we have 262 3D volumes of
each of these categories that are split at the subject level [56].
Some samples of the images that are present in the database
are shown in Figures 2–4, respectively. We have imple-
mented random shifting and random weak Gaussian blurred
augmentation techniques to enhance the dataset. This data-
set is taken from the Kaggle website. All the 3D volumes in
both these databases are normalized to have intensity values
in the range between 0 and 255.

(a) Diseased class (b) Diseased class with random weak

Gaussian blurred augmentation

(c) Diseased class with ransom shifted augmentation

(d) Healthy class (e) Healthy class with random shifted augmentation (f) Healthy class with random weak

Gaussian blurred augmentation

Figure 1: Sample images in the TeleOphta database with random shifted and random weak Gaussian blurred augmentation methods for the
binary classification task.
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3. Methodology

In this work, we have considered both binary and multi-
class classification tasks using different DL-based 3D-CNN
architectures. These architectures are presented visually in
Figures 5 and 6, respectively.

As given in Figure 5, there are small differences between
the architectures deployed without augmentation, combined
augmentation schemes, and with random weak Gaussian
blurring and random shifted augmentation schemes. Feature
maps in the convolutional layers are 10 for the combined
augmentation scheme, 8 for no augmentation, and 9 for
the classification tasks involving random weak Gaussian
blurring and random shifted augmentation schemes. Rest
of the architectures in Figure 5 are equivalent. An input layer
accepts a volume of size 210 × 210 × 12 with rescale-zero-
one normalization method that scales the values of the
incoming input between 0 and 1 according to the minimum
and maximum values per channel. After that, a block that is
repeated 5 times named block-A consists of a 3D convolu-
tional layer, batch normalization layer, rectified linear nit
(ReLU) activation layer, and a max pooling 3D layer which
is used for the extraction, normalization, and downsizing
of feature maps. Subsequently, there is a block which is

repeated a single time named block-B consisting of 3 fully
connected (FC) layers with number of neurons equal to
300, 150, and 2, one dropout layer with probability 0.1,
and, finally, a softmax and a classification layer to culminate
the binary classification task. ReLU is equivalent to max
ðx, 0Þ. Batch normalization [57] is another technique used
for the improvement of training efficiency through a
reduction in the statistical difference between the fundus
volumes [58]. It contributes to a rapid convergence and
a reduction in sensitivity during learning process [59].
Dropout [60] is effective in reducing the overfitting of
models by omitting both hidden and visible units during
the training process. It is a type of regularization method
that prevents complex formation of adaptations on the
training data. Weight and bias L2 factors are added to
encourage smaller weights and biases by penalizing a net-
work based on the size of weights and biases. Transformation
of the input values of the softmax function can be interpreted
as probabilities. Table 1 shows detailed 3D-CNN architecture
hyperparameters for the binary classification task with 8 fea-
ture maps in the convolutional 3D layer.

As given in Figure 6, there are small architectural differ-
ences between the architectures deployed using no augmen-
tation, combined augmentation schemes, and with random

(a) Mild diabetic retinopathy (b) Mild diabetic retinopathy with random

weak Gaussian augmentation

(c) Mild diabetic retinopathy with

random shifted augmentation

(d) Moderate diabetic retinopathy (e) Moderate diabetic retinopathy with random

weak Gaussian blurred augmentation

(f) Moderate diabetic retinopathy with

random shifted augmentation

Figure 2: Sample images of mild and moderate classes in the Kaggle DR database with random shifted and random weak Gaussian blurred
augmentation methods.
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weak Gaussian blurring and random shifted augmentation
schemes. The numbers of features maps in the convolutional
layer are 12 for combined augmentations, 10 for no augmen-
tation, and 11 for random weak Gaussian blurring and ran-
dom shifted augmentation scheme-based classification tasks.
The rest of the architectures are equivalent. An input layer

accepts a volume of size 512 × 512 × 2 with zero centre nor-
malization applied to the 3D volume. After that, there comes
a block that is repeated 6 times named block-A consisting of
a feature extracting convolutional layer, batch normalization
layer, exponential linear unit (ELU) activation layer, and a
max pooling 3D layer that is used for the extraction,

(a) Proliferative diabetic retinopathy (b) Proliferative diabetic retinopathy with random

weak Gaussian blurred augmentation

(c) Proliferative diabetic retinopathy with

random shifted augmentation

(d) Severe diabetic retinopathy (e) Severe diabetic retinopathy with random

weak Gaussian blurred augmentation

(f) Severe diabetic retinopathy with

random shifted augmentation

Figure 3: Sample images of severe and proliferative classes in the Kaggle DR database with random shifted and random weak Gaussian
blurred augmentation methods.

