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In wireless networks, for the common in-phase and quadrature-phase (I/Q) imbalance in the transmitters, the I/Q branch models
of digital predistortion (DPD) need to be identified separately, to improve the linearization effects. The existing order reduction
methods of the predistorter are based on the contributions of the complex basis function terms, so as not to deal with the
different contributions of I/Q components of the complex basis function terms caused by the separate identification of the I/Q
branch models. The separate pruning of the I/Q branch models will increase the complexity. Aiming at this issue, this paper
proposes a general order reduction method based on the attention mechanism for the predistortion of the power amplifiers
(PAs). This method is suitable for pruning both the traditional models and neural network-based models. In this method, the
attention mechanism is used to evaluate the contributions of the real basis function terms to the predistorted output’s I/Q
components through offline training, and the influence of the cross terms of the I/Q branch models is considered. The
experimental results based on the comparison with other typical methods under 100MHz Doherty PA and different I/Q
imbalance levels show that this method has superior pruning performance and good linearization ability.

1. Introduction

With the rapid iteration of the fifth-generation (5G) wireless
systems, wider signal bandwidth and more complex modula-
tion modes are used, to satisfy the rapid growth of the
requirement of the data service [1–3]. However, the wide
signal bandwidth and efficient modulation make the trans-
mitters, especially the power amplifiers (PAs), exhibit more
complex nonlinear behavior characteristics [4], which leads
to the difficulty of high-efficiency transmission in the trans-
mitting system. To solve this problem, digital predistortion
(DPD) is one of the most commonly used linearization
techniques [5–7].

DPD techniques compensate for the nonlinear behaviors
of the transmitter by constructing a nonlinear model that is
opposite to the nonlinear characteristics of the transmitter
[8]. At present, the most common and popular predistortion
models are the full Volterra (FV) series models. Since these
models’ parameters are linear with respect to the output of
the system, these models can be easily identified by the clas-
sical regression theory [9]. However, the complex nonlinear

behaviors (including nonlinearity and memory effects [6])
caused by the increase of the signal bandwidth and complex
modulation modes will lead to the curse of dimensionality of
the FV models [9]. Therefore, the order reduction of the FV
model has become an effective means to improve the avail-
ability of the model and reduce the cost [10, 11]. To this
end, based on the general FV series model, various prior
pruning models, such as the memory polynomial (MP)
model [12] and the generalized MP (GMP) model [13], are
proposed. These models are easy to be modeled in the
field-programmable gate array (FPGA), such as through
lookup table (LUT) [14–16], so they are commonly used
engineering models at present. However, these models are
pruned based on prior knowledge and are still general pre-
distortion models [4]. For a specific PA, in order to meet
the linearization requirements, these models still include
many basic function terms with fewer contributions, leading
to the complexity of the model.

For this reason, classical posterior pruning techniques
are proposed to select the necessary terms based on the non-
linear behavior of the specific PA, to find the optimal
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structure under a given PA [14, 17, 18]. The most typical
method is the predistortion model pruning technique based
on orthogonal matching pursuit (OMP) [11]. This method
selects the term with the greatest correlation with the
remaining output in each iteration [11] to determine the
optimal predistortion structure. To solve the ill-condition
of the equation system caused by the high correlation
between the basis function terms, a doubly OMP (DOMP)
algorithm uses Gram-Schmidt orthogonalization to elimi-
nate the correlation between the selected and unselected
basis function spaces after each iteration [17]. However,
the pseudo inverse calculation and the Kronecker product
calculation in the orthogonalization process lead to the high
computational complexity of the algorithm [9]. To this end,
the simplified sparse parameter identification DOMP (SSPI
DOMP) algorithm is proposed to implement the pseudo
inverse computation through the recursive process [19],
which effectively reduces the computational complexity. Ref-
erence [9] also proposed to realize the pseudo inverse calcu-
lation by processing the covariance matrix by the orthogonal
properties, to reduce the calculation cost further. In addi-
tion, a predistortion model pruning algorithm based on
adaptive principal component analysis (PCA) was proposed
in reference [14]. Reference [20] also proposed a pruning
algorithm based on the projection of the residual vector.
All the above pruning methods regard the complex basis
function term as a whole and then achieve order reduction.

However, in real wireless communication systems, the
nonideal behavior of the modulator will lead to the mis-
match between the gain and the phase of the transmission
signal and then cause the imbalance of in-phase and
quadrature-phase (I/Q) components [21]. The modulator
imperfections are interwoven with the nonlinear behavior
of PA, which further reduces the transmission quality of
the system [22, 23]. For this situation, the two branches
(namely, I/Q components) of the transmitters can be com-
pensated, respectively. In other words, the I/Q components
of the compensator can be identified independently, to cope
with the nonideal behavior of the modulator. For example,
widely used artificial neural network (ANN) models, such
as the neural network (NN) model [21] and convolutional
NN (CNN) model [5], are predistortion models of I/Q sep-
arate identification. The traditional models can also be used
for independent modeling of I/Q branches, which can be
expressed as

xI nð Þ = �UI nð Þ �UQ nð Þ� �
wI′,

xQ nð Þ = �UI nð Þ �UQ nð Þ� �
wQ′ ,

(
ð1Þ

where xIðnÞ and xQðnÞ represent the I/Q components of the
predistorter and �UðnÞ is the predistortion model. Table 1
shows the comparison of the normalized mean square error
(NMSE) performance between independent identification
and combined identification of I/Q components of the pre-
distorter under 100MHz Doherty PA, which verifies the
above idea. References [8, 23] also proposed the compensa-
tion models for I/Q imbalance, which are independent of

the DPD model and resulting in the complexity of the
design.

