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A large number of Internet of Things (IoT) devices such as sensor nodes are deployed in various urban infrastructures to monitor
surrounding information. However, it is still a challenging issue to collect data in a low-cost, high-quality, and reliable manner
through IoT technique. Although the recruitment of mobile vehicles (MVs) to collect urban data has proved to be an effective
method, most existing data collection systems lack a trust detection mechanism for malicious terminal nodes and malicious
vehicles, which should lead to security vulnerabilities in practice. This paper proposes a novel data collection strategy based on a
layered trust mechanism (DC-LTM). The strategy recruits MVs as data collectors of the sensor nodes based on the data value in
the city, evaluates the trustworthiness of the data reported by the nodes, and records the results to the cloud data center.
Furthermore, in order to make the data collection system more efficient and trust mechanism more reliable, we introduce
unmanned aerial vehicles (UAVs) dispatched by data centers to actively verify the core sensor node data and use the core sensor
data as baseline data to evaluate the credibility of the vehicles and the trust value of the whole network sensor nodes. Different
from the previous strategies, UAVs adopts the DC-LTM method to obtain the node data while actively obtaining the trust value
of MVs and nodes, which effectively improves the quality of data acquisition. Simulation results show that the mechanism
effectively distinguishes malicious vehicles that provide false data in exchange for payment and reduces the total cost of system
recruitment payments. At the same time, the proposed incentive mechanism encourages vehicle to complete the evaluation task
and improves the accuracy of node trust evaluation. The recognition rates of false data attacks and flooding attacks as well as
the recognition error rate of normal nodes are 100%, 98.9%, and 3.9%, respectively, which improves the quality of system data
collection as a whole.

1. Introduction

With the development of IoT technology, new network sys-
tems such as the Internet of Vehicles, Smart Medical, and
Smart City have also developed rapidly [1–3]. A large num-
ber of sensing devices perceive their surroundings and gener-
ate a large amount of data in the intelligent network system
[4, 5]. These data often involve sensitive data, which brings
higher demand on the security. Edge computing introduces
an emerging computing model that helps to protect the con-
fidentiality of sensitive data. As edge computing is based on
the acquisition of massive data, the quality of data collection
plays a decisive role in the application. Therefore, collecting

data in a low-cost, high-quality, and reliable manner is a chal-
lenge issue for edge computing.

There are many researches based on mobile sink data
collection strategies in data collection, which mainly use
mobile vehicles (MVs) as data collection tool [6, 7], aggre-
gating data while the vehicle is in motion and transmitting
the collected data to data centers through 4G or 5G net-
works. These strategies are based on the assumption that ter-
minal node data and mobile data collectors are completely
reliable [8, 9]. Actually, a malicious terminal node may be
created due to network failure or intrusion, or the terminal
node is normal but the data collector may report false data
to cheat for payment [10]. Both cases mean that the
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malicious terminal node data provided by normal vehicles or
the normal terminal node data provided by malicious vehi-
cles are unreliable. Systems that lack trust detection mecha-
nisms for malicious terminal nodes and malicious vehicles
are severely compromised.

The trust-based data collection mechanism is an effective
strategy, which is widely used in the P2P network [11], WSN
network [12], etc. The trust mechanism evaluates the trust
values of data collectors by observing their interaction
behaviors and belongs to passive trust mechanisms. If data
reported by the data collector conforms to the predeter-
mined behavior, the credibility of the data collector will be
improved; otherwise, the credibility will be reduced. Trust
value is an important criterion when selecting data collec-
tors, thus discouraging low-trust data collectors from partic-
ipating in data collection. In the edge network, the number
of IoT devices is huge, and it is difficult to obtain data inter-
action behavior due to privacy and monitoring difficulties.
Such passive trust acquisition method is not suitable for edge
computing because of the difficulty of acquiring trust, inac-
curacy of evaluation, and nonverifiability of evaluation.

This paper designs a layered trust mechanism, which
recruits MVs to provide trust evaluation for terminal nodes,
and uses UAVs to actively verify the credibility of data collec-
tors and to inhibit malicious data collectors from participat-
ing in data collection. A novel data collection strategy based
on layered trust mechanism (DC-LTM) is proposed to obtain
secure and low-cost data for IoTs in this paper. Different
from the previous strategy, UAVs are adapted to actively
obtain the trust value of MVs and nodes while acquiring
node data in the DC-LTM method, which are effective in
improving the quality of data acquisition. The main innova-
tions of this paper are as follows.

(i) A layered trust mechanism based on terminal nodes,
MVs, and UAVs is proposed. The terminal nodes
monitor the communication behavior of their neigh-
bors and report it to the MVs. The MVs obtain the
status of the terminal nodes directly and perform
trust evaluation. UAVs perform trust evaluation of
the core terminal nodes, the results of which can be
used to verify the reliability of the vehicles that
reporting these core terminal nodes. Three kinds of
trust relationships are used in the trust evaluation
scheme proposed in this paper, namely, recommen-
dation trust, direct trust, and active trust, the weight-
ing of which combines into the comprehensive trust.
Among them, active trust is the basis of verifiability,
which allows active verification of node data through
UAV, and is considered the most reliable. Active
trust is given the highest weighting. Both recom-
mendation trust and direct trust unfold from the
communication behavior and energy state between
nodes, respectively, and are largely affected by the
high weight of active trust. The usage of UAV is
not only accurate for trust verification, but also
expands the scope of trust assessment through rec-
ommendation trust and direct trust and makes trust
verification faster

(ii) A trust evaluation mechanism of UAV participating
in active evaluation is proposed. The mechanism
uses UAVs as an authoritative verification tool to
verify actively the authenticity of data reported by
mobile vehicles and inhibit malicious vehicles from
participating in data collection and getting rewards.
At the same time, UAVs are adopted to acquire data
while abtaining node trust in the DC-LTM method
which are effective in improving the quality of data
acquisition. The system assigns the task of data col-
lection to the mobile vehicles, and the accuracy of
the collected data depends on the behavior and per-
formance of the mobile vehicles themselves. In prac-
tice, the behavior and performance of mobile
vehicles are not always credible. It is difficult to dis-
tinguish the reported data from real data or false
data. For example, some MVs may commit mali-
cious fraud by providing false data in order to obtain
more rewards, and some MVs may accidentally
report incorrect data due to their own errors. All
these situations can lead to the failure of system
monitoring. Therefore, the UAV is dispatched at
the right time to compare the data sensed by UAV
with the data reported by vehicle and to judge the
reliability of the vehicle, which changes the short-
comings of previous passive trust acquisition
strategy

(iii) The proposed recruitment mechanism encourages
MVs to upload node information accurately. In the
DC-LTM method, the MVs are employed to collect
data with an incentive mechanism. The mechanism
considers the value of the collected sensor data and
avoids the situation that no vehicle is willing to col-
lect nodes far away from the data center. It is a rea-
sonable incentive mechanism

(iv) Simulation results show that the proposed layer trust
evaluation mechanism not only reduces the cost of
recruitment payments but also improves the accu-
racy of trust evaluation. The recognition rate of false
data attacks and flooding attacks and the recognition
error rate of normal nodes are 100%, 98.9%, and
3.9%, respectively. The overall quality of data collec-
tion is improved

The rest of this paper is organized as follows. The related
works are reviewed in Section 2. The systemmodel and prob-
lem statement are described in Section 3. In Section 4, the
DC-LTM scheme for IoT is proposed. The simulation results
and performance are analyzed in Section 5. Finally, we con-
clude in Section 6.

