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Visual relationship can capture essential information for images, like the interactions between pairs of objects. Such relationships
have become one prominent component of knowledge within sparse image data collected by multimedia sensing devices. Both the
latent information and potential privacy can be included in the relationships. However, due to the high combinatorial complexity in
modeling all potential relation triplets, previous studies on visual relationship detection have used the mixed visual and semantic
features separately for each object, which is incapable for sparse data in IoT systems. Therefore, this paper proposes a new deep
learning model for visual relationship detection, which is a novel attempt for cooperating computational intelligence (CI)
methods with IoTs. The model imports the knowledge graph and adopts features for both entities and connections among them
as extra information. It maps the visual features extracted from images into the knowledge-based embedding vector space, so as
to benefit from information in the background knowledge domain and alleviate the impacts of data sparsity. This is the first
time that visual features are projected and combined with prior knowledge for visual relationship detection. Moreover, the
complexity of the network is reduced by avoiding the learning of redundant features from images. Finally, we show the
superiority of our model by evaluating on two datasets.

1. Introduction

Visual relationship detection tries to simultaneously detect
objects for an image and classify the predicate between each
pair of these objects [1]. It has been considered as a bridge
to semantically connect the low-level visual information [2–
7] and high-level semantic information [8–11]. Generally,
visual relationships indicate types of relations between
objects in images and are usually represented by triplets (sub-
ject, predicate, and object), where the predicate can be a verb
(person, ride, bicycle), spatial (cat, on, table), preposition
(person, with, shirt), and comparative (elephant, taller, per-
son) [1, 12]. The detection of these interactions can uncover
diverse knowledge from images and significantly benefits the
functionalities of IoT systems. Moreover, potential disclosure
of sensitive information [13] can also be inferred with the
autonomous relationship detection and provides guidelines
for secure multimedia IoT data processing [14–16].

The early studies of visual relationship detection mainly
rely on pure visual features capturing the complex visual var-
iance of images [17, 18], suffering from the lack of diverse
information for predicate classification. Considering the
sparsity of IoT data, both the scale of the image dataset and
the details within these images will be constrained. Sensing
devices will be conservative on data publication [19, 20],
especially when the image data contain abundant semantic
information. Meanwhile, images maybe masked or obfus-
cated before publication due to privacy concerns [21]. Both
constraints caused by sparsity of images have aggravated
the difficulties for visual relationship detection, and purely
visual-feature-based methods are not qualified.

Recently, additional sources of information, such as prior
knowledge and semantic information, are incorporated into
visual relationship detection [1, 22–24], as extra background
information can be utilized to supply and refine the detec-
tion. Generally, two essential tasks are considered during
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the incorporation of additional source of information: (1)
How to apply the semantic associations among relationships
[12, 25, 26] to refine the detection. For example, the relation-
ship (person, ride, horse) is semantically similar to (person,
ride, elephant) as the horse and elephant both belong to ani-
mals, even though horse and elephant are quite different in
images. In this case, visual relationship detection models
should be able to infer (person, ride, elephant) base on exam-
ples of (person, ride, horse). (2) How to alleviate the huge
semantic space of possible relationships. Assume the cate-
gory of objects to be N and the predicates to be K . Then,
the number of possible relationships is OðN2KÞ as a relation-
ship is composed of two objects [27]. Therefore, the size of
semantic space in relationship detection increases by orders
of magnitude, while many of relationships appear rarely in
images. Visual relationship detection models should learn
all relationship classes sufficiently.

Towards these tasks, extensive studies have been con-
ducted. They mainly consider how to incorporate the addi-
tional source of information into the relationship detection.
Initially, Lu et al. [1] introduced the additional language
priors from semantic word embeddings to fine-tune the like-
lihood of a predicted relationship. Subsequently, Zhuang
et al. [28] integrated the language representations of the sub-
jects and objects as “context” to derive a better classification
result for visual relationship detection. Then, Plummer
et al. [8] use a large collection of linguistic and visual cues
for the relationship detection in images, which contain attri-
bute information and spatial relations between pairs of enti-
ties connected by verbs or prepositions. Furthermore, instead
of using the pretrained and fixed language representations
directly, Zhang et al. [29] tried to fine-tune the subject and
object representations jointly and employ the interaction
between visual branches to predict the relationship.