In this case, the I/Q components of the basis function
terms have independent contributions to the linearization
effects. If the I/Q branch models of the predistorter are
pruned separately, such as using DOMP, the basis function
terms of the I/Q branch models of the predistorter need to
be constructed independently, which leads to the high design
complexity in FPGA. It has become a difficult point to find
the real basis function terms that are important to the I/Q
components of the predistortion output.

To solve this issue, this paper proposes a general order
reduction method of the predistortion model based on the
attention mechanism. In reference [24], we have verified that
this method can effectively prune the input items of the NN-
based models. In this paper, we improve this method and
apply it to the pruning of the traditional polynomial models,
to prove its universality. This method firstly calculates the
comprehensive contributions of the real basis function terms
to the predistorted output’s I/Q components using the atten-
tion mechanism through offline training, which considers
the influence of the cross basis function terms of the I/Q
branch models. Since the contributions of the real basis
function terms to the predistorted output’s I/Q components
are calculated simultaneously, that is, the cross terms are
evaluated, the I/Q branch models are consistent, which fur-
ther reduces the design complexity of the model. The exper-
imental results based on the comparison with other typical
methods under 100MHz Doherty PA and different I/Q
imbalance levels show the effectiveness of the method.

The contributions of this paper are as follows:

(i) The traditional I/Q imbalance models are config-
ured independently, which leads to high model
complexity [8, 23]. In order to reduce the model
complexity, the I/Q branch models of the predistor-
ter are modeled separately, to compensate for the I
/Q imbalance and PA’s nonlinearity simultaneously

(ii) The existing order reduction methods are based on
the contributions of the complex basis function
terms, so as not to deal with the different contribu-
tions of I/Q components of the complex basis func-
tion terms [11, 17]. This paper distinguishes the
different contributions of the I/Q components of
the basis function terms to the I/Q branch models,
to further reduce the complexity of the model

(iii) As a result of all the above contributions, this work
achieves a good compromise between the model
complexity and linearization effects to drive the
100MHz Doherty PA. In addition, compared with
the existing order reduction models, the proposed
model has the lowest complexity of the model

The structure of the paper is organized as follows. In Sec-
tion 2, the modeling and identification processes of the I/Q
branch models of the predistorter are described, and the
principle of the attention mechanism is analyzed. Section 3
describes in detail the proposed order reduction method of
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the predistortion model based on the attention mechanism
and gives the specific training process. Section 4 introduces
the test platform for validation of the proposed order reduc-
tion method. In Section 5, the measurement and validation
results of the proposed method are described and analyzed.
The conclusion is given in Section 6.

2. Digital Predistortion Based on I/Q
Separate Identification

2.1. Predistortion Model of I/Q Separate Identification. Due
to the nonideal behavior of the modulator, the nonlinear
behaviors of PA are interleaved with the I/Q imbalance,
which leads to more complex nonlinear characteristics of
the transmitter [21]. Therefore, to improve the linearization
effects, the compensators of the I/Q branches should be
identified separately, to deal with the asymmetry of the I/Q
branches of the transmitter. The predistortion structure of
I/Q separate identification is shown in Figure 1. The I/Q
branch models of the predistorter are modeled using the real
basis function terms composed of the I/Q components of the
traditional complex basis function terms and then identified
separately. The indirect learning architecture (ILA) [7] is
used to identify the predistorter. The I/Q branch models
based on the GMP model can be expressed as follows [13]:

xI nð Þ = 〠
Ka−1

k=0
〠
La−1

l=0
αIIklyI n − lð Þ y n − lð Þj jk

+ 〠
Kb

k=1
〠
Lb−1

l=0
〠
Mb

m=1
βII
klmyI n − lð Þ y n − l −mð Þj jk

+ 〠
Kc

k=1
〠
Lc−1

l=0
〠
Mc

m=1
γIIklmyI n − lð Þ y n − l +mð Þj jk

+ 〠
Ka−1

k=0
〠
La−1

l=0
αIQkl yQ n − lð Þ y n − lð Þj jk

+ 〠
Kb

k=1
〠
Lb−1

l=0
〠
Mb

m=1
βIQ
klmyQ n − lð Þ y n − l −mð Þj jk

+ 〠
Kc

k=1
〠
Lc−1

l=0
〠
Mc

m=1
γIQklmyQ n − lð Þ y n − l +mð Þj jk,

ð2Þ

where yðnÞ is the output signal of the PA and yIðnÞ and yQ
ðnÞ represent the I/Q components of yðnÞ, respectively.
fKa, La, Kb, Lb,Mb, Kc, Lc,Mcg are the parameters of the
GMP model. fαIIkl , βII

klm, γIIklm, α
IQ
kl , β

IQ
klm, γ

IQ
klmg are the model

coefficients. xIðnÞ is the I component of the PA input. The
Q component can be represented by the same model as
Equation (2).

The input and output data of N groups of the predistor-
tion model are collected, and then, the I/Q branch models of
the predistortion can be written in matrix form.

xI = �YI �YQ

� �
ωI ,

xQ = �YI �YQ

� �
ωQ,

(
ð3Þ

where xI = ½xIðNÞ, xIðN − 1Þ,⋯,xIð1Þ�T ,

xQ = xQ Nð Þ, xQ N − 1ð Þ,⋯,xQ 1ð Þ� �T , ð4Þ

ωI = αII00, αII01,⋯,γIIKc Lc−1ð ÞMc, αIQ00 ,⋯,γIQKc Lc−1ð ÞMc

h iT
, ð5Þ

ωQ = αQI00 , αQI01 ,⋯,γQIKc Lc−1ð ÞMc, α
QQ
00 ,⋯,γQQKc Lc−1ð ÞMc

h iT
, ð6Þ

�Y = �Y Nð Þ, �Y N − 1ð Þ,⋯,�Y 1ð Þ� �T , ð7Þ
�Y nð Þ = �y1 nð Þ, �y2 nð Þ,⋯,�yS nð Þ½ �T , ð8Þ

where �YI and �YQ are the I/Q component matrices of �Y,
respectively. �YðnÞ, ðn = 1, 2,⋯NÞ is a complex vector com-
posed of the basis function terms corresponding to signal y
ðnÞ, and S = KaLa + KbLbMb + KcLcMc is the number of
complex basis function terms.