(a) No diabetic retinopathy (b) No diabetic retinopathy with random weak

Gaussian blurred augmentation

(c) No diabetic retinopathy random

shifted augmentation

Figure 4: Sample images of no DR class in the Kaggle DR database with random shifted and random weak Gaussian blurred augmentation
methods.
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normalization, and downsizing of feature maps. After that,
there is another block that is repeated a single time named
block-B consisting of 3 FC layers with 500, 300, and 5 neu-
rons, one dropout layer with probability 0.1, and, finally, a
softmax and a classification layer to culminate the multiclass
(5 classes) classification task. ELUs [61] solve the vanishing
gradient problem by having values in the negative region
allowing them to push mean unit activations closer to zero
but with lower computational complexity. Mathematically,

ELU α > 0ð Þ:
x, x ≥ 0,

α ex − 1ð Þ, x < 0:

(
ð1Þ

Table 2 shows detailed 3D-CNN architecture hyperpara-
meters for the multiclass classification task with 10 feature
maps in the convolutional 3D layer.

4. Experiments

We have performed experiments in the spatial domain for
both binary and multiclass classification tasks to differentiate
between the different categories of DR deploying two data
augmentation methods: random weak Gaussian blurring
and random shifting. We set the σ value to 1.5 for the ran-

dom weak Gaussian blurring and shift value to 1 or 2 pixels
for the random shifting augmentations. We have also com-
bined the training samples of both these augmentation
methods. We have carried out the experiments related to
the following tasks: (1) binary classification of healthy/dis-
eased classes without augmentation, (2) binary classification
of healthy/diseased classes with random weak Gaussian
blurring augmentation, (3) binary classification of healthy/
diseased classes with random shifting augmentation, (4)
binary classification of healthy/diseased classes with com-
bined random shifting and random weak Gaussian blurring
augmentation methods, (5) multiclass classification without
augmentation, (6) multiclass classification with random
weak Gaussian blurring augmentation, (7) multiclass classi-
fication with random shifting augmentation, and, finally,
(8) multiclass classification with combined random shifting
and random weak Gaussian blurring augmentation methods.
A number of samples in the training and validation splits are
72 and 8 for each class, respectively, in the case of binary clas-
sification task. We have also created a test split and place 19
samples of healthy class and 3 samples of diseased class in
this split. To run experiments on the test split, we have
deployed complete dataset of 80 samples of each class in
the training split and only samples of the test subset in the
validation split.

FC layer (no.of neurons = 300, weight&biasL2
factors = 0.00005)

FC layer (no.of neurons = 2, weight&biasL2
factors = 0.00005)

FC layer (no.of neurons =150, weight&biasL2
factors = 0.00005)

Dropout layer (probability = 0.1)

Softm ax layer

Classification layer

Image 3D input layer (size of volume = 210×210×12,
normalization method = zero-one)

Block-A×5 times

Max pooling 3D layer (filter size =2×2×2,stride = 2)

Block-B×1 time

Batch normalization layer

ReLU layer

Block-A Block-B
Convolution 3Dlayer (kernal size = 3×3×3,

feature maps =8,9or 10 ,
weight&biasL2 factors =0.00005)

Figure 5: Architectures for binary classification (healthy/diseased) tasks without augmentation, with random shifted and random weak
Gaussian blurred augmentation schemes, and by combined augmentation schemes. A tenfold cross-validation approach is used for
hyperparameter selection.
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Max pooling 3D layer (filter size =2×2×2,stride = 2)

Batch normalization layer

ELU layer (alpha = 1)