Although these methods achieve significant success, they
still tend to focus on the word-level semantics [30] as the
additional sources of information and lack in adopting the
sophisticated knowledge and deep relations among objects.
As for such kind of external knowledge, the knowledge graph
is treated as a typical category of structural information pro-
viding abundant clues on relations between entities. It has
been recently applied for many areas including computer
vision and achieves dramatical improvements. Generally, a
knowledge graph is a multirelational graph composed of
entities (nodes) and relations (different types of edges). Each
edge is a kind of relation in the form of triplets (head entity,
relation, tail entity), indicating that two entities are con-
nected by a specific relation. This type of additional informa-
tion can provide more semantic association between objects
and relations in an image and could be used for more rational
reasoning to improve visual relationship detection. However,
its application for visual relationship detection has not yet
been properly considered, and neither of the above-
mentioned tasks is investigated.

To take advantage of this type of information, this paper
designs a deep neural network for visual relationship detec-
tion by considering the knowledge graph as an additional
source of information. The input of the model includes the
images and an external knowledge graph, and the outputs

are the relationships in images. The proposed model includes
a visual module extracting the visual features of images, a
knowledge module introducing the additional prior knowl-
edge via the knowledge graph embedding [31], and a map-
ping module combining the visual features with prior
knowledge. Finally, a new loss function based on the triplet
loss [32] is designed in the mapping module to tune the pro-
jection of visual features into the knowledge space.

The proposed model uses the vector translation of the
knowledge space for the first time, to capture the valuable
structured information between objects and relations. By this
mean, the structured semantic association in a knowledge
graph can help improve the relationship detection. The pro-
posed model also learns the objects and predicates and fuses
them together to predict the relationship triplets [1]. This
method can alleviate the impact of a huge semantic space of
possible relationships, by reducing the space from OðN2KÞ
to OðN + KÞ. Furthermore, the model achieves a reduced
scale of parameters compared with state-of-the-art works
[31], as it does not request the learning of visual features of
predicates. The performance of the model is validated on
two relation datasets: visual relationship detection (VRD)
[1] with 5,000 images and 6,672 unique relations and visual
genome (VG) [12] with 99,658 images and 19,237 unique
relations. According to the comparison with several base-
lines, our model shows the superiority in visual relationship
detection. In summary, the main contribution of this paper
includes

(1) We propose a novel framework for introducing the
prior knowledge in visual relationship detection

(2) Our model incorporates the priors in knowledge
graph embedding for the first time to capture the
valuable structured information between objects
and relations

(3) Our model reduces the parameters for extracting the
visual features of predicates and designs a loss for
combining the visual feature with the prior
knowledge

(4) Extensive evaluation shows that our model outper-
forms several strong baselines in visual relationship
detection

This paper is organized as follows. The related works are
introduced in Section 2. The proposed model is described in
Section 3. The model is validated in VRD and VG datasets
and compared with other methods in Section 4. The conclu-
sion is described in Section 5.

2. Related Work

During the past years, there have been a number of studies in
visual relationship detection. The earlier works regard visual
relationships as an adminicle to improve the performance for
other tasks, such as object detection [33, 34], image retrieval
[12, 35, 36], and action recognition [37]. They focus on the
specific types of relationships, such as spatial relationships
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[2, 38], positional relationships [2, 35, 39], and actions (e.g.,
the interaction between objects) [40–42].

Lu et al. [1] first formalized the visual relationship as the
(subject, predicate, object) triplet, defined the visual relation-
ship detection task, and proposed a method by leveraging the
language prior to model the more general correlation
between objects. Afterwards, more studies on visual relation-
ship detection have been developed, which can be divided
into two categories: joint model and separate model.

For the joint model, it detects (subject, predicate, object)
simultaneously by considering the relationship triplets as an
integrated body [17, 22, 42–44], e.g., (person, ride, horse)
and (person, ride, elephant) are of different classes. Vip-
CNN [18] considers each visual relationship as a phrase with
three components and formulates the visual relationship
detection as three interconnected recognition problems.
Plummer et al. [8] learned a Canonical Correlation Analysis
(CCA) model on top of different combinations of the subject,
object, and union regions and train a RankSVM to learn the
visual relationship. However, it requires extremely large
training data, because all possible combinations of predicates
and entities (subject, object) are treated as independent clas-
ses. As a result, the general approaches usually pose the prob-
lem as a classification task in limited classes.