The I/Q branch models of the predistortion have the
same structure but are identified separately, to cope with
the I/Q imbalance. Equation (3) is solved by the least-
squares (LS) algorithm [25, 26]; then, the coefficients of the
I/Q branch models can be estimated.

bω I = �YI �YQ

� �H �YI �YQ

� �� �−1
�YI �YQ

� �HxI ,
bωQ = �YI �YQ

� �H �YI �YQ

� �� �−1
�YI �YQ

� �HxQ,

8>><
>>: ð9Þ

where bω I and bωQ are the estimations of ωI and ωQ, respec-
tively. In the calculation of the I/Q components of the pre-
distortion in FPGA, the coefficients of the predistortion
model are multiplied by the model in I/Q branches, respec-
tively. Therefore, the different coefficients of the I/Q branch
models do not complicate the predistortion process.

2.2. The Principle of the Attention Mechanism. The achieve-
ments of artificial intelligence in the field of communication
provide us with ideas [27, 28]. The attention mechanism is
an effective structure to focus on important features, which
has been widely applied in the fields of speech recognition
[29] and image processing [30]. Based on the importance
of the input features to the generation of the output, the
attention mechanism weights the input features, to

Table 1: Performance comparison of I/Q independent identification and I/Q combined identification (GMP model).

PA nonlinearity PA nonlinear and I/Q imbalance

Combination identification of I/Q NMSE = −32:67 dB NMSE = −22:75 dB
Independent identification of I/Q NMSE= -37.67 dB NMSE = −34:47 dB
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strengthen the important features and weaken the unimpor-
tant features, which can improve the fitting ability. The prin-
ciple of the attention mechanism is shown in Figure 2. Let
the input of the module be t, which can be written as

t = t1, t2,⋯,tK½ �T , ð10Þ

where K is the number of input nodes. The fitting output is o
, which can be written as

o = o1, o2,⋯,oL½ �T , ð11Þ

where L is the number of output nodes.
First, the correlation between each input ti, ði = 1, 2,⋯,

KÞ and all outputs o is calculated. The commonly used
method to calculate correlation is NN [28]. The correlation
obtained can be written as

hi = Cor ti, oð Þ, i = 1, 2,⋯,Kð Þ, ð12Þ

where Corð·Þ is the function that calculates the correlation.
Then, the correlations are normalized and converted to

the probability form through the Softmax function, to mean

the weights of the input. The weights of the input can be
written as

ri =
exp hið Þ

∑K
j=1exp hj

� � , i = 1, 2,⋯,Kð Þ, ð13Þ

where exp ðkÞ stands for ek and ∑ð·Þ represents the sum
function.

Finally, the weights are used to weigh the corresponding
input of the module. Using weighted inputs, the model out-
puts can be fitted. By weighting the inputs, the valid input
features are emphasized, and the invalid ones are weakened,
so as to improve the fitting performance. This paper does
not use the attention mechanism to improve the modeling
ability but embeds the attention mechanism into the predis-
tortion model to obtain the weights of the basis function
terms to evaluate the contributions of the basis function
terms by weights.

3. The Proposed Order Reduction Method of
the Predistortion Model

In this section, the structure of the proposed order reduction
method of the predistortion model is given first, and each
module is described in detail. Then, the training method
and process of the proposed order reduction method are
analyzed.

3.1. The Structure of the Proposed Order Reduction Method.
In order to improve the linearization performance in the
case of I/Q imbalance, the I/Q branch models of the predis-
torter are identified separately. At this point, the I/Q compo-
nents of all complex basis function terms have separate
model coefficients and independent contributions to the pre-
distortion output, as shown in the analysis in Section 2, part
1. To further simplify the structure of the predistortion
model, this paper proposes an order reduction method of
the predistortion model based on the attention mechanism,
as shown in Figure 3. In this method, all real basis function
terms are distinguished, and their contributions to the pre-
distortion output are given, so that I/Q branch models of
the predistorter can be pruned. Meanwhile, to ensure the
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consistency of the I/Q branch models of the predistorter, the
contributions of the real basis function terms to the I/Q
components of the predistortion output are calculated
simultaneously, to reduce the predistortion model’s design
complexity in FPGA. The specific model structure is
described as follows.

The input signal xðnÞ is fed into PA after passing
through the upconversion module and the digital-to-analog
converter (DAC). In the feedback loop, the coupling output
of the coupler passes through the downconversion module
and the analog-to-digital converter (ADC) to obtain the dig-
ital baseband signal yðnÞ of the PA output. We use the out-
put signal yðnÞ and input signal xðnÞ of the PA to build the I
/Q branch models of the predistorter based on the indirect
learning architecture (ILA). Then, the proposed order reduc-
tion method is used to select important basis function terms
in the I/Q branch models. Finally, the selected basis function
terms are modeled on the main road using the lookup table
(LUT) in the field-programmable gate array (FPGA), to
achieve the PA’s linearization.