Convolution 3Dlayer (kernal size = 3×3×3,
feature maps =10,11 or 12 ,

weight&biasL2 factors =0.00005)

Block-A

FC layer (no.of neurons = 500, weight&biasL2
factors = 0.00005)

FC layer (no.of neurons = 5, weight&biasL2
factors = 0.00005)

FC layer (no.of neurons = 300, weight&biasL2
factors = 0.00005)

Dropout layer (probability – 0.1)

Softm ax layer

Classification layer

Block-B

Image 3D input layer (size of volume = 512×512×2,
normalization method = zero centre)

Block-A×6 times

Block-B×1 time

Figure 6: Architectures for multiclass classification tasks without augmentation, with random shifted and random weak Gaussian blurred
augmentation schemes, and by combined augmentation schemes. A tenfold cross-validation approach is used for hyperparameter selection.

Table 1: Architecture hyperparameters for the proposed 3D-CNN model for binary classification task with 8 feature maps in the
convolutional layer.

Layer Filter size Number of filters Stride size Dropout rate Output size

Conv1+BN+ReLU 3 × 3 × 3 8 1 — 8 × 210 × 210 × 12

MaxPool1 2 × 2 × 2 — 2 — 8 × 105 × 105 × 6

Conv2+BN+ReLU 3 × 3 × 3 8 1 — 8 × 105 × 105 × 6

MaxPool2 2 × 2 × 2 — 2 — 8 × 53 × 53 × 3

Conv3+BN+ReLU 3 × 3 × 3 8 1 — 8 × 53 × 53 × 3

MaxPool3 2 × 2 × 2 — 2 — 8 × 27 × 27 × 2

Conv4+BN+ReLU 3 × 3 × 3 8 1 — 8 × 27 × 27 × 2

MaxPool4 2 × 2 × 2 — 2 — 8 × 14 × 14 × 1

Conv5+BN+ReLU 3 × 3 × 3 8 1 — 8 × 14 × 14 × 1

MaxPool5 2 × 2 × 2 — 2 — 8 × 7 × 7 × 1
FC 1 — 300 — — 300

FC 2 — 150 — — 150

FC 3 — 2 — — 2

Dropout — — — 0.1 2

Softmax — — — — 2

FC: fully connected; MaxPool: maximum pooling; BN: batch normalization; ReLU: rectified linear unit; Conv: convolutional.
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A number of samples in the training and validation splits
are 225 and 25 for each class, respectively, in the case of mul-
ticlass classification task. We have also created a test split
and place 12 samples of each class in this split. To run exper-
iments on the test split, we have employed complete dataset
of 250 samples of each class in the training split and only
samples of the test subset in the validation split.

For experiments on the binary classification tasks, we
have used the following settings: minibatch size is set to 2,
initial learning rate is set to 0.001, epochs are set to 50, learn-
ing rate schedule is set to piecewise, optimization algorithm
is Adam [62], categorical cross-entropy is chosen as a loss
function, total number of experiments equals 41, while time
taken to perform these experiments is approximately 642
minutes or 10.7 hours.

For experiments on the multiclass classification tasks, we
have considered the following settings: minibatch size is set
to 2, initial learning rate is set to 0.001, epochs are set to
30, learning rate schedule is set to piecewise, optimization
algorithm is Adam, loss function is categorical cross-
entropy, total number of experiments equals 41, while time
taken to perform these experiments is approximately 8448
minutes or 140 hours.

5. Results and Discussion

For binary classification between healthy and diseased clas-
ses, the experimental results are presented in Tables 3 and
4, respectively. As a visual aid, Figure 7 presents the results
given in Table 3 while Figure 8 presents the results given
in Table 4. We have used accuracy, F1-score, Matthews

Table 2: Architecture hyperparameters for the proposed 3D-CNN model for multiclass classification task with 10 feature maps in the
convolutional layer.