2. Related Work

With the development of IoT technology and the Internet of
Everything (IoE), more and more sensing devices have begun
to be integrated into the Internet, leading to the development
of new network systems such as Smart Cities and Internet of
Vehicles. Numerous sensing devices are generating a large
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amount of data, and intelligent network systems need to ana-
lyze and process the large amounts of data generated by sens-
ing devices to improve network performance. Intelligent
strategies are provided to improve network performance
and provide high-quality services for users [13–15]. At the
same time, these data often contains a large amount of sensi-
tive data. It also puts higher requirements for the security of
the Internet of things.

The edge computing has improved the security and real-
time performance of data, but the security of the execution
environment of the edge computing nodes is still a nonnegli-
gible issue, which threatens the security of the entire edge
computing model. The edge is often a high-value target for
attackers, as it collects data from multiple terminals. Com-
pared with terminal, edge is more vulnerable. Once the edge
is broken, the attacker can not only access confidential data
but also delete or forge data. Hardware vendors are now
introducing Trusted Execution Environments (TEE) on var-
ious platforms and integrating TEE into edge computing
nodes. It can effectively guarantee the computing security
on these nodes. Common TEEs include Intel Software Guard
Extensions (SGX) [16, 17], x86 system management mode
(SMM) [18], and AMD platform security processor (PSP)
[19]. On the other hand, edge computing is based on the
acquisition of massive data, and the quality of data collection
plays a decisive role in the application. Therefore, collecting
data in a low-cost, high-quality, and reliable manner is a chal-
lenge issue. This paper focuses on data collection. As the
number of vehicles in cities continues to increase, MV-
based data sensing methods have gradually attracted the
attention of researchers.

2.1. Low-Cost Data Collection Strategy. Bonola et al. pro-
posed a low-cost data collection strategy for smart cities by
opportunistic routing, in which sensing devices are con-
nected to mobile vehicles via single or multihops, and data
from sensor nodes is indirectly routed to the data center
due to the 5G communication capability of mobile vehicles
[20]. This strategy makes full use of the existing devices in
the edge network and is a low-cost data collection strategy
without the need to deploy dedicated data collection devices
and other infrastructure. Abdelhamid et al. [9] combined
sensing devices and mobile vehicles based on the literature
[20], giving rewards based on the distance travelled by the
vehicle and calculating the cost by considering only the
distance travelled by the vehicle and the coverage of the
city. He et al. propose a trajectory-based vehicle recruit-
ment framework, which considers spatiotemporal availabil-
ity and participant reputation, and recruit vehicles to
achieve the desired spatial coverage within a limited bud-
get [21].

2.2. High-Quality Data Collection Strategy. The quality of
data collection is mainly reflected in the data collection rate
and accuracy rate. Data collection rate mainly refers to the
proportion of data collected or the proportion of collected
data covering the whole collection area. Ren et al. proposed
a vehicle recruitment strategy with the goal of optimizing
data collection quality as an incentive for vehicles to perform

data collection [8]. The literature [9] proposes a greedy
approximation algorithm to solve the problem of vehicle par-
ticipant recruitment, which achieves high quality mobile
swarm intelligence perception on a limited budget. The aim
of the scheme is to recruit participants to maximize coverage
within a limited budget.

2.3. Trust-Based Data Collection Strategies. All of the above
strategies are based on the assumption that terminal nodes
and vehicles are completely reliable. In fact, there is a risk that
the terminal nodes or vehicles may be attacked, or some vehi-
cles may maliciously provide false data in order to get more
rewards. If the data collected is not trustworthy, it will affect
normal decision-making and have a serious impact on the
system. Trust-based data collection strategy is an effective
method to identify false data [22–24] and is commonly used
in IoT.

Wang et al. proposed an intelligent evaluation scheme
based on mobile edge computing, and a probabilistic graph-
ical model was designed to ensure the trustworthiness of
nodes and reduce energy consumption [22]. Tanaka et al.
proposed using the Beta function as a probability density
function for trust evaluation of nodes [25]. Xu et al. proposed
adding a unique hash value at the intermediate node when
the packet is forwarded, verifying the hash value of the inter-
mediate node uniformly at the destination node, and updat-
ing the counter of trust by the result of the verification [26].
These strategies are all passive trust mechanisms, and nodes
that have not interacted for a long time may need to take
more risks to establish communication. In recent years, there
are many researches on active trust mechanism. Wang et al.
proposed a trust assessment mechanism using crowdsour-
cing and intelligent mobile edge computing. Mobile edge
users can obtain various information and determine whether
a node is trustworthy through proximity access to the termi-
nal node [23]. Sharma et al. proposed the use of a more trust-
worthy base station to periodically collect and check packets
sent by neighbouring nodes, which has ensured the security
of the routing path [27], while Wang et al. [28] argue that
the active mechanism requires initiating routes to actively
test other nodes, which also implies the consumption of addi-
tional energy. Hu et al. further proposed a data collection
approach using a combination of UAV and mobile vehicles
to collect data with less delay [24]. Regarding the data collec-
tion strategy of UAVs in WSNs, many researchers focus on
the path planning and scheduling of UAVs. Jiang et al. pro-
posed a UAV trajectory optimization algorithm based on
ant colony [29]. Li et al. [30] proposed an evolutionary path
planning algorithm to maximize the information collection
of UAVs. Liu et al. [31] proposed that the city should be
divided into several districts to maximize the capacity of each
node according to the number of WSN nodes, the size of
WSN cluster, and the number of UAVs.