The I/Q branch models can be constructed by the I/Q
components of the traditional models or the ANN-based
models. Let us take the GMP model as an example. The I
/Q components of the complex basis function terms have
independent contributions to the predistortion output, so
the input data of the order reduction structure should con-
tain all the real basis function terms, as shown in Equation
(8), which can be written as

�y nð Þ = �y1I nð Þ, �y2I nð Þ,⋯,�ySI nð Þ,½ �y1Q nð Þ, �y2Q nð Þ,⋯,�ySQ nð Þ�T
= y1 nð Þ, y2 nð Þ,⋯,yS nð Þ,⋯,y2S nð Þ½ �T ,

ð14Þ

where �yiIðnÞ and �yiQðnÞ, ði = 1, 2,⋯,SÞ are the I/Q compo-
nents of the complex basis function term �yiðnÞ, respectively.
�yðnÞ is a vector with a dimension of 2S × 1, where 2S is the
number of the real basis function terms. To facilitate num-
bering, y1ðnÞ, y2ðnÞ,⋯, y2SðnÞ are used to represent these
elements.

The output data of the structure contains the I/Q com-
ponents of the output of the predistorter, which can be
expressed as

�x nð Þ = xI nð Þ, xQ nð Þ� �T , ð15Þ

where xIðnÞ and xQðnÞ are the predistortion model output
xðnÞ’s I/Q components.

To improve the fitting performance, a NN layer is used
to calculate the correlation between each input and output
data. Since each input needs to be calculated the correlation
with all outputs, the i-th neuron in the NN layer is con-
nected to the i-th input yiðnÞ and all outputs �xðnÞ. The num-
ber of neurons is 2S, corresponding to 2S inputs of the
module. The NN layer’s output can be written as
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pi = f1 vi1yi nð Þ + vi2vi3½ ��x nð Þ + bið Þ, i = 1, 2,⋯,2Sð Þ, ð16Þ

where fvi1, vi2, vi3g are the weight coefficients of the i-th
neuron and bi is the bias coefficient of the i-th neuron.
f1ð·Þ is the activation function, usually “tanh.” The output
pi, ði = 1, 2,⋯,2SÞ of the i-th neuron represents the correla-
tion between the i-th input yiðnÞ and the output �xðnÞ.

Then, the obtained correlation values pi between the
input and output data are converted numerically using the
Softmax function. And the output of the Softmax function
can be expressed as

qi =
exp pið Þ

∑2S
j=1exp pj

� � , i = 1, 2,⋯,2Sð Þ, ð17Þ

where ∑2S
i=1qi = 1. qi, ði = 1, 2,⋯,2SÞ is the form of probabil-

ity, reflecting the spatial importance of the corresponding
input yiðnÞ to the output, which is considered in this paper
as the contribution of input (the basis function term) yiðnÞ
to the generation of the output.

The inputs are weighted by the contributions of the
inputs (the basis function terms), to emphasize the impor-
tant inputs. The weighted inputs yi′ðnÞ can be written as

yi′ nð Þ = qi × yi nð Þ, i = 1, 2,⋯,2Sð Þ: ð18Þ

By weighting the inputs (basis function terms) using the
contributions, the important spatial details can be empha-
sized, and unimportant information can be weakened.

Finally, the weighted inputs yi′ðnÞ are used to fit the out-
put of the predistortion model. Since the I/Q branch models
of the predistorter are identified separately, two coefficient
vectors are used to fit the I/Q components of the predistor-
ter. The predicted I/Q components of the predistorter can be
expressed as

x̂I nð Þ = y1′ nð Þ, y2′ nð Þ,⋯,y2S′ nð Þ
h i

wI ,

x̂Q nð Þ = y1′ nð Þ, y2′ nð Þ,⋯,y2S′ nð Þ
h i

wQ,

8><
>: ð19Þ

where x̂IðnÞ and x̂QðnÞ are the predicted I/Q components of
the predistorter, respectively.wI andwQ are the coefficient vec-

tors of the model, wI = ½wI1,wI2,⋯,wIS,wIðS+1Þ,⋯,wIð2SÞ�T
,wQ = ½wQ1,wQ2,⋯,wQS,wQðS+1Þ,⋯,wQð2SÞ�T .

The label data of the model training is output data �xðnÞ
in Equation (15). By calculating the error between the pre-
dicted output and the label data, the order reduction struc-
ture can be trained. When the model converges, the
contributions qi of the inputs (the basis function terms) are
obtained. Then, the real basis function terms can be sorted
according to their contributions. Considering the trade-off
between the model complexity and linearization effects, a
contribution threshold q0 is set. Then, the real basis terms
with contributions greater than the threshold are retained,
and the real basis terms with contributions less than the
threshold are removed. According to the retained basis func-

tion terms, the I/Q branch models of the predistorter are
modeled and identified.

3.2. Training of the Proposed Order Reduction Method. The
input signal yðnÞ and output signal xðnÞ of the predistortion
model are captured first. Then, the input data �yðnÞ of the
order reduction structure is constructed according to Equa-
tion (14), and the output data �xðnÞ is obtained according to
Equation (15). This paper uses 16,000 sets of input and out-
put data to model the proposed method. The data is divided
into training data and test data in a ratio of 1 : 1, which are
used to train the method and test the method, respectively.
The cost function of the training is set as the mean square
error (MSE) function, which is written as

MSE = 1
2N〠

N

i=1
x∧I ið Þ − xI ið Þð Þ2 + x∧Q ið Þ − xQ ið Þ� �2� �

, ð20Þ

where N is the number of data sets for training.
In this paper, the Adam optimization algorithm [31] is

used to update the coefficients θ = fvi1, vi2, vi3, bi,wI ,wQg
of the proposed structure. The updating process of coeffi-
cients can be expressed as

θ kð Þ = θ k−1ð Þ − δ
A kð Þ/ 1 − βk

1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B kð Þ/ 1 − βk

2

� �r
+ ε

,

A kð Þ = β1A
k−1ð Þ + 1 − β1ð Þ∇,

B kð Þ = β2B
k−1ð Þ + 1 − β2ð Þ∇2,

(

8>>>>>>>><
>>>>>>>>:

ð21Þ

where ∇ is the gradient of the cost function to the coeffi-
cients and δ is the learning rate. β1, β2, and ε are constants.

