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Gather prediction is an indispensable part of smart city projects. The city government can respond in advance based on gather
predictions and greatly reduce the loss and risks caused by vicious gatherings. Compared with other trajectory prediction tasks
(i.e., the recommendation of point of interest), gather prediction pay more attention to real-time trajectory data and requests
stronger spatial-temporal dependence. At the same time, gather prediction is more focused on scenes with multiple types of
trajectories. And the existing methods majorly rely on the trajectory data and ignore the great influence of geographical
environment (i.e., road network structure). Therefore, this paper transforms the gather prediction into the trajectory prediction
task with strong real-time condition in a certain city and conducts the gathering situations by predicting users’ aggregated
movements in next minutes or hours. A novel Spatiotemporal Gate Recurrent Unit (STGRU) model is proposed, where
spatiotemporal gates and road network gate are introduced to capture the spatiotemporal relationships between trajectories.
Compared with existing methods, we improve the performance of the model by adding road network structure and external
knowledges, as well as time and distance gates to reduce model parameters. The proposed STGRU is evaluated on three real-
world trajectory datasets, and the experimental results demonstrate the effectiveness of the proposed model.

1. Introduction

In recent years, various problems caused by the gathering of
people are one of the main reasons hindering urban con-
struction and development. Crowd gatherings are prone to
various accidents, such as stampede, fighting, and wounding,
which place high demands on the city’s management and
control capabilities. Therefore, gather prediction can greatly
help the city government react in advance and significantly
reduce the losses and risks caused by vicious gatherings
[1, 2]. As an indispensable part of smart transportation,
gather predictionmainly leverages the trajectory data collected
by various Internet of Things sensing devices [3–6] (such as
mobile phones [7], cars, and other GPS devices [8]). These tra-
jectory data include multiple types of patterns such as walking,
driving, and public transportation. Firstly, the city government
needs to predict the gathering situation to take preventive
measures in advance and combine the geographical features
such as rivers and buildings to divide the regions. Then, the

city government may process all the trajectory data at the cur-
rent moment in the city by predicting its location at a certain
time in the future. Finally, the gather is obtained through sta-
tistical methods or clustering algorithms on trajectory predic-
tion results.

In order to achieve high-accuracy trajectory prediction,
current methods majorly focus on modeling the sequential
of the trajectory data and the time interval and distance inter-
val between adjacent trajectory points. The main object is to
integrate temporal and spatial features to model user behav-
ior patterns. Typical techniques like recurrent neural net-
works (RNN) [9], Long short-term memory (LSTM) [10],
and Gate Recurrent Unit (GRU) [11] have been successfully
applied to various types of sequential data modeling and have
greatly improved performance. However, none of the above
methods consider time intervals and geographic informa-
tions [12] in the trajectory data. Some recent works are
devoted to extending RNN and LSTM to enable modeling
of time and distance intervals between neighbor points. For
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example, ST-RNN [13] tries to model spatiotemporal con-
text by extending RNN, and HST-LSTM [14] merged the
spatiotemporal influence into LSTM. Recently, STGN
[15] achieves SOTA by designed two pairs of time and
distance gates to model the time interval and distance
interval separately.

Nevertheless, trajectory data applied for gather predic-
tion usually suffers the data sparsity [16], due to the uneven
sampling interval and distribution of sensing devices. Previ-
ous efforts tried to apply spatial-temporal relations to miti-
gate the problem of data sparsity, but the effect is not
obvious. Inspired by Li et al. [17], geographic environment
information (such as road network structure) and external
knowledge (such as weather information and holiday infor-
mation) can effectively alleviate the problem of data sparsity.
The impact of the geographic environment is essential for the
modeling of short-term and long-term behavior patterns of
users, and weather and holiday information will affect the
overall behavior of users. For example, if the user’s continu-
ous trajectories are on the same road segment, it can be
judged that the current behavior patterns are similar. Mean-
while, the long-term historical trajectory road network infor-
mation can well assist in modeling the long-term behavior
pattern of users. Furthermore, on weekends, more people
are willing to visit more distant areas and stay in a certain
location for a long time. All these side information can ben-
efit mitigate the problem of data sparsity and improve the
performance of gather prediction.

In order to make full use of external knowledge, this
paper proposes a new spatiotemporal gated network by inte-
grating road network structure and external knowledge,
named Spatiotemporal Gate Recurrent Unit (STGRU). One
pair of time gate and distance gate is designed to capture
the short-term behavior pattern by utilize time and distance
intervals, and a road network gate is introduced to memorize
road network structures to model geographical environment
constraints.