There are few studies on recruiting MVs to conduct trust
evaluation on terminal nodes and using UAVs as authoriza-
tion verification tools to actively verify the authenticity of
data reported by MVs. In this paper, the main responsibility
of the UAV is to perform data validation and improve the
quality of the system data collection in general.
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3. System Model and Problem Statement

3.1. Smart City Network Model. The network model based on
DC-LTM is shown in Figure 1, which includes sensing
devices, data collection tools, and data center. In smart city,
many city infrastructures, such as street lights and rubbish
bins, are equipped with sensing devices to monitor surround-
ings. Typically, these sensors have simple hardware and a
communication range of only a few tens of meters. They
can use their limited computing power to store data tempo-
rarily, and data is transferred from the sensors to the mobile
data collection tool when an Internet-connected data collec-
tion tool moves into these sensors. And then data is reported
to a more advanced data center through data collection tools.
Mobile vehicles (MVs) and unmanned aerial vehicles
(UAVs) are data acquisition tools that have been used in
many researches. The data generated by the sensors will be
received and stored by the data acquisition tool. The data col-
lected by the UAVs or MVs will be processed further in data
center, including trust assessment, recruitment of MVs,
rewards, and decision-making [23]. Some advanced data cen-
ters also have the ability to dispatch UAVs [32, 33].

3.2. Problem Statement. Figure 2 illustrates the structure of
data collection based on layered trust mechanism (DC-
LTM). Cloud data center recruits mobile vehicles for data
collection, and the mobile vehicles obtain sensored data and
calculate the trust value of the terminal nodes and then report
it to the data center. At the same time, the UAV is sent to
actively verify the trust value of the nodes and vehicles in
the network at an appropriate time and then report it to the
data center. The cloud data center aggregates the reported
data and then evaluates the trust value of the whole network.
Finally, the mobile vehicle is paid accordingly. A sensor node
needs to be evaluated several times with different vehicles,
and the cloud performs a comprehensive calculation to get
the final evaluation result to ensure accuracy. The scheme
proposed can collect data from the nodes. It obtains the trust
assessment of each terminal node in the whole network, as
well as determining the trustworthiness of the mobile vehicle.

The system uses the following performance indicators.

3.2.1. Evaluate Cost. The evaluation cost of the trust mecha-
nism includes the cost of the recruited MVs and the cost of
using the UAV, as shown in Equation (1):

cost = 〠
j∈MVs

ecj∙zj + 〠
k∈UAV

uck, ð1Þ

where ecj denotes the evaluation cost of the jth MVs. And
zj ∈ f0, 1g indicates whether MVs are recruited. uck repre-
sents the cost of a single UAV. Obviously, the evaluation cost
of trust mechanism is as low as possible.

3.2.2. Evaluate Quality. The evaluation quality of the trust
mechanism refers to the overall evaluation quality of the

recruited MVs, as shown in Equation (2):

quality = 〠
j∈MVs

eq j∙zj, ð2Þ

where eqj denotes the evaluation quality of the jth MVs.
Obviously, the recruitment of MVS should make the overall
evaluation quality of the system higher.

3.2.3. Evaluation Accuracy. The evaluation accuracy of the
trust mechanism is that the accuracy of the system can effec-
tively distinguish between malicious and normal nodes, as
shown in Equation (3):

accuracy =
∑j∈MVsRnum j∙zj

∑j∈MVs Rnum j +Wnumi

� �
∙zj

, ð3Þ

where Rnumjrepresents the number of MVsjcorrectly
reported trust evaluation values of sensing nodes, and
Wnumi represents the number of MVs j incorrectly reported
trust evaluation values of sensing nodes. Obviously, the trust
evaluation mechanism is as accurate as possible.

Therefore, the goal of the data collection strategy of this
mechanism is shown in Equation (4):

min Costð Þ =min 〠
j∈MVs

ecj∙zj + 〠
k∈UAV

uck

 !
,

max qualityð Þ =max 〠
j∈MVs

eq j∙zj

 !
,

max accuracyð Þ =max
∑j∈MVsRnum j∙zj

∑j∈MVs Rnumj +Wnumi

� �
∙zj

 !
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

4. Scheme

4.1. Overview. First, the cloud data center publishes the task
to all MVs in the region. The publication includes the net-
work topology of the sensor network and the location positi
onðxi, yiÞ of each sensor node ni, as well as the collection
value valðniÞ of each sensor. Secondly, the interested MVs
report its evaluation quality, evaluation area, evaluation
value, and evaluation cost to the cloud data center after
receiving the publication, and we name the four of them as
bids. Third, the cloud data center decides the winner set
based on minimizing the collection cost per sensor and max-
imizing the overall assessment quality according to each
MVs’ bid and recruits MVs to collect sensor node data.
Fourth, the selected MVs use their mobility abilities to collect
sensor node information and calculate the node’s trust value.
Fifth, UAVs are dispatched to verify the trust of sensor nodes
and MVs. Sixth, the cloud data center implements the result
summary and comparison mechanism to obtain the final
trust evaluation of each sensor and MVs, and at the same
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Figure 1: Smart city network model for DC-LTM scheme.
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Figure 2: The structure of data collection based on layered trust mechanism (DC-LTM).
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time, it also obtains the sensor collection information.
Finally, the MVs are paid.

4.2. Programme

4.2.1. Task Publishing. In this section, the cloud data center
publishes the task to all MVs in the region.

Definition 1. Taskðtopology, positionðxi, yiÞ, valðniÞÞ. Task is
a ternary formula Taskðtopology, positionðxi, yiÞ, valðniÞÞ. It
includes the network topology of the sensor network, the
location positionðxi, yiÞ of each sensor node, and the collec-
tion value valðniÞ of each sensor. ni indicates the ith sensor.

Definition 2. The collection value valðniÞ of the sensor node. If
every sensor collected received the same reward, there would
be a reluctance for MVs far from the data center to collect it,
as they would need to travel longer distances and spend more
time and effort bringing it back to the data center for the
same reward. MVs which are closer to the data center can
get more rewards without driving long distances. In our
recruitment mechanism, the collection value of a sensor node
is related to the distance from data center. The longer the dis-
tance, the higher the value; the closer the distance, the lower
the value. The collection value of each sensor is calculated by
Equation (5), where distanceðjni, data centerjÞ refers to the
distance of the sensor node from its own nearest data center.

val nið Þ = logadistance ni, data centerj jð Þ: ð5Þ

4.2.2. MV Bids. In this section, the interested MVs report its
evaluation quality, evaluation area, evaluation value, and
evaluation cost to the cloud data center after receiving the
publication, and we name the four of them as bids.

Definition 3. The bid for a MVs j is bidðMVs jÞ. This is a qua-
druple constraint containing the evaluation quality (eqj),
evaluation area (eaj), evaluation value (ev j), and evaluation
cost (ecj) of the MVs. The bids of MVs are obtained by Equa-
tion (6), where MVs j denotes the jth MVs.

bid MVsj
� �

= eq j, eaj, ev j, ecj
� �

: ð6Þ

Definition 4. Evaluation quality (eqj), eq j ∈ ½0, 1�. Assume
that a sensor node has the truth of state value Tni, where T
ni ∈ f−1, 1g, and Tni = −1 represents a malicious node, and
Tni = 1 represents a normal node. Evaluation result
(MVsnij) is a trust evaluation result obtained by MVs j for
node ni. When Tni converges to MVsnij, the higher eqj is,
the higher the evaluation quality of MVs is. In this paper,
we assume that eqj is related to the intrinsic characteristics
of the MVs. Thus, for any MVs, eqj is a constant that is inde-
pendent of the sensor being evaluated. The eqj of eachMVs is
given randomly, eqj ∈ ½0, 1�.