The training process of the proposed order reduction
method is shown in Algorithm 1. During the training, the
attention module’s output and the model output are calcu-
lated successively, and then, the cost function is calculated
based on the model output and label data. According to
the obtained cost function, the coefficients of the proposed
method were updated using the Adam algorithm. In the next
iteration, the attention module’s output and the model out-
put are calculated based on the updated model coefficients.
Then, the cost function is calculated, and the coefficients
are updated again. When the training times of the method
reach the given iteration times, the training is finished.

When the model completes the training, the weight
values qi of the attention module output represent the con-
tributions of the corresponding input. According to the con-
tribution values of the basis function terms, the real basis
function terms are filtered, and the retained basis function
terms are obtained

�y′ nð Þ = yd1 nð Þ, yd2 nð Þ,⋯,ydD nð Þ
h iT

, ð22Þ

where D is the number of the retained basis function
terms, and di, ði = 1, 2,⋯,DÞ satisfy qdi ≥ q0. Then, the
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predistortion model is constructed using the retained basis
function terms, and the predistorter coefficients are calcu-
lated by the LS algorithm.

bω I′= �y′
� �H

�y′
	 
−1

�y′
� �H

xI ,

bωQ′ = �y′
� �H

�y′
	 
−1

�y′
� �H

xQ,

8>>>><
>>>>:

ð23Þ

where �y′ = ½�y′ðNÞ, �y′ðN − 1Þ,⋯,�y′ð1Þ�T .

4. Experimental Setup

The experimental platform in Figure 4 is used to test the
pruning effect of the order reduction method. The test signal
used is an orthogonal frequency division multiplexing
(OFDM) signal with a bandwidth of 100MHz and a PAPR
of 9.46 dB. In this OFDM signal, the symbol vector is mod-

ulated by 16 quadrature amplitude modulation (16-QAM).
The OFDM signal is first transmitted to the Arbitrary Wave-
form Generator (AWG81180A), and then, the device is con-
nected to the Performance Signal Generator (PSGE8267D)
to transmit the generated baseband signal. PSG realizes dig-
ital to analog conversion and upconversion functions and
then transmits the signal to Doherty PA. The PA has a cen-
ter frequency of 2.14GHz and a saturated power of 43 dBm,
and the output backoff (OBO) is 6 dB. The output signal of
PA is fed into the coupler.

In the feedback loop, the coupler’s coupling output is
connected to an oscilloscope (MSO9404A), to realize the
sampling of the feedback signal. MSO9404A realizes the
functions of downconversion and ADC. The sampling band-
width is set to 500MHz. Finally, the sampled digital base-
band signal is downloaded to a personal computer (PC) to
achieve predistortion design. The order reduction method
of the predistortion model is constructed using the Python
software’s TensorFlow module on a PC. In order to verify
the performance of the proposed method under different

Definition:
1. Construct the structure of the order reduction method;
2. Obtain the training data, including the input and output data of the training;
3. Define MSE as the cost function of training.

Training of the method:
1. Initialization:

1) Set the learning rate δ = 0:001, and the training parameters β1 = 0:9, β2 = 0:999, ε = 10−8;
2) Initialize vector Að0Þ = 0 and Bð0Þ = 0;
3) Initialize coefficients θð0Þ.

2. Training:
Loop: k = 1, 2,⋯

1) Calculate the output qi of the attention module from Equation (17);
2) Calculate model output from Equation (19);
3) Calculate the cost function MSE from Equation (20);
4) Calculate vector AðkÞ = β1A

ðk−1Þ + ð1 − β1Þ∇ and BðkÞ = β2B
ðk−1Þ + ð1 − β2Þ∇2;

5) Update coefficients θðkÞ = θðk−1Þ − δðΑðkÞ/ð1 − βk
1Þ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðkÞ/ð1 − βk

2Þ
q

+ εÞ.
End

Algorithm 1: Training of the order reduction method

AWG
(Agilent 81180A)

Baseband
input signal

PSG
(Agilent E8267D)+

fc

PA

Doherty
PA

Power
load 

fc

Coupler

PC with
python 

I

Q

Oscillascope
(Agilent MSO9404A)

IQ

DAC

ADC

Figure 4: Experimental setup.

7Wireless Communications and Mobile Computing



conditions, we evaluate two cases of transmitter nonlinear-
ity. Case A only contains PA’s nonlinear distortion in the
link, and case B contains nonlinear distortion of PA and I
/Q imbalance in the link. In the I/Q imbalance, the ampli-
tude imbalance is set to 1 dB, and the phase imbalance is
set to 3 degrees.

5. Experimental Results

Figure 5 shows the contribution values of the real basis func-
tion terms to the generation of the predistortion output,
where the predistortion model is modeled using the GMP

model, and the model parameters Ka = 9, La = 9, Kb = 5, Lb
= 2, Mb = 5, Kc = 0, Lc = 0, and Mc = 0. In Figure 5, the hor-
izontal axis shows the number of the real basis function
terms, in the order shown in Equation (10), and the vertical
axis represents the corresponding contribution values of the
real basis function terms. It can be seen from the figure that
different basis function terms show different contribution
values with a great difference, which is the basis of the effec-
tiveness of the proposed method. Meanwhile, the I/Q com-
ponents of some complex basis function terms all display
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Figure 5: The contribution values of the real basis function terms.
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large contribution values, such as the I/Q components yIðnÞ,
yQðnÞ, yIðn − 3Þ, yQðn − 3Þ, yIðnÞjyðnÞj8, yQðnÞjyðnÞj8 of yð
nÞ, yðn − 3Þ, and yðnÞjyðnÞj8. However, there are also some
complex basis functions with only one component showing
a larger contribution, such as yIðn − 6Þ, yIðnÞjyðnÞj5, and
yQðn − 1Þjyðn − 1Þj5, which suggests that distinguishing the
contributions of the I/Q components of the complex basis
function terms can further reduce model complexity.