The proposed model abstracts the road network structure
of the city into a planar graph and extracts the road network
structure of a certain track point. And the weather and holi-
day information are integrated into the track information for
input. Moreover, STGRU can model the long-term and
short-term behavior patterns of users and reduce the scale
of model parameters to a certain extent. Finally, the proposed
model processes the trajectory prediction results with statis-
tic methods to achieve gather prediction. Experiments show
that considering the road network structure and external
knowledge can effectively improve the performance of the
model.

Our contributions are summarized below:

(1) Based on the standard Gate Recurrent Unit, we pro-
posed a Spatiotemporal Gate Recurrent Unit
(STGRU) model, which integrates road network
structure and external knowledge, and reduces the
amount of model parameters to a certain extent

(2) We propose an innovative gating mechanism, adding
road network gate, which can model the road net-

work structure for learning spatiotemporal relation-
ships between users’ trajectories

(3) We evaluate the proposed method on three real-
world datasets including population data of Nagoya,
Osaka, and Tokyo. The comprehensive comparisons
with the state-of-the-art methods show the effective-
ness of our model

2. Related Work

2.1. Smart Transportation and Trajectory Data. Smart trans-
portation is a major component of smart city. The main
research difficulty is the analysis and decision-making reac-
tion of traffic information.

Traffic information analysis [18] includes traffic flow
forecasting and traffic demand forecasting. Traffic flow fore-
casting [19, 20] and traffic congestion forecasting can help
better regulate and control traffic and can effectively alleviate
traffic congestion. The taxi demand forecasting method pro-
posed by Geng et al. [21] can help taxi companies to better
allocate vehicles. Li et al. [22] proposed a method for fore-
casting the demand for shared bicycles, which can optimize
resource scheduling.

Mining and analysis of trajectory data can assist in traffic
planning decisions. Wei et al. [23] used the number of stops
and the parking position to analyze the effectiveness of the
main line coordination.

2.2. Spatiotemporal Data Modeling. On the other hand, tra-
jectory data is a type of spatiotemporal data, with two dimen-
sions of time and space. Data mining of spatiotemporal data
is very difficult, and it is also one of the current research hot-
spots. The Markov chain-based model [24] is a classic
sequence model. And deep learning methods [25] such as
RNN, LSTM, and GRU have excellent results in time model-
ing. The method based on matrix factorization [26] or tensor
factorization [27] can model spatial features. CNN [28, 29]
and GCN [30] are currently the best spatial modeling
methods.

In order to capture the spatiotemporal features, Al-
Molegi et al. (2016) proposed STF-RNN [31] to learn differ-
ent temporal and spatial features. The TGCN [32] proposed
by Zhao et al. uses GRU and GCN stacking to model spatio-
temporal features. The STGCN [33] innovatively used CNN
to model temporal features and achieved good results.

2.3. Gather Prediction. Gather prediction is an indispensable
part of smart transportation, which includes many applica-
tion scenarios, such as hotspot area analysis, passenger flow
prediction, and population transfer prediction. Tomaharu
et al. [34] proposed a collective graphical model to predict
the transition populations between areas. Verma et al. [35]
use trajectory data to mine hotspots and realized large-
granularity gather prediction. Ni et al. [36] through passen-
ger flow forecasting realized the gather prediction between
cities. Kumar et al. [37] used trajectory clustering and simi-
larity analysis for gather prediction. Gather prediction also
can be transformed into a multitrajectory prediction task
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under the same time and space, which is focus on the time
and space characteristics between multiple trajectories.

2.4. Trajectory Prediction. Different with other prediction
tasks, the main features of trajectory prediction are geo-
graphic information and time information. Trajectory pre-
diction can also use position semantics, speed, and
direction. Based on the traditional probability, matrix factor-
ization decomposes the matrix with a low-rank matrix to
obtain the implicit feature vector of the user and the trajec-
tory. Tensor factorization expands to three dimensions,
including user, time information, and spatial information.
Kurashima et al.’s [38] sampling is based on the subject and
the distance between the user and the historical location.
Liu et al. [39] combined location semantics to embed geo-
graphic context information. Research has shown that the
sequence between consecutive trajectory points plays a vital
role in trajectory prediction, and it is more significant in
strong real-time trajectory data, because human behavior
patterns are sequential. For prediction based on sequential
data, the Markov chain model [40] is the most classic. Cheng
et al. proposed a tensor-based model, named FPMC-LR [41],
by fusing first-order Markov chains and distance constraints.
Feng et al. proposed a personalized ranking metric embed-
ding method (PRME) [42], which embeds the state at all
times uniformly, and calculate the Euclidean distance
between vectors to measure the similarity.