Layer Filter size Number of filters Stride size Dropout rate Output size

Conv1+BN+ELU 3 × 3 × 3 10 1 — 10 × 512 × 512 × 2

MaxPool1 2 × 2 × 2 — 2 — 10 × 256 × 256 × 1

Conv2+BN+ELU 3 × 3 × 3 10 1 — 10 × 256 × 256 × 1

MaxPool2 2 × 2 × 2 — 2 — 10 × 128 × 128 × 1

Conv3+BN+ELU 3 × 3 × 3 10 1 — 10 × 128 × 128 × 1

MaxPool3 2 × 2 × 2 — 2 — 10 × 64 × 64 × 1

Conv4+BN+ELU 3 × 3 × 3 10 1 — 10 × 64 × 64 × 1

MaxPool4 2 × 2 × 2 — 2 — 10 × 32 × 32 × 1

Conv5+BN+ELU 3 × 3 × 3 10 1 — 10 × 32 × 32 × 1

MaxPool5 2 × 2 × 2 — 2 — 10 × 16 × 16 × 1

Conv6+BN+ELU 3 × 3 × 3 10 1 — 10 × 16 × 16 × 1

MaxPool6 2 × 2 × 2 — 2 — 10 × 8 × 8 × 1
FC 1 — 500 — — 500

FC 2 — 300 — — 300

FC 3 — 5 — — 5

Dropout — — — 0.1 5

Softmax — — — — 5

FC: fully connected; MaxPool: maximum pooling; BN: batch normalization; ELU: exponential linear unit; Conv: convolutional.

Table 3: Performance metrics for the binary classification tasks
without augmentation, with random weak Gaussian blurred
augmentation, with random shift augmentation, and with
combined augmentations.

Task Performance metrics

Without augmentation

Accuracy = 55:63%
F1 − score = 56:44%

MCC = 0:1126
Sensitivity = 57:5%
Specificity = 53:75%
Precision = 55:42%

With random weak Gaussian
blurred augmentation

Accuracy = 59:38%
F1 − score = 60:12%

MCC = 0:1876
Sensitivity = 61:25%
Specificity = 57:5%
Precision = 59:04%

With random shifted augmentation

Accuracy = 57:5%
F1 − score = 58:54%

MCC = 0:1502
Sensitivity = 60%
Specificity = 55%
Precision = 57:14%

With combined augmentations
(along with test split)

Accuracy = 59:89%
F1 − score = 63:32%

MCC = 0:1908
Sensitivity = 63:64%
Specificity = 55:42%
Precision = 63%
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correlation coefficient (MCC), sensitivity, specificity, and
precision as performance metrics to assess the performance
of different 3D-CNN architectures for this task which are
trained from scratch. Mathematically,

Accuracy = TP + TN
TP + TN + FP + FN

, ð2Þ

F1‐score =
2TP

2TP + FP + FN
, ð3Þ

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

ð4Þ

Sensitivity =
TP

TP + FN
, ð5Þ

Specificity =
TN

TN + FP
, ð6Þ

Precision =
TP

TP + FP
, ð7Þ

where TP, TN, FP, and FN stand for true positive, true neg-
ative, false positive, and false negative samples, respectively.
Ranking of the methods for the binary classification tasks
based on individual and collective performance metrics is
given in Table 4.

As given in Tables 3 and 4, validation on test split is
performed with the model trained using combined augmen-
tation methods. The best performing model is the one that is
trained using combined augmentation methods, then comes
the model that is trained using random weak Gaussian
blurred augmentation method, followed by the model
trained using random shift augmentation scheme, and,
finally, the model that does not use augmentation at all
performed the worst. Here, combined augmentations mean
combination of both random weak Gaussian blurred aug-
mentation and random shifted augmentation schemes.
Except for specificity metric, the rankings for all the methods
remained the same which shows strong correlation between
these performance metrics.

For the multiclass classification task, we have considered
overall accuracy, relative classifier information (RCI), confu-
sion entropy (CEN), index of balanced accuracy (IBA), geo-
metric mean (GM), and MCC as performance metrics.
Overall accuracy is the ratio of values that are correctly pre-
dicted to the sum of total values.