Definition 5. Evaluation area (eaj). Once a task is distribut-
ing, the vehicle is able to move freely within its action radius
and collect sensor data. rðMVs jÞ is the action radius of the jth
MVs, and eaj is the set of sensor nodes within the action
radius rðMVsjÞ.

Definition 6. Evaluation value (ev j). ev j denotes the sum of
the sensor values collected within the evaluation area of the
jth MVs. The further the sensor is from the data center, the
higher its value, as in Equation (7).

ev j = 〠
ni∈ea j

val nið Þ = 〠
ni∈ea j

logadistance ni, data centerj jð Þ: ð7Þ

Definition 7. Evaluation cost (ecj). ecj represents the collec-
tion cost per sensor in the evaluation area of the jth MVs,
as in Equation (8). A higher sensor value means a higher col-
lection cost. neaj represents the number of sensor nodes in
the evaluation area.

ecj =
ev j
neaj

, ð8Þ

if neai = neaj, evi > ev j, then eci > ecj, ð9Þ

if neai > neaj, evi = ev j, then eci < ecj: ð10Þ

4.2.3. Recruit MVs. In this section, the cloud data center
determines the winner set according to the recruitment strat-
egy and recruits MVs to collect sensor node data based on the
bids of each MVs. The objective function of the recruitment
strategy is shown in Equation (11).

max
z

∑i∈Sensorsbenefiti
∑j∈MVsecj∙zj

, ð11Þ

s:t:∀i ∈ Sensors, benefiti = max
j∈MVs

eq j∙xij∙zj
� �

: ð12Þ

The vector z is being optimized, where zj = 1 refers to the
jth MVs being recruited, and zj = 0 indicates that the jth
MVs is not recruited. The denominator refers to the recruit-
ment cost of the system, and the numerator represents the
overall evaluation quality of the recruited
MVs.benefiti = max

j∈MVs
ðeqj∙xij∙zjÞ refers to the adjusted evalu-

ation quality of recruited MVs, xij = 1 indicating that the jth
MVs is able to cover the sensors i.

For example, let the 1th, 2th, and 3th MVs cover the 1th
sensor node, namely, x11 = x12 = x13 = 1, the eqj of three vehi-
cles are 0.9, 0.5, 0.1, respectively, and ecj is 0.1. It makes more
reasonable to have the 1th Mvs to cover this sensor, namely,
z1 = 1, and in order to minimize ∑j∈MVsecjz j, it should make
z2 = z3 = 0.

The pseudocode of the recruitment strategy is presented
in Algorithm 1.
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4.2.4. Trust Evaluation. In this section, the selected MVs use
their mobility abilities to collect sensor node information and
calculate the node’s trust value.

(1) Trust Evaluation Mechanism. The trust evaluation mech-
anism consists of direct trust, recommended trust, active
trust, and comprehensive trust. Direct trust is some monitor-
ing evidence based on communication, energy, and data
transmission. Recommended trust is the collection and cal-
culation of recommended values from neighboring sensors.
Active trust is trust evaluation of the UAV on the data
reported by the MVs and the core sensor nodes. Comprehen-
sive trust is a combination of recommended trust, direct
trust, and active trust.

Identifying malicious nodes is crucial to the security of
the IoT. We propose a scheme based on a layered trust eval-
uation mechanism in this paper. The scheme is as follows:
MVs are sent out to collect data from nodes and calculate
the trust value of nodes. However, someMVs may exaggerate
their costs or report false data to get extra rewards. Therefore,
UAVs are sent out to evaluate the data reported by MVs at
the appropriate time, so that trusted vehicles can be obtained
and paid accordingly.

We have designed a layered trust evaluation mechanism,
as shown in Figure 3, which is divided into two layers, the
WSN layer and the cloud layer. In theWSN layer, the sensors
monitor the communication behavior of other sensors and
perform the recommended trust calculation and upload the
recommended trust list to the cloud layer. The cloud layer
consists of two parts, MVs and UAV. The main function of
MVs is to directly obtain the energy state of the sensor nodes

and perform direct trust calculation and infer the primary
comprehensive trust value of the nodes with the recom-
mended trust uploaded from the WSN layer and send the
results to the cloud. The main function of UAV is to verify
the trust values of the core sensors and MVs and then calcu-
late the active trust. Finally, the UAV obtains the final com-
prehensive trust value of the node based on the
recommended trust, direct trust, and active trust and sends
it to the cloud for trust status analysis, which is used to reason
about the trust values of the whole network. The purpose of
the scheme is to perform data analysis, calculation, and stor-
age trust in the cloud. Therefore, it can defend against more
attacks with less consumption of network resource within a
tolerable delay.

(2) Recommended Trust. We use the communication behav-
ior of neighbor sensor nodes as the recommended trust value.
According to the literature [34], the communication behav-
ior of sensor nodes is related to the number of packets sent
and the success rate of communication.

We assume that the number of packets sent by a sensor
node follows a normal distribution, which can be modeled
by a probability density function f ðxÞ = ð1/ ffiffiffiffiffiffi

2π
p

σÞ exp ð−
ðx − μÞ2/2σ2Þ, where μ and σ2 are the mean and variance of
the packets sent, respectively. In general, the more interac-
tions between two nodes, the higher the trust value. However,
when the number of packets sent by a sensor node exceeds a
threshold in a certain period of time, the trust value of the
node should be reduced to prevent flooding attacks. The trust
value for the number of packets Tij

dnum from node i to node j

Input: MVs = fMVs1,MVs2,⋯,MVsjg, bid = fbidðMVs1Þ, bidðMVs2Þ,⋯, bidðMVsjÞg
Output: SMVs, PMVs
SMVs =∅,//SMVs represents the set of MVs recruited.
PMVs =∅,//SMVs represents the payment set of MVS recruited.
SðSMVsÞ =∅,//SðSMVsÞ represents sensor nodes set that SMVs can collect data .
For each j ∈MVs
caculate bidðMVsjÞ and form bid//Calculate the bid of each MVs and put the result into the set bid

End for
ec = fec1, ec2,⋯, ecjg
While SðSMVsÞ cannot cover the whole network do

MVsj =max
z

ð∑i∈Sensorsbenef iti/∑j∈MVsecj∙zjÞ
IfSðMVsjÞ ⊆ SðSMVsÞ

bid = bid \ bidðMVsjÞ
else

SMVs = SMVs ∪MVsj
bid = bid \ bidðMVsjÞ

End if
End while//Find MVs with the maximum value-cost ratio
Call Algorithm 2(CTVN)
For each i ∈ SMVs

PMVs = PMVs
S

bidðMVsiÞ
End for

Algorithm 1: Recruitment strategy (RS).
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is defined as Equation (13):

Tij
dnum =

dnumij

max dnumj

� � dnumij ≤ λμd

exp −
dnumij − μd
� �2

2σ2

 !
dnumij > λμd

8>>>>><
>>>>>:

,

ð13Þ

where the variables dnumij are the number of packets sent by
the node ni to the node nj, max ðdnumjÞ is the maximum
number of packets received by the node from its neighbors,
μd is the average number of packets sent by the neighbor
nodes of node j, and λ and σ are important factors used to
adjust the threshold and reduce the trust value of the node.