Neural networks are widely used in various tasks because
they can learn to model various nonlinear features. The ST-
RNN proposed by Liu et al. (2016) is the first method to
introduce a deep neural network into trajectory prediction,
ST-RNN uses spatiotemporal information to expand RNN,
and its effect is improved. STF-RNN replaced the transition
matrix with the internal representation of automatically
extracted spatiotemporal features, which can more effectively
discover useful features related to model human behavior.
Zhu et al. [43] considered modeling time intervals to improve
performance and equipped LSTM with time gating. Yang
et al. [44] used neural network models to model social net-
work structure and user trajectory behavior patterns. HST-
LSTM introduces spatiotemporal factors into the gates exist-
ing in LSTM to model spatiotemporal features.

A recently proposed STGN considers the spatiotemporal
context. Our proposed STGRU has the following differences
from STGN. First, STGRU is extended based on GRU, which

reduces the amount of parameters and is more suitable for
real-time trajectories. STGN adds time and space gates to
LSTM, and the amount of parameters is more than twice that
of LSTM. Secondly, STGRU is equipped with external knowl-
edge gate to extract the road network structure to enhance the
spatiotemporal characteristics and the influence of external
knowledge on the overall movement pattern. However, STGN
is only based on the trajectory of a single user, and it is difficult
to capture the spatiotemporal relationship between users.

3. Method

In this section, we firstly give the definitions of gather predic-
tion and introduce preliminaries for GRU. Then, we propose
Spatio-Temporal Gated Recurrent Unit (STGRU), which
uses time and distance intervals and road network structure
to model short-term and long-term behavior patterns of
users.

3.1. Overview. As shown in Figure 1, we perform trajectory
prediction by stacking a STGRU layer and a softmax layer,
then compare the result of trajectory prediction with the
threshold η to obtain the result of gather prediction.

In our proposed Spatio-Temporal Gated Recurrent Unit,
three gates are designed to extract spatiotemporal features
and model user behavior patterns. The time gate and the dis-
tance gate can learn the time interval and distance interval in
the trajectory, obtaining users’ short-term behavior patterns.
The road network gate aims to capture road network struc-
tural features which have the impact on short-term and
long-term behavioral patterns.

In this paper, we only discuss the meshing method of
dividing area, because meshing has the highest applicability.
The STGRU model is also applicable to other dividing area
methods, and has been echoed in comparative experiments.

3.2. Problem Formulation. Let U = fu1, u2,⋯, uMg be the set
ofM users. And according to the side length a, divide the city
into a number of grids and number them, where each grid
area is a2. Each grid corresponds to a unique area ID r. For
user u, she has a sequence of historical regions visited up to
time ti−1 represented as Hu

i = rut1 , r
u
t2
,⋯, ruti−1 , where r

u
ti
means

the region user u visits at time ti.
The goal of gather prediction is to predict the regions

where all users are located at time ti. Specifically, the higher
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Figure 1: Gather prediction network model based on STGRU.
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the prediction score sur,ti of user u for the region r at time ti,
means the higher probability that the user u would like to
located in the region r at time ti.

According to the prediction scores of all users, predic-
tions ofM × k possible regions can be obtained. The number
of people in the region r can be obtained by counting the pre-
diction results. And the gather in the region r can be judged
whether there the number is through the threshold η:

numberr,ti = 〠
u∈U

sur,ti ,

rstate =
1, numberr,ti ≥ η

0, numberr,ti < η

 
,

ð1Þ

where rstate is the gather state of region r, 1 means there is
clustering in the region r, 0 is not, and numberr,ti is the num-
ber of people in the region r at time ti.

3.3. Gated Recurrent Unit.GRU (Cho et al. 2014), a variant of
LSTM, can also learn the long dependency problem in RNN
networks. The structure of GRU is simpler than that of the
LSTM network, while the effect is very good. In order to
reduce the amount of parameters to be more in line with
real-time data types, our method uses standard GRU as show
in Figure 2. Based on the standard LSTM network, GRU
combines the forget gate and input gate of LSTM into a single
update gate, removes the cell state, and uses the hidden state

to transfer information. The basic update formula of GRU is
as follows:

Rt = σ Wxr Ht−1, Xt½ � + brð Þ, ð2Þ

Zt = σ Wxz Ht−1, Xt½ � + bzð Þ, ð3Þ
~Ht = tanh WxhXt +Whh Rt ⊙Ht−1ð Þ + bhð Þ, ð4Þ

Ht = Zt ⊙Ht−1 + 1 − Ztð Þ ⊙ ~Ht: ð5Þ
Assuming that the number of hidden units is h, the batch

input Xt ∈ℝn×d at given time step is t, and the hidden state of
the previous time step is Ht−1. Rt , Zt ∈ℝn×h represents the
reset gate and update gate, where σð·Þ is the logistic sigmoid
function. ~Ht ∈ℝn×h represents the candidate hidden state at
time step t, where tanh ð·Þ is the double tangent function.
Wxr ,Wxz ,Wxh,Whr ,Whz ,Whh ∈ℝd×h is the weights of
gates. br , bz , bh is corresponding biases. And e represents
for the element-wise (Hadamard) product.