Figure 6 compares the linearization performance of case
A and case B at different order reduction levels. It can be
found that in case A, the NMSE decreases rapidly with the
increase of the number of the selected real basis function
terms, when the number of the selected real basis function
terms is less than 40. This is because the basis function terms

with larger contributions are selected first and can generate
most of the predistortion output. When the number of the
selected real basis function terms is between 40 and 55, the
NMSE decreases slowly. When the real basis function terms’
number exceeds 56, the NMSE performance is barely
improved. We select 56 real basis function terms, and the
NMSE performance at this time can be maintained to
-37.28 dB. Compared with 262 real basis terms of the GMP
model, the number of the real function basis terms of the
pruning method is reduced by 79%. The NMSE curve of case
B shows the same trend as that of case A. However, the
NMSE curve of case B has a faster decline rate as the number
of the real basis function terms increases. According to the
linearization performance, 54 real basis function terms with
large contributions were selected to mitigate the PA’s
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Figure 8: Comparison of the predistortion effects between the typical pruning models and the proposed pruning model.

Table 2: Comparison of linearization effects under different nonlinear conditions.

PA nonlinearity PA nonlinearity and I/Q imbalance
Num. of real basis
function terms

NMSE (dB)
ACPR (±25MHz)

(dBc)
Num. Of real basis
function terms

NMSE (dB)
ACPR (±25MHz)

(dBc)

No DPD \ -8.68 -31.14/-33.24 \ -7.51 -29.75/-31.52

GMP (complex model) 262 -32.67 -44.63/-44.99 262 -22.75 -38.02/-39.94

OMP (complex model) 28 -32.30 -44.34/-44.95 8 -22.47 -38.14/-39.81

DOMP (complex model) 24 -32.30 -44.57/-44.87 6 -22.40 -38.07/-39.91

GMP (real model) 262 -37.67 -45.65/-46.97 262 -34.47 -41.29/-42.77

OMP (real model) 166 -37.28 -45.66/-46.74 188 -34.09 -41.20/-42.69

DOMP (real model) 84 -37.29 -45.53/-46.84 74 -34.09 -41.18/-42.75

Proposed pruning model 56 -37.28 -45.64/-46.81 54 -34.07 -41.21/-42.72
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nonlinearity and I/Q imbalance, and the NMSE at this time
can be maintained to -34.07 dB. In case B, the number of
the real basis function terms of the pruning model is
reduced by 79%.

Figure 7 compares the NMSE of the proposed method
with other methods at different order reduction levels. In
OMP (real model) and DOMP (real model), the important
real basis function terms for the I/Q branch models of the
predistorter are calculated separately. It can be found that
the linearization performance of the real model (the I/Q
branch models of the predistorter) is obviously better than
that of the complex model. In the real model, to achieve
the same NMSE (-36.27 dB, which is 0.4 dB higher than the
NMSE of the GMP model), the proposed method requires
only 56 basis function terms and the basis function terms’
number is reduced by 79%. However, OMP and DOMP
require 166 and 84 basis function terms, respectively, which
are 3 times and 1.5 times the number of the selected basis
function terms of the proposed method, respectively. The
reduced basis function terms represent the influence of the
cross terms of the I/Q branch models.

Figure 8 compares the linearization effects of the typical
pruning models and the proposed pruning model. The num-
ber of the real basis function terms selected for the proposed
model is the abovementioned 56. It can be seen from the fig-
ure that the proposed pruning model reduces the adjacent
channel power ratio (ACPR) of the PA output signal from
-32 dBc to -46 dBc, which proves the superior pruning per-
formance of this model. Compared with the full GMP
model, the linearization effects of the proposed pruning
model are almost no worse, which can be seen from the
almost overlapping spectrum. Meanwhile, the linearization
effects of the proposed model are almost the same as those
of the OMP model and the DOMP model, but the complex-
ity of the predistortion model is significantly reduced. The
number of the real basis function terms of the proposed
model is only 67% of the number of the real basis function
terms of the OMP model and 34% of the number of the real
basis function terms of the DOMP model.

Table 2 comprehensively compares the performance of
the typical methods and the proposed pruning method in
case A and case B. It can be found that in case A, the pro-
posed pruning method achieved the NMSE of -36.28 dB
(0.4 dB higher than the NMSE of the GMP model) with only
21% real basis function terms. The ACPR performance of
the proposed pruning method is almost equal to that of
the full GMP model. Meanwhile, the ACPR and NMSE of
the proposed pruning method are almost the same as those
of OMP and DOMP, using the least real basis function
terms. In case B, the NMSE performance of the proposed
pruning method reaches -34.07 dB (0.4 dB higher than the
NMSE of the GMP model) using only 21% of the real basis
function terms. Similarly, the proposed pruning method
achieves nearly the same NMSE and ACPR performance as
OMP and DOMP by using the least real basis function terms
in case B.

Figure 9 shows the NMSE performance of the proposed
order reduction model under different I/Q imbalance levels.
It can be found that under different I/Q imbalance levels, the

proposed order reduction model can quickly find the
important real basis function terms, to construct the low-
complexity predistortion model, which proves that the pro-
posed order reduction model is suitable for different trans-
mitter nonlinear conditions. The higher the level of the
amplitude imbalance and phase imbalance, the worse the
NMSE performance. However, the proposed order reduc-
tion model can almost achieve the optimal NMSE perfor-
mance when the number of the selected real basis function
terms is 30.