The communication success rate is another important
criterion to evaluate whether a sensor node is trustworthy
or not. When a sensor node communicates with a target
node, the higher the communication success rate is, the
higher the trust value of the target node is, and vice versa.
According to the literature [34], the trust value for communi-
cation success rate Tij

com from node i to node j is defined as
Equation (14):

Tij
com =

2κij + ξij
2

, ð14Þ

where κij = sij/sij + f ij + 1, ξij = 1/sij + f ij + 1, sij, is the num-
ber of times that the node ni and the node nj have success-
fully communicated in a certain time, and f ij is the number
of times they have failed to communicate.

Therefore, the recommended trust value Tij
rec that the

node ni reasoned the node nj is calculated as shown in Equa-

tion (15):

Tij
rec = ω∙Tij

dnum + 1 − ωð Þ∙Tij
com, ð15Þ

where ω is the weight.
When MVs access the sensor node, they are able to

obtain the overall recommended trust value T j
rec about the

node nj, which is shown in Equation (16):

T j
rec = average 〠

i

i=1
Tij
rec

 !
, ð16Þ

where∑i
i=1T

ij
rec is the sum of the recommended trust values of

nodes 1, 2, ..., i to node nj.

(3) Direct Trust. We assume that the energy state of the sen-
sor nodes obtained by MVs as the direct trust value. We
assume that the energy consumption of the sensor nodes fol-
lows a normal distribution. If malicious nodes launch an
attack, they will consume additional energy. When the resid-
ual energy of a sensor node is less than a threshold, the
energy trust is zero. When its residual energy is greater than
the threshold, MVs consider the energy consumption rate to
calculate the energy trust of sensor node. When MVs visits
the jth node, it can obtain the energy trust value T j

en about
the node, as shown in Equation (17):

T j
en =

0 Ej
left ≤ λμe

exp −
Ej
cost − μe

� �2

2σ2

0
B@

1
CA Ej

left > λμe

8>>>><
>>>>:

, ð17Þ

where μe is the average energy consumption rate of the jth
node’s neighboring nodes, and λ and σ are important factors
used to adjust the threshold and reduce the trust value of the
node.
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Reason the trust value of
the whole
network
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synthesis trust
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Verify the trust values of
core sensors and MVs

Figure 3: The cloud-based layered trust evaluation mechanism.
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Figure 4: Selection and formation of core sensors, baseline sensors, and baseline MVs.
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(4) Active Trust. UAV can establish communication directly
with the sensors, and the collected data can be considered
as the most authoritative. We call the sensor collected by
UAV as the core sensor and data reported by core sensor as
baseline data. UAV can obtain the real state value Tni of
the sensor, refer to definition 4 in Section 4.2.2. The baseline
data can be used to validate the data reported by the MVS,
thus verifying the trust value of the MVS reported that core
sensor. For example, the core sensor data collected by the
UAV is compared with the data collected by the MVs. The
MVs are credible if data is equal and is not credible if data
is unequal.

Adding active trust into the trust evaluation mechanism
can not only verify the trust value of the MVs but also avoid
recruiting malicious MVs to collect data. At the same time, it
can evaluate the trust of each sensor in the network more
accurately. The high cost of UAV makes it unable to work
continuously. In order to reduce costs, some MVs have been
verified as normal (called baseline MVs), and the sensor data
reported by them can also be used as baseline data to verify
the trust values of other MVs. Therefore, the UAV does not

Input: Sensor, SUAV , SMVs
Output: T j

syn, BMVs
SUAV =∅//SUAV represents the core sensor nodes selected by UAV for each round of flight
BMVs =∅//BMVs represents baseline MVs
BSensor =∅//BSensor represents baseline nodes
flight =1//flight represents the number of rounds that UAV dispatched
For each nodej ∈ Sensor//Sensor represents the set of nodes

Calculate T j
rec by Equation (16)//Calculate the recommended trust value for each node

Calculate T j
en by Equation (17)//Calculate the direct trust value for each node

T j
act=0//The initial active trust value for each node is 0 when no UAV has been dispatched

End For
For each nodej ∈ SUAV do//each node in the core sensor nodes selected by UAV

IfT j
act=0//The active trust value of node is 0

Calculate T j
act by Equation (18)//calculate the active trust value for this node

Calculate T j
syn by Equation (19)//calculate the comprehensive trust value for this node

Verify the trust value of the MVsk that report data from nodej
WhileBMVs can not increase do

If the MVsk is credibly
BMVs = BMVs ∪MVsk//set the MVsk as baseline MVs
Calculate the Ti

act of other sensors nodei reported by BMVs by equation (18)
Calculate Ti

syn by Equation (19)//update the comprehensive trust value for this node
BSensor = BSensor ∪ nodei

End If
Verify the trust value of the MVsk’ that report data from BSensor
//data reported from BSensor can also be used as baseline data to verify the trust value of MVsk’ which reporting them.

If the MVsk’ is credibly
BMVs = BMVs ∪MVsk’ //Set the MVsk’ as baseline MVs

End if
End while

End If
flight = flight+1//the core sensor node needs to be re selected in each round

End For

Algorithm 2: Calculating the trust value of nodes (CTVN).

12.35
41.75

41.8

41.85

41.9

41.95

42

12.4 12.45 12.5
Latitude

Lo
ng

itu
de

12.55 12.6 12.65

Vechicles
Sensors
Data center

Figure 5: Network model.
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need to collect sensors that can be verified by normal MVs,
which means lower costs.

The active trust value of the jth node is calculated based
on the validation results of the sensor nodes collected by
the UAV or baseline MVs and is calculated in Equation
(18), where sj=1 and f j=0 indicates successful validation,
and sj=0 and f j=1 indicate failed validation.

T j
act =

sj − f j + 1
2

ð18Þ

(5) Comprehensive Trust. Three kinds of trust relationships
are used in the trust evaluation scheme proposed in this
paper, namely, recommendation trust, direct trust, and active
trust, the weighting of which combines into the comprehen-
sive trust, as shown in Equation (19).