The reset gate Rt controls how the hidden state of the pre-
vious time step flows into the candidate hidden state of the
current time step and captures long-term dependencies in
the time series. The update gate Zt can control how the hid-
den state should be updated by the candidate hidden state
containing the current time step information and capture
short-term dependencies in the time series.

3.4. Components. As shown in two dotted red rectangles in
Figure 3, STGRU have added time gate, distance gate, and
road network gate, which are denoted as Tt , Dt , and Roadt ,
respectively. Tt and Dt are used to model the influence of
time interval and distance interval on trajectory prediction,
and Roadt is used to capture the influence of road network
structure on behavior patterns. Based on GRU, time gate, dis-
tance gate, and road network gate equations are as follows:

Tt = σ WxtXt + σ ΔttWtð Þ + btð Þ,
Dt = σ WxdXt + σ ΔdtWdð Þ + bdð Þ,

Roadt = σ WxroadXt + σ roadtWroadð Þ + broadð Þ:
ð6Þ

Combining Tt , Dt , and Roadt , the calculation equation
for reset gate and update gate is added as

~Rt = Rt ⊙ Roadt ,
~Zt = Zt ⊙ Tt ⊙Dt ⊙ Roadt ,

ð7Þ

then modify Eqs. (4) and (5) to

~Ht = tanh WxhXt +Whh
~Rt ⊙Ht−1
� �

+ bh
� �

,

Ht = ~Zt ⊙Ht−1 + 1 − ~Zt

� �
⊙ ~Ht ,

ð8Þ

where Δtt is the time interval and Δdt is the distance interval.
rt represents road network information. Tt is equivalent to
the time interval input information filter, Dt is equivalent to
the distance interval input information filter, and Roadt is
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Figure 2: The standard GRU model.
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used to capture the input information of the road network
structure. Calculate the influence of the road network gate
on the reset gate and the influence of multiple gate controls
on the update gate by adding a new reset gate state ~Rt and a
new update gate state ~Zt . The influence of the gates deter-
mines the influence on the hidden stateHt .

The candidate hidden state ~Ht is determined by input
information, reset gate, and the hidden state of the previous
time step. The second reset gate state ~Rt is designed to mem-
ory the user’s long-term road network access information.
Roadt is used to memorize the road network information rt
, then transferred to ~Rt , further to ~Ht , and help simulate the
long-term behavior pattern of users.

The update gate Zt can capture short-term dependencies.
Therefore, a time gate and a distance gate are designed, com-
bined with the above road network gate to control update
gate state. Tt memorizes the Δtt between the track points,
referring to LSTM, and uses element-wise (Hadamard) prod-
uct to incorporate it into the second update gate state ~Zt .
Similarly, Dt memorizes the Δdt between the track points,
and Roadt memorizes the road network information and
integrates it into ~Zt . Modeling the distance interval can help
capture the user’s spatial behavior patterns, and modeling the
time interval can help capture the user’s behavior patterns
such as speed and state. Modeling the road network structure
can help capture users’ short-term behavior constraints and
long-term goals, as well as capture the spatial relationships
between users.

The method of adapting the model for gather prediction
is as follows. First, calculate the time interval and distance
interval between track points, and Hu can be converted to

ru1 , 0, 0ð Þ, ru2 , t
u
2 − tu1 , d l1, l2ð Þð Þ,⋯, run, t

u
n − tun−1, d ln−1, lnð Þð Þ½ �:

ð9Þ

Secondly, add weather, holiday information, and road
network information and further transform it into

run, weathern, daten, t
u
n − tun−1, d ln−1, lnð Þ, roadnð Þ, ð10Þ

where rut contains longitude, latitude, and located region;
weathert contains the highest temperature, lowest tempera-
ture, and average temperature; and datet is marked with 0
or 1 according to whether the date is a holiday. Then, Xt in
STGRU is equivalent to ðrut , weathert , datetÞ, Δtt is equivalent
to tut − tut−1, and Δdt is equivalent to dðlt−1, ltÞ, where dð·, · Þ is
the function that computes the distance between two track
points. roadt is a vector, which is concatenated by the node
where the trajectory point is located in the road network
graph and the neighbor nodes. For example, the road seg-
ment where the trajectory point i is located represents nod
ei, and the c neighbor nodes of nodei are, respectively, repre-
sented as nodei+1, nodei+2,⋯, nodei+c. Then, roadt can be
expressed as roadt = ðnodei, nodei+1,⋯, nodei+cÞ. In addi-
tion, in order to extract the behavior pattern of the group,
we performed a unified modeling for all users and deleted
the user ID.