Tables 5–8 lists the complete statistics of the perfor-
mance metrics for the multiclass classification tasks. In these
tables, class-wise statistics for CEN, IBA, GM and MCC per-
formance metrics as well as overall accuracy and RCI values
for each of the four tasks, i.e., without augmentation, with
random weak Gaussian blurred augmentation, with random
shifted augmentation, and with combined augmentation
schemes, are presented. Here, combined augmentations
mean combination of both random weak Gaussian blurred
augmentation and random shifted augmentation schemes.
Finally, the statistics of the task involving test subset vali-
dated on the model trained without augmentation are also
presented in these tables.

Table 9 lists the summary statistics of the performance
metrics for the multiclass classification task, while Figure 9
visually presents the results given in Table 9. In this table,
averages of CEN, IBA, GM, and MCC performance metrics
are calculated by summing their class-wise values and divid-
ing with 5. The RCI and overall accuracy values remain the
same as in Table 5.

Table 10 presents a system of ranking based on the sta-
tistics given in Table 9 for the multiclass classification task.
As a visual aid, Figure 10 visually presents the results given
in Table 10. In this table, ranking based on individual perfor-
mance metrics as well as an overall ranking obtained by
considering the individual performance-based metrics is
presented. Overall accuracy, RCI, IBA, GM, and MCC based
ranking is obtained by considering the fact that higher values

Table 4: Ranking of methods for the binary classification tasks
based on performance metrics without augmentation, with
random weak Gaussian blurred augmentation, with random shift
augmentation, and with combined augmentations.

Performance metric Ranking

Accuracy

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation

F1-score

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation

MCC

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation

Sensitivity

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation

Specificity

(1) With random weak Gaussian
blurred augmentation

(2) With combined augmentations
(3) With random shift augmentation
(4) Without augmentation

Precision

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation

Overall performance

(1) With combined augmentations
(2) With random weak Gaussian

blurred augmentation
(3) With random shift augmentation
(4) Without augmentation
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Figure 8: Visual presentation for ranking of methods for the binary classification tasks based on performance metrics.

Table 5: Overall accuracy, RCI, and class-wise CEN values for the multiclass classification tasks without augmentation, with random weak
Gaussian blurred augmentation, with random shift augmentation, and with combined augmentations.

Method
Overall
accuracy

RCI
CEN
(mild)

CEN
(moderate)

CEN
(no)

CEN
(proliferate)

CEN
(severe)

Without augmentation 36.64% 0.0867 0.7752 0.8557 0.7734 0.5673 0.8015

With random weak Gaussian blurred augmentation 31.04% 0.038 0.8086 0.8458 0.8391 0.7008 0.8272

With random shifted augmentation 30.56% 0.0546 0.8259 0.8834 0.8242 0.6418 0.8165

With combined augmentations 33.12% 0.0647 0.793 0.8352 0.8085 0.6155 0.8341

Test set validated on the model trained without augmentation 26.66% 0.1522 0.6992 0.6274 0.9175 0.6904 0.7688

Table 6: Class-wise IBA values for the multiclass classification tasks without augmentation, with random weak Gaussian blurred
augmentation, with random shift augmentation, and with combined augmentations.

Method IBA (mild) IBA (moderate) IBA (no) IBA (proliferate) IBA (severe)

Without augmentation 0.1366 0.0649 0.1232 0.4747 0.1183

With random weak Gaussian blurred augmentation 0.1176 0.09 0.088 0.2458 0.1048

With random shifted augmentation 0.0967 0.0631 0.0833 0.3109 0.1095

With combined augmentations 0.1203 0.1 0.0997 0.3086 0.1031

Test set validated on the model trained without augmentation 0.1475 0.1974 0 0.073 0.1388
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Figure 7: Visual presentation of the performance metrics for the binary classification tasks.
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of these metrics represent better classification while CEN-
based ranking is obtained by considering that lower values
are desirable as they represent better classification.