T j
syn = ω1∙T

j
rec + ω2∙T

j
en + ω3∙T

j
act: ð19Þ

4.2.5. UAV Active Verification. In this section, UAVs are sent
to verify the trust of sensor nodes and MVs.
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Figure 6: Coverage area of 500 MVs.

0 5000 10000 15000 20000 25000
0.00

0.01

0.02

0.03

0.04

0.05

Sensor distribution
Adjusted value: a =2
Adjusted value: a = e

Adjusted value: a = 10
Adjusted value: a = 100
Adjusted value: a = 1000

Distance to data center

Pe
rc

en
ta

ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
dj

us
te

d 
va

lu
e

Figure 7: The effect of the base number in adjusting values.

11Wireless Communications and Mobile Computing



(1) Selection and Formation of Core Sensors, Baseline Sensors,
and Baseline MVs. Due to the limited energy of the UAV, a
single flight can only access a part of the sensors within its
control range, which we call core sensors. In the initial stages
of data collection, the UAV can only be used to calculate the
active trust of sensor nodes without obtaining the baseline
MVS. At this moment, sensor with more nonbaseline MVs
reporting should be selected as the core sensor, so as to gen-
erate more baseline MVs and improve the efficiency of sys-
tem trust verification. With the deepening of data
collection, the trust verification of UAV is gradually replaced
by more baseline MVS. Then, UAV should choose those sen-
sors which have not yet calculated active trust and have the
largest number of nonbaseline MVS reports as the core
sensor.

The high cost of UAV makes it unable to work continu-
ously. To reduce costs, data reported by some verified normal

MVs (called baseline MVs) can also be used as baseline data
to verify the trust values of other MVs. As a result, UAVs do
not need to collect sensors that can be verified by normal
MVs, which means lower costs.

The UAV active verification process is shown in Figure 4,
assuming that the number of core sensors is 2.

In the initial stage of data collection in Figure 4(a), sensor
node A is reported by MVs1, MVs2, and MVs3, and sensor
node B is reported by MVs1, MVs2, and MVs4. Therefore,
A and B are selected as the core sensors in the first round
of UAV flight, namely SUAV = fA, Bg, and the active trust
value of the core sensors is calculated as TA

act and TB
act, and

the comprehensive trust value is TA
syn and TB

syn.
In Figure 4(b), verify the trust value of MVs1, MVs2,

MVs3, andMVs4 which reporting core sensor data. Assum-
ing that the baseline MVs are MVs1, MVs2, andMVs4,
namely, BMVs = fMVs1, MVs2, MVs4g, then calculate the
active trust value TC

act, T
D
act, T

E
act, T

F
act, T

H
act, and TI

act of other
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Figure 8: The distribution of vehicles for a recruitment strategy that considers cost only.
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Figure 9: The distribution of vehicles for a recruitment strategy that considers evaluation quality only.
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sensor nodes C, node D, node E, node F, node H, and node I
which are collected by BMVs, calculating the comprehensive
trust value TC

syn, T
D
syn, T

E
syn, T

F
syn, T

H
syn, and T

I
syn and obtaining

baseline sensor set BSensor = fC,D, E, F,H, Ig.
In Figure 4(c), data reported from BSensor = fC,D, E, F

,H, Ig can also be used as baseline data to verify the trust
value of non baseline MVs which reporting them, such as
MVs6, MVs7. When a new baseline MVs7 is obtained,
BMVs = fMVs1, MVs2, MVs4, MVs7g is immediately
updated. Meanwhile, the active trust value and the compre-
hensive trust value of nonbaseline node N are calculated.
Where N is reported by MVs7, and the baseline sensor set
BSensor = fC,D, E, F,H, I,Ng is updated accordingly.

In this way, more baseline MVs can be generated.
When no more baseline MVs can be generated, send out

UAVs for the second round of verification.
In Figure 4(d), there are still sensor nodes fG, J , K , L,Mg

whose active trust values are 0. Select the sensor node with
high reporting of nonbaseline MVs among the sensor nodes
fG, J , K , L,Mg as the core sensor. Since node J is reported
by MVs5 and MVs6, UAV selects J as the core sensor in the
second round. G, K , L, and M all reported only once. Since
two core sensors can be selected during each flight, and then
select node M as the core sensor because the MVs reporting
M can cover more sensors, namely, SUAV = fJ ,Mg, calcu-
late the active trust value T J

act and T
M
act of the core sensor node

J and nodeM and update the comprehensive trust value TJ
syn

and TM
syn of two nodes.

In Figure 4(e), verify the trust value of MVs5 and MVs6
which reporting core sensor node J and M. Assuming that
the baseline MVs are MVs5, namely, BMVs = fMVs1, MVs2
, MVs4, MVs7, MVs5g, then calculate the active trust value
TL
act and TK

act of other sensor nodes L and node K which is
collected byMVs5, calculating the comprehensive trust value
TL
syn and TK

syn and obtaining baseline sensor set BSensor = f
C,D, E, F,H, I,N , L, Kg.

In Figure 4(f), when no more baseline MVs can be gener-
ated, send out UAVs for the third round of verification. At
this time, only the active trust value of sensor node G is 0;
so, UAV selects node G as the core sensor, SUAV = fGg, cal-
culating the active trust value TG

act and the comprehensive
trust value TG

syn of node G. When the active trust value of
all nodes is not 0, the active trust verification ends.

(2) Trust Evaluation Algorithm. The pseudocode of calculat-
ing the trust value of nodes is presented in Algorithm 2.

After multiple rounds of flight, the active trust values of
all sensors can be calculated. This method obtains the com-
prehensive trust value and baseline MVs. The baseline MVs
is the trusted MVs in this system, and the data center can
pay for it according to the baseline MVs.

4.2.6. Payment. Based on the results reported by MVs and
UAV, the cloud data center implements the result summary
and comparison mechanism to obtain the final trust evaluation

of each sensor and MVs, and at the same time, it also obtains
the sensor collection information. Finally, the MVs are paid.

5. Analysis of Experimental Results

5.1. Experimental Environment. The experiments are carried
out in MATLAB R2020a. To evaluate the performance of the
strategy, we simulated the experimental model using a real
dataset. As shown in Figure 5, the red points are the vehicle
location points at a certain time, and 1000 sensors and 1 fixed
data center are deployed in a probabilistic manner based on
the density of vehicle location points. The randomly gener-
ated locations of the sensor nodes are proportional to the
density of vehicle initial points, making the sensor nodes
heavily distributed within urban areas. The data center is
deployed in the area with the highest density of GPS coordi-
nates to enable the collection of reported data timely. Assum-
ing that the activity radius of the vehicle is 1000m, each MVs
can collect sensor data within its activity radius, and the com-
munication radius of sensor nodes is 400m. Figure 6 shows
the coverage area of 500 MVs, λ = 1, and the weight ω=0.5
of Trec. The percentage of nodes sending false data is 20%,
the percentage of nodes launching flooding attack is 5%,
and the percentage of malicious vehicles is 20%.