This paper uses a single-layer network model for com-
parison experiments, adds softmax layer for output, and uses
the loss function of categorical cross entropy:

J = −〠
K

i=1
yi log pið Þ: ð11Þ

Finally, the forecast results are counted in the same time
and space. When the statistical value of a certain region r
exceeds the set threshold η, it is considered that this region
will gather.

3.5. Analysis and Training. STGRU reduces the amount of
model parameters. The parameter quantity of a single
STGRU unit can be calculated as 3 × d2h + 6 × dh × dx + 6 ×
dh, where dn is the number of hidden units, and dx is the
number of input units. Similarly, the unit parameter quantity
of a LSTM unit can be calculated as 4d2h + 4 × dh × dx + 4 × dh
. The GRU unit has one less gate than the LSTM unit, and the
amount of parameters is also reduced accordingly, which can
be calculated as 3 × d2h + 3 × dh × dx + 3 × dh. The STGN
model is the current SOTA method and is an improved
model based on LSTM. The unit parameter of STGN can
be calculated as 5 × d2h + 8 × dh × dx + 10 × dh. The number
of parameters of STGRU is slightly more than that of LSTM,
which is one-third to one-half less than STGN.

The optimizer use Adam, a variant of Stochastic Gradient
Descent (SGD), which comprehensively considers the gradi-
ent’s first moment estimation (first moment estimation, the
mean value of the gradient) and second moment estimation
(second moment estimation), and calculates the update step
length of parameters. It can automatically adjust the learning
rate, and it is very suitable for large-scale data and parameter
scenarios.

4. Experiments

In this section, we conduct experiments to evaluate the per-
formance of our proposed model STGRU on three real-
world datasets.

4.1. Dataset. We evaluated our proposed method on three
SNS-based people flow datasets released by Nightley and
Center for Spatial Information Science at the University of
Tokyo (CSIS). Each dataset contains trajectories, as detailed
follows.

(i) Nagoya People Flow (NPF): NPF dataset contains
the trajectories of 2387 users in the Nagoya area in
2013, with a total of 1,068,064 track points. The tra-
jectory time is 6 days, which are July (7/22, 7/28),
September (9/16, 9/22), and December (12/24,
12/29). Each trajectory starts from 0 : 00 to 23 : 55
of the current day, and the data interval is 5 minutes

(ii) Osaka People Flow (OPF): OPF dataset contains
4924 users in the Osaka area in 2013, and the cover-
ing time is July (7/22, 7/28), September (9/16, 9/22),
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and December (12/24, 12/29). The total number of
track points is 2,552,883

(iii) Tokyo People Flow (TPF): TPF dataset is the largest
of the three datasets and contains the trajectories of
11536 users amount of 6,883,245 track points in
the Osaka area in 2013. The time is July, 2013 (7/1,
7/7), October (10/7, 10/13), and December (12/16,
12/22).

We eliminate user data whose trajectory length was less
than 30 in the three data sets and then take 70% of the users
as the training set and the remaining 30% as the testing set.

The three datasets do not contain the area information of
the track points. This paper divides the area of the track
according to 5km × 5km in each area and determines the area
where the track points are located according to the latitude
and longitude of the track points in the dataset. A sliding
window is used to generate samples on both training and test
data, and the time interval is randomized within the sliding
window to increase the complexity of the trajectory.

For example, if the time of the first track point is 8 : 00 am,
the random interval is [7, 12, 18, 24, 30, 31]. Assuming the
random number 3, then the time interval between the second
track point and the first track point is 3 × 5 min = 15 min,
which the second track point times are 8 : 15 am.

4.2. Baseline Methods. We compare our proposed model
STGRU with five representative methods for trajectory
prediction.

(i) RNN [9]: it passes the state cyclically in its own net-
work; so, it can accept a wider range of time series
structure input and widely used for time series pre-
diction tasks

(ii) LSTM [10]: this model is suitable for processing and
predicting important events with very long intervals
and delays in time series. To a certain extent, the
problem of gradient disappearance and gradient
explosion of RNN is solved

(iii) GRU [11]: a variant of the LSTM model, which has
fewer parameters than LSTM and shows better per-
formance on certain smaller and less frequent
datasets

(iv) HST-LSTM [14]: it integrates spatiotemporal influ-
ence into the three gates of LSTM. Since there is no
session information in the datasets, its ST-LSTM
vision is used here

(v) STGN [15]: obtained by enhancing LSTM, introduc-
ing two pairs of spatiotemporal gates to capture spa-
tiotemporal relationships