For a separate model, it first detects subjects and objects
and then recognizes the possible interactions among them
[1, 39, 45–47]. VtransE [48] uses the object detection output
of a Faster R-CNN network and extracts features from every
pair of objects to learn the visual translation embedding for
relationship detection. Zhang et al. [29] embed the objects
and relations of relationship triplets separately to the inde-
pendent semantic spaces and then implicitly learn the con-
nections between them via visual feature fusion and
semantic meaning preservation in the embedding space.

The method proposed recently by Zhang et al. [29] is the
most related one to ours. Compared with this work, instead
of the word-level semantic embeddings, our work incorpo-
rates the knowledge graph and embeds it in a knowledge
space as the additional sources of information. Due to the
use of TransE [31] as the knowledge graph embedding, our
work barely needs to model the large visual variance of rela-
tions in images.

Finally, our method adopts the additional semantic
information to guide the visual recognition. This is consis-
tent with the trend of using language information for
visual recognition. For example, the language information
has also been incorporated into visual question answering
[49–52], few-shot learning [53–56], and image-sentence
similarity task [57–60].

3. Method

3.1. Overview. The goal of the proposed model is to detect
visual relationships from images which requires having
discriminative power among a set of relationship categories.
However, since object categories are often semantically
associated, it is critical for a model to preserve semantic
similarities, so as to benefit both frequent and rarely seen
relationship categories.

The overview of the proposed model is shown in Figure 1.
It consists of three modules, namely, visual module, knowl-
edge module, and mapping module. The visual module
detects a set of objects in images and extracts the visual fea-
tures of the objects. The knowledge module consists of a
knowledge graph, which is embedded in a low dimension
vector space, so it can be used as the additional source of
information. The mapping module considers the image and
additional source of information comprehensively, which
maps the visual features to the knowledge space for relation-
ship detection. For any valid relationships, they are repre-
sented by the triplets (subject, predicate, object) in low
dimension vectors s, p, and o, respectively.

Note: in this paper, we use “relation” to refer to “predi-
cate” in previous works and “relationship” to refer to the
(subject, predicate, object) triplet. The detailed descriptions
of notations can be found in Table 1.

3.2. Visual Module. The design of the visual module is based
on the intuition that a relationship exists when its objects
exist, but not vice versa. Therefore, to detect the visual rela-
tionships from images, the first step is to detect the objects
and corresponding visual features in images.

In the visual module, the object detection is based on a
Faster-RCNN [61] network with the VGG-16 [62] architec-
ture, composed of a Region Proposal Network (RPN) and a
classification layer. In the Faster-RCNN network, convolu-
tion does not change the size of the input image.

outputsize =
inputsize − kernelsize + 2pad

stride + 1: ð1Þ

After that, the Feature Extraction Layer is proposed to
extract xs and xo, when suppose xs, xo ∈ℝM are the M
-dimensional visual features of the subject and object, respec-
tively. The visual features xs and xo are obtained by concating
the vector from the last convolution feature map in the
Faster-RCNN network and the bounding box parameteriza-
tion in [63].

3.3. Knowledge Module. A knowledge graph is represented
by GðV , EÞ, while V is the set of nodes, which represents
the entities (subjects, objects), and E is the set of edges,
which represents the connections between entities. Hence,
the relations between the subject and object can be repre-
sented by the connections between the entities in the
knowledge graph, mainly describing real world entities
and their interrelations organized in a graph. Compared
with the word-level external information, this type of addi-
tional information can capture a more semantic associa-
tion between objects and relations and be used for
rational reasoning to improve the results of visual relation-
ship detection.

The knowledge module introduces jointly a knowledge
graph and projects it into an embedding space, to activate
the rich prior knowledge in tuning the relationship detec-
tion. Translation embedding (TransE) [31] is a remarkable
model that represents a valid relationship (subject, predi-
cate, object) in the knowledge graph in low dimension
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vectors s, p, and o, and s, p, o ∈ℝr , respectively. The rela-
tion is represented as a translation in the vector space:

ys + yp ≈ yo, ð2Þ

when the relationship triplet holds, and ys + yp ≉ yo
otherwise.