An experiment for parameter adjustment was done for
the base number a in Equation (5). Figure 7 shows the pro-
portion of the total number of sensors in the network as the
distance from the data center increases and the change trend
of the adjusted value curve under different bases a.

If the data center is placed in the middle of the city, the
majority of sensors are located between 2500m and
12500m from the data center, with a decreasing trend in
the number of sensors whether the closer or the farther away
the data center. Adjusted value means that for a given dis-
tance such as 10000m, the value of the sensors can be
obtained by using Equation (5) and then multiplying val in
Equation (5) by the proportion of sensors at this distance to
obtain the adjusted value. Since we will use val as the
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Figure 10: The distribution of vehicles for a recruitment strategy
with comprehensive consideration of cost and evaluation quality.

13Wireless Communications and Mobile Computing



standard to measure the cost, then adjusted value means the
distribution of the cost when recruiting. The smoother the
curve, the less difference is got in the total cost when recruit-
ing vehicles from different regions such as 2000m and
15000m. The steeper the curve is, the greater the cost differ-
ence is got, and the more unfair the recruitment is. Therefore,
the base number a = 100 has been chosen in order to ensure
that the curve is smooth enough, while ensuring that vehicles
collecting data from different areas will be rewarded with dif-
ferent levels. For example, 15000m is definitely greater than
2000m.

5.2. Comparison of Recruitment Strategies. After the cloud
data center publishes the task to all MVs in the region, each
interested MVs generate its own bid including evaluation
quality, evaluation area, evaluation value, and evaluation cost
and reports it to the cloud. The cloud data center determines
the winner set according to different objectives and recruits
MVs to collect sensor node based on the bids of each MVs.

The distribution of vehicles for a recruitment strategy
that considers cost only (CC strategy) is shown in Figure 8,
which covers the full network with the smallest sum of costs
per sensor collected by the recruited MVs.

Figure 9 shows the distribution of vehicles for a recruit-
ment strategy that considers evaluation quality only (CEQ
strategy). That is, the recruited MVSs maximize the overall

evaluation quality of the system while satisfying the coverage
of the entire network.

Figure 10 shows the distribution of vehicles for a recruit-
ment strategy with comprehensive consideration of cost and
evaluation quality (CCEQ strategy). That is, the vehicle dis-
tribution map for a recruitment strategy maximizes the over-
all evaluation quality of the selected MVs while considering
cost minimization when the full network is covered.

A comparison of the total cost of the three recruitment
strategies and the average evaluation quality of the recruit-
ment vehicles is shown (see Table 1).

5.3. The Impact of Parameters on the Total Cost. The effect of
different numbers of vehicles or sensors on the total cost of
recruiting MVs is shown in Figure 11. The red line and blue
line indicate the cost of recruitment at different numbers of
MVs (fixed number of sensors 1000) and sensors (fixed num-
ber of vehicles 2000), respectively.

As can be seen from Figure 11, at the beginning, there are
not enough vehicles to cover all the sensors. As the number of
MVs increases, the vehicles are able to cover more sensors,
which also led to increased costs. The total cost increases as
the number of MVs increases. However, as the MVs increase
further, the cloud data center can choose more cost effective
MVs, and the total cost decreases slightly with the number of
MVs.

Table 1: A comparison of the three recruitment strategies.

CCEQ strategy CEQ strategy CC strategy

Total cost 2353.63826846331 2425.73520998621 2254.82195098336

Average EQ of recruited MVs 0.793907288837423 0.794030076960136 0.726972632004356
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Figure 11: Impact of different numbers of MVs and number of sensor nodes on the total cost.
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The total costs increase with the number of sensor nodes.
As the number of sensor nodes increases, the cloud data cen-
ter needs to recruit more MVs to perform the evaluation
tasks and therefore the total cost increases.

5.4. The Impact of UAV Participating in Active Verification
on System Performance

5.4.1. Total Cost. Based on the results reported by MVs and
UAV, the cloud data center performs a result aggregation
comparison mechanism to obtain a final trust evaluation
for each sensor and MVs. For some malicious vehicles, no
payment is made thus reducing payment costs.

Figure 12 illustrates the total payment difference between
verifying whether the MVs are reporting true data or not
after the UAV joins the trust mechanism. The estimated
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Figure 12: Payment differences when UAV are added to the trust evaluation mechanism.
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recruitment cost in Figure 12 is the sum bids of all the vehi-
cles recruited, while the actual recruitment cost refers to the
payment cost after excluding the malicious vehicles. It can
be seen from Figure 12 that the proposed layered trust evalu-
ation mechanism can effectively distinguish between normal
vehicles and malicious vehicles. As time goes on, more mali-
cious vehicles are tested and excluded from the recruitment
system, and the proposed layered trust evaluation mecha-
nism with UAV participation can effectively distinguish
malicious vehicles providing false data from normal vehicles.

5.5. Evaluation Accuracy. To verify the accuracy of the sys-
tem in distinguishing between malicious nodes and normal
nodes, we consider four types of node, namely, normal
nodes, nodes that generate false data, nodes that launch

flooding attacks, and nodes that launch both false data
attacks and flooding attacks. Figure 13 illustrates the variabil-
ity in trust for each type of node after the introduction of
UAV. For example, active trust Tact can accurately determine
if a node has provided false data, but it cannot identify a
flooding attack because the data provided is correct despite
the flooding attack being launched. Energy trust Ten, how-
ever, can accurately determine whether a flooding attack
has been launched because the node launching the flooding
attack will consume more energy, and it can also determine
whether a false data attack has been launched because addi-
tional energy is required. T rec is valid for both flooding attack
and false data attack. In addition, we assume that all three
trusts have the same weight, and then the distribution of trust
is as shown in Figure 13. The normal node has a mean trust
value of 0.8651, while a node launching a flooding attack has
the next highest trust value at 0.5373, a node launching a false
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Figure 15: The impact of UAV on evaluation quality.
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Figure 17: The first flight.
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Figure 18: The second flight.
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data attack has a lower trust value at 0.2803, and the worst
would be a node launching both attacks, with the trust closest
to zero at about 0.1252.

In order to distinguish normal nodes from malicious
nodes, a trust threshold is obviously needed. We can see in
Figure 13 that it should be reasonable to set the threshold
between the trust value Tsys of the normal node and the high-
est trust value Tsysof the malicious node. To further reduce
misjudgement behavior including mistaking the node
launching the attack as a normal node, or mistaking the nor-
mal node generating data frequently as malicious node, we
have simulated the threshold interval 0.5 to 0.9.