4.3. Evaluation Metrics. In order to evaluate the performance
of our proposed STGRU model and compare it with the
above five baselines, we used two standard metrics area under
curve (AUC) and Recall@K . The trajectory prediction task is
essentially a multiclassification task, and AUC metrics can
better evaluate the classification effect. Recall@K is defined

as the ratio of the number of correct predictions to the total
number of predictions. First, all possible regions are arranged
in descending order according to their probability. Then, the
recall score is calculated as the percentage of the number of
times the true region is found among the top K most likely
regions. In this paper, use K = 1, 5, 10, 15, and 20 to illustrate
different results of Recall@K . U is the set of users, Lu repre-
sents the set of real regions of user u in the testing data,
and PK ,u denotes the set of top K predicted regions; the calcu-
lation formula for Recall@K is:

Recall@K =
1

∣U ∣
〠
u∈U

∣Lu ∩ PK ,u ∣
∣Lu ∣

: ð12Þ

4.4. Results and Discussions

4.4.1. Method Comparison. Table 1 shows the performance of
our proposed model STGRU and the performance of the six
baselines evaluated by Recall@K and AUC on three datasets.
The hidden state size is set to 32 in our experiment, the num-
ber of epochs is set to 200, and the batch size is set to 512. The

Table 1: Evaluation of prediction results in terms of Recall@K and
AUC on three datasets.

(a)

NPF Recall@1 Recall@5 Recall@10 Recall@20 AUC

LSTM 0.0428 0.1677 0.2894 0.4300 0.6951

GRU 0.0712 0.2372 0.3421 0.4771 0.7778

RNN 0.0809 0.2580 0.3570 0.4865 0.8018

ST-LSTM 0.0621 0.2438 0.3663 0.5050 0.7976

STGN 0.0762 0.2728 0.3734 0.5061 0.8177

STGRU 0.0920 0.2829 0.3891 0.5231 0.8290

(b)

OPF Recall@1 Recall@5 Recall@10 Recall@20 AUC

LSTM 0.0383 0.1638 0.2634 0.4375 0.7140

GRU 0.0455 0.1979 0.3007 0.4656 0.7611

RNN 0.0588 0.2258 0.3260 0.4881 0.8324

ST-LSTM 0.0502 0.2107 0.3174 0.4890 0.7817

STGN 0.0633 0.1699 0.2833 0.4920 0.8292

STGRU 0.0681 0.2439 0.3464 0.5116 0.8545

(c)

TPF Recall@1 Recall@5 Recall@10 Recall@20 AUC

LSTM 0.0752 0.3331 0.4849 0.6428 0.8317

GRU 0.0789 0.3319 0.4793 0.6384 0.8451

RNN 0.0856 0.3634 0.5066 0.6561 0.8645

ST-LSTM 0.0864 0.3699 0.5213 0.6682 0.8727

STGN 0.0900 0.3327 0.5103 0.6672 0.8734

STGRU 0.0933 0.3795 0.5263 0.6730 0.8755
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sliding window size is set to 10, and the random time interval
in the Nagoya dataset and the Osaka dataset is 1 to 3. The
random time interval of the Tokyo dataset is 1 to 5, because
the data density in the Tokyo data set is higher, and needs
to increase the complexity of the data by increasing the ran-
dom interval. To be fair, all baseline experiments in this
paper use the same hyperparameter settings.

From the experimental results, the following observa-
tions can be obtained: The STGRUmodel we proposed is sig-
nificantly better than the existing state-of-the-art methods in
all indicators of the three datasets. The performance gains
provided by STGRU over these five counterparts are about
18.1%-110.2%, 5.7%-74.7%, and 3.7%-24.1% in terms of
Recall@1 metric in Nagoya, Osaka, and Tokyo datasets,
respectively. The results show that the mechanism of model-
ing the road network structure in STGRU can better model
user behavior patterns, modeling short-term temporal and
spatial contexts improves the effect on strong real-time data,
and is effective for the task of trajectory prediction. That is
because the added road network gate is combined with the
update gate to integrate the short-term road network charac-
teristics into the model, and the reset gate is combined to
integrate the long-term road network characteristics.

In addition, the performance of RNN on the three data-
sets is better than LSTM. This is because RNN has the char-
acteristics of short-term memory. The closer the time, the
greater the weight of track points. Even if the random inter-
vals are added, the obtained samples still have strong real-
time performance; so, the performance of RNN is better.
Similarly, GRU is superior to LSTM in modeling strong
real-time data. The performance of HST-LSTM and STGN
is better than the above three models, which proves the
importance of spatiotemporal factors to track prediction.
Among them, the performance of STGN is better than
HST-LSTM, which proves that the method of obtaining spa-
tiotemporal effects through specific gates is more effective
than improving on the basis of LSTM gates. The reason
may be the increase of the parameters.