Since TransE offers a simple but effective method for
representing the complex relationships in large knowledge
graphs, it is adopted into the knowledge module for repre-
senting prior knowledge in the knowledge space. To learn
such embeddings for the knowledge graph, we suppose a
training set S of triplets ðs, p, oÞ composed of two entities s,
o ∈ E (the set of entities) and a relation p ∈ L (the set of rela-
tions). Since the relation is represented as a translation in the
vector space, the energy of a triplet is defined by dðys + yp, yoÞ
, which regard the squared Euclidean distance as a dissimilar-
ity function:

d ys + yp, yo
� �

= ysk k22 + yp
���

���
2

2
+ yok k22 − 2 yTs yo + yTp yo − ysð Þ

� �
:

ð3Þ

To project the knowledge graph to knowledge space, we
minimize a margin-based ranking criterion over the training
set:

L = 〠
s,p,oð Þ∈S

〠
s′,p,o′ð Þ∈S s,p,oð Þ′

γ + d ys + yp, yo
� �

− d ys′+ yp, yo′
� �h i

+
,

ð4Þ

where ½x�+ denotes the positive part of x, γ > 0 is a margin
hyperparameter, and

S s,p,oð Þ′ = s′, p, o
� �

∣ s′ ∈ E
n o

∪ s, p, o′
� �

∣ o′ ∈ E
n o

: ð5Þ

In the knowledge graph embedding, the loss function,
constructed according to Equation (4), has lower values of
the energy for training triplets than for wrong triplets, so
the embeddings for the knowledge graph have the ability to
distinguish wrong triplets. As for the wrong triplets, it is con-

structed according to Equation (5), which is composed of
training triplets with either the subject or object replaced by
a random entity (but not both at the same time).

3.4. Mapping Module. To consider the image visual feature
and extra knowledge feature comprehensively, the mapping
module is adopted to learn the joint visual and knowledge
embedding. In the mapping module, there is a projection
matrix W ∈ℝr×M from the feature space to the knowledge
embedding space:

ys′=Wxs, ð6Þ

yo′ =Wxo, ð7Þ

yo′ − ys′≈ yp, ð8Þ

where ys′ and yo′ are the vector representations after the
projection of xs and xo. To guarantee that the corresponding
entities are close to each other during the projection process,
a modified triplet loss is employed, where the triplet loss [32]
can encourage matched entities from the twomodalities to be
closer than the mismatched ones by a fixed margin. To this
end, two sets of entity triplets for each positive visual-
knowledge pair are denoted by ðyE′ , yEÞ:

triyE′ = yE′ , yE, yE′−
n o

, ð9Þ

triyE = yE′ , yE , y−E
n o

, ð10Þ

where s, o ∈ E and the set triyE′ and triyE correspond to triplets

with negatives from the visual mapping and knowledge
space, respectively. If the superscripts s, o ∈ E are omitted
for clarity, the triplet lossLTr is the summation of two losses
LTr

y ′ and LTr
y :

LTr
y ′ = 〠

N

i=1
max 0, sim y′−i , yi

� �
− sim yi′, yi

� �
+m

h i
, ð11Þ

Object
detection

Person

Person

Motorcycle

Motorcycle

Knowledge
graph

Ride

Feature
extraction

w

w

CN
N

Figure 1: The overview of our visual relationship detection model. It consists of visual module, knowledge module, and mapping module.
Visual module uses the CNN to detect a set of objects in images and extracts the visual features of the objects. Knowledge module consists
of a knowledge graph, which is embedded in a low dimension vector space. Mapping module maps the visual features to the knowledge
space for relationship detection.

4 Wireless Communications and Mobile Computing



LTr
y = 〠

N

i=1
max 0, sim yi′, y−i

� �
− sim yi′, yi

� �
+m

h i
, ð12Þ

LTr =LTr
y ′ +LTr

y , ð13Þ

where LTr
y ′ guarantees that entities in knowledge space

can be close to the corresponding entities in the visual map-
ping space, LTr

y guarantees that the entities in visual map-
ping space can be close to the corresponding entities in
knowledge space,N is the number of entities,m is the margin
between the distances of positive and negative pairs, and
simðÞ is a similarity function, which is the cosine similarity
function:

sim yi′, yi
� �

= yi · yi′
yik k × yi′

�� �� : ð14Þ

4. Experiments

Datasets: the visual relationship detection (VRD) [1] dataset
contains 5,000 images with 100 object categories and 70 rela-
tions. In total, VRD contains 37,993 relationship annotations
with 6,672 unique relationships and 24.25 relationships per
object category. We follow the same train/test split as in pre-
vious works [1] to get 4,000 training images and 1,000 test
images. To demonstrate that the proposed method can work
reasonably well on a dataset with small relationship space,
experiments in terms of visual relationship detection task
are performed in the VRD dataset.