As shown in Figure 14, red and blue refer to the identifi-
cation accuracy rate for false data attacks and launching
flooding attacks, respectively, while green is the error rate
for normal nodes. The results show that when the trust

threshold reaches 0.7, it is able to exclude 100% of the false
data attacks and 98.9% of the flooding attacks, but may intro-
duce a small identification error rate of 3.9% for normal
nodes. However, when the trust threshold is 0.65, 100% of
false data attacks is still ruled out, but the identification rate
for flooding attacks is reduced to 89.4%, and its identification
error rate for normal nodes is 0%. After a compromise, we
chose a trust threshold of 0.675, which resulted in a recogni-
tion rate of false data attack and flooding attack, and the rec-
ognition error rate of normal nodes is 100%, 98.9% and 3.9%,
respectively.

5.5.1. Evaluation Quality. Quality in Figure 15 refers to the
average eq of recruited vehicles, recruitment accuracy refers
to the proportion of normal vehicles to total recruited
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Figure 19: The third flight.
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Figure 20: The impact of the number of core sensors on the
identification of MVs.
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Figure 21: The impact of the number of core sensors on the
identification of sensors.
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vehicles, and data accuracy refers to the proportion of data
reported by recruited normal vehicles to total reported data.
All three show a slow upward trend because of the gradual
exclusion of malicious vehicles.

5.6. Flight Trajectory of UAV. The red dots in Figure 16 show
the recruited vehicles, and the red circles are the coverage of
the recruited vehicles. The purple dots refer to the sensors
that are not covered by the baseline vehicles, and it is need
to wait for the UAV to verify and gain coverage of the base-
line vehicles. The goal is to evaluate the trust of all sensors
and vehicles in the network.

Figure 17 shows the trajectory of the UAV in the first
flight and its coverage status for nodes and vehicles. The
UAV needs to visit nodes covered by more nonbaseline vehi-
cles in the first stage, so that more vehicles and sensors can be
evaluated and thus more baseline devices can be acquired as
possible. The blue dots indicate the baseline vehicles that
could be evaluated in the first flight, and the blue circles rep-
resent its coverage area. Red dots indicate nonbaseline vehi-
cles that have not yet been evaluated or verified as
malicious. Green nodes indicate sensors that can be evaluated
by the above baseline vehicles. The number of sensors cov-
ered by UAV and baseline vehicles increases the most in
the first flight.

Figure 18 illustrates the trajectory of UAV’s second flight.
In this stage, the UAV is dispatched to collect sensors which
have the largest number of nonbaseline MVS reports. The
purpose is to evaluate nonbaseline vehicles that have unveri-
fied, and it is capable of providing effective sensor data if ver-
ified as credible. The second flight increases the number of
baseline vehicles furtherly, which are generally located in
low-density areas of the city. However, there are still some
nonbaseline vehicles after multiple flights, which provide
false data and have unverified, as the red dots shown in
Figure 18. Sensors covered by these malicious vehicles are
not credible and need to be recollected. Moreover, there are
some sensors that are still not being covered by any MVs.
Therefore, a third flight of the UAV is required to achieve
coverage of all sensors in the city.

Figure 19 shows the trajectory of the UAV’s third flight.
In this stage, UAV will go to visit the nodes covered by the
malicious device, as well as the nodes that are not within
the coverage of the baseline vehicle, thus achieving full cover-
age of the whole city.

5.7. The Impact of the Number of Core Sensors on the
Performance. Following simulation explains how the number
of core sensors impacts on the efficiency of the trust verifica-
tions of MVs and sensors and on the number of flight rounds
and the cost of UAV. We only consider the first two flight
rounds of UAV when analyzing the impact of the number
of core sensors on evaluating MVs, because UAV evaluates
MVs at just the first two rounds in the simulation.
Figure 20 shows that with the increasing number of core sen-
sors, the identification rate of UAV on MVs gets decreasing
at the first round and gets increasing first then becomes
decreasing at the second round. In the simulation, the num-
ber of the recruited MVs is about 200. When the number of

core sensors is set to a small number (smaller than 80), e.g.,
60, the UAV covers about 130 MVs at the first round, thus
leaving 70 MVs to be covered by UAV at the second round,
which makes the identification rate of UAV high at that
round. On the other hand, when the number of core sensors
is set to a large number, e.g., 100, the UAV can cover about
160 MVs at the first round with the help of core sensors,
and the identification rate of UAV at the second round is def-
initely low because there is only 40 MVs left after the first
round.

Figure 21 indicates that the impact of the number of core
sensors on the identification of sensors is similar to that of
MVs shown in Figure 20. That is, the increasing number of
core sensors also helps UAV identify sensors more efficiently.
The only difference between them is that the UAV visits only
sensors without covering by UAVs after the first two rounds.

From Figure 22, we see a similar result that the decreasing
number of core sensors leads to the increasing number of the
flight rounds of UAV. UAV has to flight more rounds to
cover all the sensors without enough help from core sensors.
It is natural to suppose that the cost of UAV is proportionate
to its flight distance, and the flight distance of UAV is related
to the number of its flight rounds. Therefore, the cost of UAV
will decrease with the increasing number of core sensors. For
example, in the simulation, UAV has to flight 10 rounds to
cover all sensors when setting the number of core sensors
to 10 and to flight only 2 rounds when setting the number
to 50. Though a single round flight distance of the UAV on
50 core sensors may be larger than that on 10 core sensors,
the total flight distance of UAV on 10 core sensors is much
longer than the distance on 50 core sensors. That is, the flight
cost when there are 10 core sensors is larger than that when
there are 50 core sensors.

Since active trust depends on UAV and baseline MVs, it
is particularly important in the early stages of trust verifica-
tion. UAV verifies active trust by accessing the core sensors
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Figure 22: The impact of the number of core sensors on the flight
cost of UAVs.

18 Wireless Communications and Mobile Computing



perceived during flight, which means that the more core sen-
sors there are, the more active verification times there are,
and therefore, the faster active trust update. The above exper-
imental results show that with the increase of the number of
core sensors, the verification speed of active trust improves
slightly. However, it is worth noting that more core sensors
will also lead to higher flight costs. To sum up, the number
of core sensors with better performance is 80 in this
experiment.

6. Conclusions

This paper proposes an efficient data collection system,
including a layered trust evaluation mechanism consisting
of sensor nodes, MVs and UAVs, and a reasonable recruit-
ment mechanism for MVs. The data collection system
reaches a balance between cost and performance of data col-
lection, which makes a reasonable cost while improving the
accuracy and efficiency of data collection. Moreover, we show
that UAVs can play an important role in designing a trust
evaluation mechanism for IoTs. There are some other prop-
erties that need to be further considered, for example,
whether the layered trust assessment mechanism aggravates
the energy consumption to sensor node. It is also interesting
to investigate the privacy-preserving methods in the mecha-
nism during data gathering, which we plan to deal with by
introducing blockchain for future work.
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