In the three datasets, each dataset covers a total of 6 days
of trajectory data in an area of Japan, and the time interval
between adjacent track points is 5 minutes. Each area can
be divided into about 5000 to 10000 regions. Taking the
NPF dataset as an example, the number of regions is about
5000. It can be calculated that the size of the spatiotemporal
matrix of the dataset is about 5000 × 3000. However, the
number of trajectory points in the NPF dataset is only one
million. After removing the repeated spatiotemporal regions,
the size of the track point coverage matrix is less than 1% of
the size of the spatiotemporal matrix of the dataset. RNN,

LSTM, and GRU are directly trained on the spatiotemporal
matrix, which will lead to the problems of data sparsity.
STGRU adds constraints between track points through time
intervals, distance intervals, and road network structure.
While the STGRU is being trained, only the local area cov-
ered by each sample needs to be considered, which greatly
alleviates the problems of data sparsity in the dataset and
can better model user behavior patterns compared to the
above three models.

4.4.2. Impact of Parameters. In the standard RNN, different
cell sizes will lead to different performance. They studied
the impact of cell size on STGRU. Observe the impact of dif-
ferent cell sizes on model performance by changing the cell
size to 32, 64, 128, 256, and 512. It can be seen from
Table 2 that increasing the cell size to a certain extent can
improve the performance of the model. Large cell size will
increase the training time and result a decline in perfor-
mance. When the number of model units is determined,
the cell size determines the complexity of the model, and a
larger cell size may fit the data better.

4.5. Ablation Experiment

4.5.1. Effectiveness of Time and Distance Gates. STGRU has a
time gate and a distance gate combined with update gate to
capture short-term dependencies. The effectiveness of time
and distance gates on modeling time and distance intervals
is important. The time gate and distance gate can be closed
by set Tt = 1 andDt = 1. In order to eliminate the interference
of road network gates, the road network gate in STGRU was
also closed. There are three sets of experiments, respectively,
closing the time gate and the distance gate and closing both
two gates at the same time to compare and verify the effec-
tiveness of the time gate and the distance gate.

From Table 3, it can be found that time gate and distance
gate have similar importance on the datasets. Compared with
GRU, the performance improvement of GRU +Dt + Tt on
the four evaluation metrics is 27.67%, 18.04%, 11.22%, and
7.23%, respectively. And the performance difference between
GRU + Tt and GRU +Dt is very small, indicating that the
distance interval and time interval have similar effects on
modeling behavior patterns. And the performance improve-
ment of GRU +Dt + Tt is small, indicating that there is a
large degree of overlap in the characteristics of the time inter-
val and the distance interval on the testing dataset.

4.5.2. Effectiveness of Road Network Gates. There is a road
network gate in STGRU, which is integrated with the update
gate and the reset gate to capture long-term and short-term
road network dependencies. The motivation of this group is

Table 2: The performance with different cell sizes.

Cell size Recall@1 Recall@5 Recall@10 Recall@20

32 0.0933 0.3795 0.5263 0.6730

64 0.0922 0.3836 0.5253 0.6754

128 0.0942 0.3774 0.5217 0.6736

256 0.0923 0.3761 0.5238 0.6704

512 0.0913 0.3760 0.5190 0.6658

Table 3: The performance with different times and distance gates.

NPF Recall@1 Recall@5 Recall@10 Recall@20

GRU 0.0712 0.2372 0.3421 0.4771

GRU +Dt 0.0887 0.2763 0.3778 0.5080

GRU + Tt 0.0844 0.2744 0.3773 0.5099

GRU +Dt + Tt 0.0909 0.2801 0.3805 0.5116
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to study the role of road network gates in the update gate and
reset gate through experiments. The road network gate can
be closed by setting Roadt = 1 in ~Rt and ~Zt , respectively.
The effectiveness of the road network gate in capturing
long-term and short-term dependencies can be verified by
setting up three sets of experiments, namely, closing all road
network gates and closing a single road network gate.

As shown in Table 4, the performance of closing a single
road network gate is not as good as closing all road network
gates. This may be due to the long-term features and short-
term features of the road network structure that need to be
used together. The closing of a single road network will cause
the road network information to be invalid for the prediction
result. At the same time, some parameters are used to model
the characteristics of the road network, which will cause the
performance of the model to decrease. Therefore, the perfor-
mance of closing one road network gate alone is almost the
same.

4.5.3. Impact of the Sliding Window Size. In our experiment,
samples are obtained through a sliding window. The size of
the sliding window limits the trajectory length of a single
input. In order to compare the performance of our model
in different size sliding windows, the sliding windows are
set to different lengths to observe the impact, respectively,
10, 15, 20, 25, and 30. In order to ensure the number of sam-
ples under a larger sliding window size, it conducts experi-
ments on the Tokyo People Flow dataset, because the
dataset has the longest average trajectory length.