The visual genome (VG) [12] dataset is the latest release
version (VG v1.4) that contains 108,077 images with 21 rela-
tionships on average per image. Each relationship is of the
form (subject, relation, object) with annotated subject and
object bounding boxes. Since the VG dataset is annotated
by crowd workers, the objects and relations are noisy. There-
fore, we clean it by removing nonalphabet characters and
stop words and use the autocorrect library to correct spelling.
Finally, the data is split into 86,462 training images and
21,615 testing images. The statistics for datasets can be found
in Table 2.

Knowledge graph: in order to take advantage of the effec-
tive background knowledge, the knowledge graph for visual
relationship detection is constructed according to the proc-
essed image label information and the public knowledge
graph, WordNet [64]. To build the accurate knowledge
graph, the annotation noise in the dataset should be
removed. Firstly, duplicate words are deleted, such as “apple
apple” and “dog dog.” Secondly, phrases with the same
meaning are merged, such as “surfboard” and “surf board.”
Specifically, the one with more occurrences in the dataset is
selected and replaces other phrases with identical meaning.
Then, we build the knowledge graph by using the object-
object relationship annotations in the dataset.

However, this kind of knowledge graph lacks some com-
mon sense information. For instance, it can be helpful to
know that a horse is a kind of animal. But if images of horse
labels miss the “animal” label, our constructed knowledge

graph will also lack in this common sense. Thus, it is neces-
sary to combine our constructed knowledge graph with the
semantic knowledge graph, WordNet. First, we collect the
new nodes in WordNet which directly connect to the nodes
in the constructed knowledge graph. Then, we add these
new nodes to our knowledge graph. Finally, we take all of
the WordNet edges between these nodes and add them to
the knowledge graph.

Table 4: Results on the VG dataset.

Dataset VG

Task Phrase det.
Relationship

det.
Predicate det.

Metric R@50 R@100 R@50 R@100 R@50 R@100

Lu’s-V [1] — — — — — —

Lu’s-VLK [1] — — — — — —

VtransE [48] 9.46 10.45 5.52 6.04 61.45 61.70

Ours 9.59 10.52 5.63 6.16 62.52 62.73

Table 3: Results on the VRD dataset.

Dataset VRD

Task Phrase det.
Relationship

det.
Predicate det.

Metric R@50 R@100 R@50 R@100 R@50 R@100

Lu’s-V [1] 2.24 2.61 1.58 1.85 7.11 7.11

Lu’s-VLK [1] 16.17 17.03 13.86 14.70 47.87 47.87

VtransE [48] 19.42 22.42 14.07 15.20 46.99 46.99

Ours 23.67 25.01 16.56 18.13 48.64 48.64

Table 2: Statistics for the datasets.

Datasets Images
Object
types

Predicate
types

Relationship
types

VRD
[1]

5,000 100 70 6,672

VG [12] 108,077 200 100 19,237

Table 1: Notations used in this paper.

Notations Descriptions

ℝM m-dimensional Euclidean space

x, x, X Scalar, vector, and matrix, respectively

xs, xo Feature of subject and object in image, respectively

ys, yo
Knowledge embedding of subject and object,

respectively

yp Knowledge embedding of predicate

d Dissimilarity function

S Set of relation triplets

E Set of entities

R Set of relations

sim Similarity function
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(a) Person, wear, skis (b) Person, wear, skis

(c) Person, wear, skis (d) Person, ride, skateboard

(e) Person, ride, skateboard (f) Person, ride, skateboard

(g) Wheel, on, motorcycle (h) Umbrella, cover, person

Figure 2: Continued.
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Detecting a visual relationship involves classifying both
the objects, predicting the predicate, and localizing both the
objects. To study the model’s performance for visual relation-
ship detection, the visual relationship detection is measured
in three tasks: (1) predicate detection: predict a set of possible
predicates between pairs of objects, under the given ground
truth object boxes and labels; (2) phrase detection: output a
label (subject, predicate, object) and localize the entire rela-
tionship as one bounding box; and (3) relationship detection:
output a set of (subject, predicate, object) and localize both
subject and object in the image simultaneously.