In Table 10, it can be observed that the model that per-
forms the best is the one that is trained without augmenta-
tion followed by the model that is trained with combined
augmentations, followed by the models that are trained with
random weak Gaussian blurred and random shifted aug-
mentation methods. Training without augmentation has
the best performance considering individual and overall
metric-based rankings, while combined augmentations have
second best overall performance. Random shifted and ran-
dom weak Gaussian blurred augmentation methods have
equal performances. We can observe strong correlation
among these performance metrics as depicted in their
rankings where without augmentation and with combined
augmentations can be completely specified by only a single
performance metric alone. However, there is a clear differ-
ence between performances of methods employing random
shift augmentation and random weak Gaussian blurred aug-
mentation methods for the multiclass classification tasks
when they are observed from individual metric-based
performances alone. GM, MCC, and overall accuracy of
methods employing random shifted augmentation are the
worst while RCI, CEN, and IBA of methods employing ran-
dom weak Gaussian blurred augmentation are the worst
which signifies that these methods have disparities leading
to difference in the opinion of these performance metrics.
These differences could also be due to the way CNNs gener-
alize to image transformations at a small scale [63].

For the multiclass classification task, we have found that
the instances of proliferate DR class have the highest diag-
nostic performance. The performance of DL architectures
is better in the case of binary classification than in the case
of multiclass classification tasks, and this result is quite
natural. Furthermore, architectures that combine different
augmentation methods tend to perform better than those
that do not. Furthermore, we have found the performance

Table 7: Class-wise GM values for the multiclass classification tasks without augmentation, with random weak Gaussian blurred
augmentation, with random shift augmentation, and with combined augmentations.

Method GM (mild) GM (moderate) GM (no) GM (proliferate) GM (severe)

Without augmentation 0.5297 0.4162 0.5131 0.7558 0.5056

With random weak Gaussian blurred augmentation 0.4972 0.4523 0.4557 0.6307 0.4815

With random shifted augmentation 0.4635 0.3925 0.4513 0.6817 0.4889

With combined augmentations 0.5001 0.4639 0.4754 0.6891 0.476

Test set validated on the model trained without augmentation 0.4859 0.6038 0 0.4841 0.527

Table 8: Class-wise MCC values for the multiclass classification tasks without augmentation, with random weak Gaussian blurred
augmentation, with random shift augmentation, and with combined augmentations.

Method
MCC
(mild)

MCC
(moderate)

MCC
(no)

MCC
(proliferate)

MCC
(severe)

Without augmentation 0.1803 0.043 0.1599 0.4756 0.1484

With random weak Gaussian blurred augmentation 0.1238 0.0639 0.0773 0.3103 0.1093

With random shifted augmentation 0.077 -0.0176 0.0821 0.3933 0.1194

With combined augmentations 0.1264 0.0695 0.1051 0.4232 0.097

Test set validated on the model trained without augmentation 0.03636 0.3015 -0.2629 0.25 0.1666

Table 9: Summary statistics of performance metrics for the
multiclass classification tasks without augmentation, with random
weak Gaussian blurred augmentation, with random shift
augmentation, and with combined augmentations.

Task Performance metrics

Without augmentation

Overall accuracy = 36:64%
RCI = 0:0867

Average CEN = 0:75462
Average IBA = 0:18354
Average GM= 0:54408
AverageMCC = 0:20144

With random weak Gaussian
blurred augmentation

Overall accuracy = 31:04%
RCI = 0:038

Average CEN = 0:8043
Average IBA = 0:12924
Average GM= 0:50348
AverageMCC = 0:13692

With random shift augmentation

Overall accuracy = 30:56%
RCI = 0:0546

Average CEN = 0:79836
Average IBA = 0:1327
Average GM= 0:49558
AverageMCC = 0:13084

With combined augmentations

Overall accuracy = 33:12%
RCI = 0:0647

Average CEN = 0:77726
Average IBA = 0:14634
Average GM= 0:5209

AverageMCC = 0:16424
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of architectures trained using random weak Gaussian blur-
ring augmentation to be better than those that are trained
using random shifted augmentation as the global sum of
the feature maps will not be invariant to translation while
performing the operation of convolution.