The size of the sample length determines the length of the
model unit, as well as the parameters of the model. As shown
in Table 5, as the length of the sliding window increases and
the amount of model parameters increases, the overall per-
formance of the model has a certain improvement. When
the sliding window size is set to 30, the model complexity is
3 times that when the sliding window size is 10, the perfor-
mance improvement of the four metrics increases are
8.68%, -4.85%, 11%, and 3.37%, respectively. Although the
increase of the sample length can improve the performance
of the model, it is necessary to consider the actually applica-

tion scenarios of the gather prediction task. The sample
length within 10 is more meaningful, and this is also the main
reason that the sliding window size is set to 10 in our com-
parison experiment with the baselines.

4.5.4. Impact of the Random Interval Size. Another important
parameter is the size of the random interval. Increase the
complexity of the trajectory samples by randomly sampling
of the time interval between the track points in the sliding
window. For comparison, the impact of different random
intervals on the complexity of the trajectory sample and the
performance of the model sets up different random intervals
on the Tokyo People Flow dataset for comparison experi-
ments and sets the random interval sizes to 3, 5, 7, 9, and
11, respectively. Choose the Tokyo People Flow dataset
which the continuity in the dataset is strong, and a certain
degree of complexity is required to better reflect the purpose
of the experiment.

According to Table 6, it can be see that the model perfor-
mance is the best when the random interval size is 5 and 7,
and the random interval size that is too large and too small
will cause the model performance to decrease. On the other
two datasets, the model performance is better when the ran-
dom interval size is 3, which is why the three data sets use dif-
ferent random intervals in the comparison experiment with
the baselines. Using random intervals can make the sample
closer to the data in the real world.

4.6. Case Study. The purpose of verifying the STGRU model
is that it can process and predict short trajectory data and
long trajectory data, which conducted two sets of experi-
ments with the baseline models. If the user’s trajectory data
is scarce, it means that it can hardly understand the user’s
behavior pattern, which requires higher performance of the
model. The experiments are based on the Tokyo People Flow
dataset, taking data with a track length of less than 30 for cal-
culation, without random intervals, and use recall@k as the
evaluation metrics. As shown in Figure 4, STGRU has the
best performance on recall@1 and recall@5, which proves
that STGRU can better handle sparse data.

In another set of experiments, data with track length
greater than 200 was obtained and followed the parameter
settings of the comparative experiment. As shown in
Figure 5, STGRU is also superior to all baselines on long tra-
jectory data, which proves that STGRU can extract and use
long-term features very well, especially the effectiveness of
long-term road network features for modeling strong real-
time data.

Table 4: The performance with different set of road network gates.

NPF Recall@1 Recall@5 Recall@10 Recall@20

STGRU − Rt 0.0909 0.2801 0.3805 0.5116

STGRU − R2t 0.0867 0.2776 0.3786 0.5101

STGRU − R1t 0.0862 0.2795 0.3796 0.5093

STGRU 0.0920 0.2829 0.3891 0.5231

Table 5: The performance with different window sizes.

Window size Recall@1 Recall@5 Recall@10 Recall@20

10 0.0933 0.3795 0.5263 0.6730

15 0.0929 0.3897 0.5331 0.6828

20 0.0949 0.3624 0.5174 0.6786

25 0.0905 0.3794 0.5267 0.6831

30 0.1014 0.3611 0.5842 0.6957

Table 6: The performance with different random interval sizes.

Rand interval Recall@1 Recall@5 Recall@10 Recall@20

3 0.0889 0.3725 0.5148 0.6636

5 0.0933 0.3795 0.5263 0.6730

7 0.0920 0.3835 0.5300 0.6776

9 0.0822 0.3677 0.5196 0.6752

11 0.0747 0.3512 0.5104 0.6702
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5. Conclusion

In this paper, we propose a Spatio-Temporal Gate Recurrent
Unit (STGRU) model by enhancing Gate Recurrent Unit for
gather prediction. In STGRU, the time gate and distance gate
are introduced to model the time interval and distance inter-
val between consecutive trajectory points, which are essential
to describe the short-term behaviors of users, and the road
network gate is introduced to model the long-term and
short-term road network structure. We believe that the geo-
graphical environment represented by the road network

structure is very important for both the short-term and
long-term behaviors of users. The three gates are combined
with the update gate in the GRU to extract the user’s short-
term behaviors pattern. Only the road net gate and the reset
gate in the GRU are combined to extract long-term behaviors
patterns of users. Experimental results on three real-world
datasets prove the effectiveness of our model, which is better
than the latest methods.

In future work, we will further incorporate the structured
representation of road network information into the model
to further improve the aggregation prediction performance.

0.8

STGN
STGRU

ST-LSTMLSTM

RNN
GRU

0.7

0.6

0.5

0.4

Re
ca

ll@
K

0.3

0.2

0.1

0.0
1 5

K

10 20

Figure 4: The performance on trajectory data length is less than 30.
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