Figure 10 shows the contributions of the input items of
the NN-based predistortion model, where the proposed
method is used for the input term pruning of the NN-
based predistortion model, and the pruning structure is
described in literature [24]. It can be found that this method
can get the contribution values of the input items. Then, the
input items are sorted according to the contribution values.
Figure 11 shows the NMSE performance under the different
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number of input items. It can be found that with the increase
of the input item’s number, the NMSE performance
improves rapidly. When the input item’s number is 11, the
NMSE performance is almost equal to that of the full model,
which proves that this method is suitable for the pruning of
the NN model-based model.

6. Conclusions

In this paper, an order reduction method of the predistor-
tion model based on the attention mechanism is proposed.
This method calculates the contributions of the real basis
function terms to the I/Q components of the predistortion
output using the attention mechanism, to select the impor-
tant real basis function terms to build the I/Q branch
models. The experimental results based on 100MHz
Doherty PA and I/Q imbalance verify the superior pruning
performance of this method. In case A, the proposed method
can prune the number of the real basis function terms to
21%, and the NMSE can be maintained to -36.3 dB. And in
case B, the proposed method prunes the number of the real
basis function terms to 21%, and the NMSE can be main-
tained to -34.1 dB. Meanwhile, to achieve almost the same
ACPR and NMSE performance, the number of the basis
function terms required by the proposed method is only
67% that of DOMP. In order to further reduce the complex-
ity of the digital predistortion model in wideband systems,
we will consider designing a fixed core suitable for most
nonlinear transmitters and then pruning the I/Q branch
models for the remaining basis function terms.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Low-orbit satellite under-
sampling broadband predistortion high-efficiency transmis-
sion technology (No. A2021023) and the BUPT Excellent
Ph.D. Students Foundation (No. CX2020112).

References

[1] J. J. Xia, L. Fan, N. Yang et al., “Opportunistic access point
selection for mobile edge computing networks,” IEEE Transac-
tions on Wireless Communications, vol. 20, no. 1, pp. 695–709,
2021.

[2] K. He, Z. Wang, D. Li, F. Zhu, and L. Fan, “Ultra-reliable MU-
MIMO detector based on deep learning for 5G/B5G-enabled
IoT,” Physical Communication, vol. 43, no. 11, p. 101181, 2020.

[3] S. P. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, “Bat-
tery-constrained federated edge learning in UAV-enabled
IoT for B5G/6G networks,” Physical Communication, vol. 47,
p. 101381, 2021.

[4] J. A. Becerra, M. J. Madero-Ayora, and C. Crespo-Cadenas,
“Comparative analysis of greedy pursuits for the order reduc-
tion of wideband digital predistorters,” IEEE Transactions on
Microwave Theory and Techniques, vol. 67, no. 9, pp. 3575–
3585, 2019.

[5] X. Hu, Z. Liu, X. Yu et al., “Convolutional neural network for
behavioral modeling and predistortion of wideband power
amplifiers,” IEEE Transactions on Neural Networks and Learn-
ing Systems, pp. 1–15, 2021.

[6] X. Hu, Z. Liu, W. Wang, M. Helaoui, and F. M. Ghannouchi,
“Low-feedback sampling rate digital predistortion using deep
neural network for wideband wireless transmitters,” IEEE
Transactions on Communications, vol. 68, no. 4, pp. 2621–
2633, 2020.

[7] Z. Wang, W. Chen, G. Su, F. M. Ghannouchi, Z. Feng, and
Y. Liu, “Low feedback sampling rate digital predistortion for
wideband wireless transmitters,” IEEE Transactions on Micro-
wave Theory and Techniques, vol. 64, no. 11, pp. 3528–3539,
2016.

[8] L. Anttila, P. Handel, and M. Valkama, “Joint mitigation of
power amplifier and I/Q modulator impairments in broad-
band direct-conversion transmitters,” IEEE Transactions on
Microwave Theory and Techniques, vol. 58, no. 4, pp. 730–
739, 2010.

[9] J. A. Becerra, M. J. M. Ayora, J. Reina-Tosina, and C. Crespo-
Cadenas, “Sparse identification of Volterra models for power
amplifiers without pseudoinverse computation,” IEEE Trans-
actions on Microwave Theory and Techniques, vol. 68, no. 11,
pp. 4570–4578, 2020.

[10] A. Abdelhafiz, A. Kwan, O. Hammi, and F. M. Ghannouchi,
“Digital predistortion of LTE-A power amplifiers using
compressed-sampling-based unstructured pruning of Volterra
series,” IEEE Transactions on Microwave Theory and Tech-
niques, vol. 62, no. 11, pp. 2583–2593, 2014.

[11] J. Reina-Tosina, M. Allegue-Martinez, C. Crespo-Cadenas,
C. Yu, and S. Cruces, “Behavioral modeling and predistortion
of power amplifiers under sparsity hypothesis,” IEEE Transac-
tions on Microwave Theory and Techniques, vol. 63, no. 2,
pp. 745–753, 2015.

[12] J. Kim and K. Konstantinou, “Digital predistortion of wide-
band signals based on power amplifier model with memory,”
Electronics Letters, vol. 37, no. 23, pp. 1417-1418, 2001.

0 3 6 9 12 15 18 21 24 27 30 33

0

Contribution threshold

The number of input items

N
M

SE
 (d

B)

−40

−35

−30

−25

−20

−15

−10

−5

Figure 11: NMSE performance under the different number of the
input items in the NN-based predistortion model.

11Wireless Communications and Mobile Computing



[13] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A
generalized memory polynomial model for digital predistor-
tion of RF power amplifiers,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 10, pp. 3852–3860, 2006.

[14] D. Lopez-Bueno, Q. A. Pham, G. Montoro, and P. L. Gilabert,
“Independent digital predistortion parameters estimation
using adaptive principal component analysis,” IEEE Transac-
tions on Microwave Theory and Techniques, vol. 66, no. 12,
pp. 5771–5779, 2018.