Architecture engineering has an impact on the perfor-
mances of classification tasks. It can be observed that, for
the binary classification tasks, large number of feature maps
in the convolutional layer helps in getting better perfor-
mances when compared with small number of feature maps
in this layer. We can see that combined augmentation
methods whose performances are better than other methods
used large number of feature maps in the convolutional fea-
ture extracting layers. However, interesting observations can
be seen for the multiclass classification tasks, where architec-
tures with small number of feature maps help in getting the
best performance overall. We can see architectures that did
not employ any form of data augmentation performed better
than those that employed data augmentation and these
architectures employed less number of feature maps in the
convolutional feature extracting layers. However, more fea-
ture maps in the convolutional layers help in getting better
performances on the multiclass classification task as can be
seen for the combined augmentations case that outper-
formed single augmentations for this task by using more
complex architecture. In general, we can see the advantages
brought by using deeper architectures in comparison with
shallower ones when both these tasks (binary and multiclass
classifications) are considered.

The suboptimal performance of DL architectures could
be explained by the limited number of samples that we have
used during training and validation processes [22]. Modern
DL architectures require a lot of samples to train without
experiencing overfitting issues. Another major limitation of
our study is the lack of validation on a multicentre validation
set which will prove beneficial in clinical practice. Finally, we
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Summary of the statistics for the multiclass classification tasks

Multiclass classification task without augmentation
Multiclass classification task with random weak Gaussian blurred augmentation
Multiclass classification task with random shifted augmentation
Multiclass classification task with combined augmentations

Figure 9: Visual presentation for summary statistics of performance metrics for the multiclass classification tasks.

Table 10: Ranking of methods based on performance metrics for
the multiclass classification tasks without augmentation, with
random weak Gaussian blurred augmentation, with random shift
augmentation, and with combined augmentations.

Task Ranking

Without augmentation

Overall accuracy − based ranking = 1
RCI − based ranking = 1
CEN − based ranking = 1
IBA − based ranking = 1
GM − based ranking = 1
MCC − based ranking = 1

Overall ranking = 1

With random weak
Gaussian blurred
augmentation

Overall accuracy − based ranking = 3
RCI − based ranking = 4
CEN − based ranking = 4
IBA − based ranking = 4
GM − based ranking = 3
MCC − based ranking = 3

Overall ranking = 3

With random shift
augmentation

Overall accuracy − based ranking = 4
RCI − based ranking = 3
CEN − based ranking = 3
IBA − based ranking = 3
GM − based ranking = 4
MCC − based ranking = 4

Overall ranking = 3

With combined
augmentations

Overall accuracy − based ranking = 2
RCI − based ranking = 2
CEN − based ranking = 2
IBA − based ranking = 2
GM − based ranking = 2
MCC − based ranking = 2

Overall ranking = 2
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hope that this pilot study deploying 3D CNN architectures
with data augmentation schemes can be supportive to eye
care specialists on the deployment of DL methods in terms
of their clinical use.

6. Conclusions

In this research, we have utilized different DL methods to
study both binary and multiclass classification problems
to differentiate between different stages of DR. We have
deployed 10-fold cross-validation approach to select opti-
mal set of hyperparameters for the binary and multiclass
classification tasks. For the binary classification task, we
have found the performance of architecture trained using
combined augmentation methods to be the best while the
performance of model trained without any augmentation
is found to be the worst. In contrast, in the multiclass
case, we have observed the overall performance of model
trained without augmentation to be the best while the perfor-
mance of models trained with a single augmentation method
whether random weak Gaussian blurring augmentation or
random shifted augmentation to be the worst.

In the future, we will work on other retinal diseases such
as retinal detachment using fundus images deploying data
augmentation methods such as elastic/plastic deformations
as well as other DL-based architectures such as graph convo-
lutional networks. Eye diseases such as age-related macular
degeneration, media haze, drusen, myopia, branch retinal
vein occlusion, tessellation, epiretinal membrane, laser scars,
macular scar, central serous retinopathy, optic disc cupping,
central retinal vein occlusion, tortuous vessels, asteroid hya-
losis, optic disc pallor, optic disc edema, optociliary shunt,
anterior ischemic optic neuropathy, parafoveal telangiecta-
sia, retinal traction, retinitis, chorioretinitis, exudation,
retinal pigment epithelium changes, macular hole, retinitis
pigmentosa, and many other eye diseases [64] are affecting
a large number of people worldwide, and their accurate
and early detection using DL-based methods may allow for
palliative care procedures employed by clinicians and medi-
cal practitioners.
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