Metrics: Recall@50 (R@50) and Recall@100 (R@100) are
adopted as evaluation metrics for detection. R@K computes
the fraction of times a correct relationship is predicted in
the top K confident relationship predictions in an image.
Note that precision and average precision (AP) are also
widely used metrics, but they are not proper as visual rela-
tionships are labeled incompletely and they will penalize
the detection if we do not have that particular ground truth.

Compared methods: we compare our model with three
representative models. The three visual relationship detec-
tion models are as follows: (1) Lu’s-V (V-only in [1]): it is a
two-stage separate model that first uses R-CNN [63] for
object detection and then adopts a large-margin JointBox
model for predicate classification; (2) Lu’s-VLK (V+L+K in
[1]): a two-stage separate model that combines Lu’s-V and
word2vec language priors [65]; (3) VtransE [48]: a fully con-
volutional visual architecture that draws upon the idea of
knowledge embedding for predicate classification.

4.1. Comparison on VRD. The proposed model is first vali-
dated on the small VRD dataset with comparison to the sim-
ilar methods using the metrics proposed above in Table 3.
From the quantitative results, it can be found that the pro-
posed model outperforms other methods in all tasks. Specif-
ically, our proposed model improves performance by 4.25%
in the phrase detection task and improves performance by
2.93% in the relationship detection task. These improve-
ments validate the assumption that visual relationships might
be helpful for object detection, which can be owed to the
incorporation of the knowledge graph as an additional source
of information. In addition, the improvement in predicate

detection shows that the incorporation of the knowledge
graph can provide more meaningful information than the
word-level text.

4.2. Comparison on VG. The results of the proposed model
on the VG dataset are presented in Table 4. Since VG is a rel-
atively large and newer dataset, some representative models
have not been validated on it. In addition, some methods
have no public codes, and we can only mark the performance
of these methods as a blank in Table 4. Even though the vari-
ety of possible relationships becomes more diverse, our pro-
posed model still outperforms other methods in all tasks.
Specifically, our proposed model improves performance by
1.07% in the predication detection task. Since the predicate
detection isolates the factor of subject/object localization
accuracy by using ground truth subject/object boxes and
labels, it focuses more on the relationship recognition ability
of a model. Therefore, the improvement of our model in this
task shows that the incorporation of the knowledge graph is
essentially effective for visual relationship detection. Besides,
the performance of our proposed model has been improved
to some extent, but it is not obvious in phrase detection task
and relationship detection task. It may be due to the noise
annotations in the large-scale VG dataset and the limited
quality of the constructed knowledge graph.

4.3. Case Study. The VRD and VG datasets have densely
annotated relationships for images with a wide range of
types. From the qualitative results in Figure 2, it shows that
our model can clearly detect a wide variety of visual relation-
ship categories. Specifically, in Figures 2(a)–2(c) are the same
interactive relationships (person, wear, skis). Figures 2(d)–
2(f) are the same positional relationships (person, ride, skate-
board). It shows that our model can detect different types of
identical relationship, even though their visual representa-
tions are quite divergent. Moreover, there are more catego-
ries of relationships, such as Figure 2(g) (wheel, on,
motorcycle), Figure 2(h) (umbrella, cover, person), and
Figure 2(i) (person, ride, horse). It shows that the proposed
model can be able to cover all kinds of relationships in (sub-
ject, predicate, object), where the predicate can be a verb, spa-
tial, and preposition.

(i) Person, ride, horse

Figure 2: Qualitative examples of relationship detection. The red rectangles are identified subjects, the blue rectangles are identified objects,
and the captions below are identified visual relationships.
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5. Conclusion

The visual relationship detection has been treated as a critical
task in enhancing the functionalities of IoTs with CI tools.
Considering the sparsity of multimedia IoT data, this work
investigates the improvement of visual relationship detection
with the knowledge graph as the additional structural seman-
tic information. We proposed a new model for visual rela-
tionship detection incorporating the knowledge graph. In
the proposed model, the Faster-RCNN and TransE models
are used for feature learning from the image and knowledge
graph, respectively. A third module is proposed to combine
the two parts at the level of low dimensional vectors. Further-
more, a corresponding loss function is designed for the whole
network. We validate the effectiveness of the proposed model
on several datasets, both on the classification and detection
task, and demonstrate the superiority of our approach over
other similar methods. The proposed model can be applied
for both the knowledge discovery and security analysis for
sparse multimedia IoT data. Our future work includes the
combination of other techniques like graph neural networks
for visual relationship detection, as well as the privacy preser-
vation towards these multimedia IoT data.
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