[15] A. Molina, K. Rajamani, and K. Azadet, “Digital predistortion
using lookup tables with linear interpolation and extrapola-
tion: direct least squares coefficient adaptation,” IEEE Transac-
tions on Microwave Theory and Techniques, vol. 65, no. 3,
pp. 980–987, 2017.

[16] P. L. Gilabert, A. Cesari, G. Montoro, E. Bertran, and J. M. Dil-
hac, “Multi-lookup table FPGA implementation of an adaptive
digital predistorter for linearizing RF power amplifiers with
memory effects,” IEEE Transactions on Microwave Theory
and Techniques, vol. 56, no. 2, pp. 372–384, 2008.

[17] J. A. Becerra, M. J. Madero-Ayora, J. Reina-Tosina, C. Crespo-
Cadenas, J. Garcia-Frias, and G. Arce, “A doubly orthogonal
matching pursuit algorithm for sparse predistortion of power
amplifiers,” IEEEMicrowave andWireless Components Letters,
vol. 28, no. 8, pp. 726–728, 2018.

[18] W. Chen, S. Zhang, Y. J. Liu, F. M. Ghannouchi, Z. Feng, and
Y. Liu, “Efficient pruning technique of memory polynomial
models suitable for PA behavioral modeling and digital predis-
tortion,” IEEE Transactions on Microwave Theory and Tech-
niques, vol. 62, no. 10, pp. 2290–2299, 2014.

[19] J. A. Becerra, M. J. Madero-Ayora, J. Reina-Tosina, C. Crespo-
Cadenas, J. Garcia-Frias, and G. Arce, “A reduced-complexity
doubly orthogonal matching pursuit algorithm for power
amplifier sparse behavioral modeling,” in 2019 IEEE Topical
Conference on RF/Microwave Power Amplifiers for Radio and
Wireless Applications (PAWR), pp. 1–3, Orlando, FL, USA,
January 2019.

[20] J. Peng, S. He, Z. Dai, and B. Wang, “A simplified sparse
parameter identification algorithm suitable for power ampli-
fier behavioral modeling,” IEEEMicrowave andWireless Com-
ponents Letters, vol. 27, no. 3, pp. 290–292, 2017.

[21] D. Wang, M. Aziz, M. Helaoui, and F. M. Ghannouchi, “Aug-
mented real-valued time-delay neural network for compensa-
tion of distortions and impairments in wireless transmitters,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 1, pp. 242–254, 2019.

[22] S. Lajnef, N. Boulejfen, A. Abdelhafiz, and F. M. Ghannouchi,
“Two-dimensional Cartesian memory polynomial model for
nonlinearity and I/Q imperfection compensation in concur-
rent dual-band transmitters,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 63, no. 1, pp. 14–18, 2016.

[23] H. Y. Cao, A. Soltani Tehrani, C. Fager, T. Eriksson, and
H. Zirath, “I/Q imbalance compensation using a nonlinear
modeling approach,” IEEE Transactions on Microwave Theory
and Techniques, vol. 57, no. 3, pp. 513–518, 2009.

[24] Z. Liu, X. Hu, T. Liu, X. Li, W. Wang, and F. M. Ghannou-
chi, “Attention-based deep neural network behavioral model
for wideband wireless power amplifiers,” IEEE Microwave
and Wireless Components Letters, vol. 30, no. 1, pp. 82–85,
2020.

[25] L. Guan and A. Zhu, “Optimized low-complexity implementa-
tion of least squares based model extraction for digital predis-
tortion of RF power amplifiers,” IEEE Transactions on

Microwave Theory and Techniques, vol. 60, no. 3, pp. 594–
603, 2012.

[26] Lei Ding, Zhengxiang Ma, D. R. Morgan, M. Zierdt, and
J. Pastalan, “A least-squares/Newtonmethod for digital predis-
tortion of wideband signals,” IEEE Transactions on Communi-
cations, vol. 54, no. 5, pp. 833–840, 2006.

[27] J. J. Xia, D. Deng, and D. Fan, “A note on implementation
methodologies of deep learning-based signal detection for con-
ventional MIMO transmitters,” IEEE Transactions on Broad-
casting, vol. 66, no. 3, pp. 744-745, 2020.

[28] J. Xia, L. Fan,W. Xu et al., “Secure cache-aided multi-relay net-
works in the presence of multiple eavesdroppers,” IEEE Trans-
actions on Communications, vol. 67, no. 11, pp. 7672–7685,
2019.

[29] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio, “Attention-based models for speech recognition,”
in Proc. Advances in Neural Information Processing Systems,
pp. 577–585, Cambridge, MA, USA, 2015.

[30] W. Xu, R. Chen, B. Huang, and Q. Zhou, “Enhanced context
attention network for image super resolution,” IEEE Sensors
Journal, vol. 21, no. 10, pp. 11665–11673, 2021.

[31] D. P. Kingma and J. Ba, “Adam: a method for stochastic opti-
mization,” in Proc. 3rd International Conference for Learning
Representations (ICLR 2015), pp. 7–9, San Diego, USA, 2015.

12 Wireless Communications and Mobile Computing


	A General Order Reduction Method of Wideband Digital Predistortion Model Using Attention Mechanism
	1. Introduction
	2. Digital Predistortion Based on I/Q Separate Identification
	2.1. Predistortion Model of I/Q Separate Identification
	2.2. The Principle of the Attention Mechanism

	3. The Proposed Order Reduction Method of the Predistortion Model
	3.1. The Structure of the Proposed Order Reduction Method
	3.2. Training of the Proposed Order Reduction Method

	4. Experimental Setup
	5. Experimental Results
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

