
Research Article
Optimization of Historic Building Survey Technology under
Artificial Intelligence Wireless Network Technology Environment

Wei Tan ,1,2 Ye Fen,2 and Qi Yuan3

1School of Architecture and Planning, Hunan University, Changsha 410082, Hunan, China
2College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004 Hunan, China
3Branch of Landscape and Light Environment Design, Hunan University Design and Research Institute Co., Ltd., Changsha,
410006 Hunan, China

Correspondence should be addressed to Wei Tan; vicotrtan@hnu.edu.cn

Received 28 October 2021; Revised 25 November 2021; Accepted 27 November 2021; Published 16 December 2021

Academic Editor: Vinoth Babu Kumaravelu

Copyright © 2021 Wei Tan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to optimize the technology of the building, the damage identification of the building structure is studied. Firstly, back
propagation neural network (BPNN) and information fusion technology are used to build neural network models. Secondly,
the established model is trained. Finally, the displacement mode, natural frequency, Modal Assurance Criterion (MAC), and
three kinds of information fusion with only one characteristic information are used as input data to analyse the results of
BPNN identification damage. The results show that when the natural frequency is used as the sensitive feature of damage, the
accuracy is the highest. The difference between the network output value and the expected value is the smallest, the network
output is the most stable, and the network recognition effect is the best. The network output of a mixture of two damage
depths is compared with the output of a single damage depth. The data of the network training set composed of the feature
data with damage depth of 20mm and 5mm has higher accuracy and more accurate damage recognition. This research
provides a reference for the optimization of building survey technology and has certain practical value.

1. Introduction

Historical architecture is a treasure produced in the process
of human history development. It has important historical
value, scientific value, artistic value, social value, and eco-
nomic value. Therefore, the protection of historical buildings
is urgent. At present, there are many new and old buildings
in various countries in the world, and the service life of these
buildings will decrease over time. Since the 1950s, the world
population has grown exponentially, the economy is devel-
oping rapidly, and human beings exploit large amounts of
natural resources. These have led to frequent environmental
and geological disasters all over the world. China has experi-
enced several major earthquake disasters. Ground fissure is a
kind of superficial geological disaster phenomenon; its
occurrence frequency and disaster scale show an increas-
ingly serious trend. As of 2019, according to incomplete sta-
tistics of more than 200 cities and counties in the seven
provinces of Shaanxi, Shanxi, Shandong, Jiangsu, Hebei,

Henan, and Anhui, there are more than 1,000 ground fis-
sures in total. These ground fissures have caused serious
damage to various building structures, transportation facili-
ties, urban lifeline projects, and land resources. Over the
years, the direct and indirect economic losses caused by
ground fissure disasters amounted to hundreds of millions
of yuan. Building damage will bring some safety issues.
Ground fissures can cause wall cracks, foundation collapse,
and even collapse of buildings. Therefore, the occurrence
of building cracks is inevitable [1]. Due to the continuous
development of secondary hidden cracks, some ancient
buildings gradually appeared cracks and suffered varying
degrees of damage [2]. Therefore, long-term monitoring of
the health status of existing building structures and covering
them in different areas of ground fissure activity provide the
possibility for traditional buildings to cross ground fis-
sures [3].

Ground fissures can cause a series of hazards such as
cracking of the walls of the building structure, damage to
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the load-bearing components, settlement, and collapse of the
foundation. These hazards not only affect the normal use of
buildings but also cause underground pipelines to rupture
and road dislocations. The ground fissure has caused irre-
versible damage to human production and life. The contra-
diction between large-scale urban construction and ground
fissure disasters has become increasingly prominent. Nowa-
days, with the continuous development of science and tech-
nology, the emergence of artificial intelligence (AI) and
network technology, the intelligent diagnosis, and detection
technology of building structures have a wide range of appli-
cation prospects [4]. Various survey techniques are widely
used in construction, water conservancy, and other engi-
neering fields [5]. The structural health monitoring system
uses remote sensing technology to analyse the static and
dynamic characteristics of the structure and monitor
changes. A structural health monitoring system is estab-
lished at the appropriate location. By detecting the real-
time response of the structure in different states, the force
state of the structure is obtained. In this way, it can be
judged whether the structure is damaged. The current health
status of the building structure is obtained [6–8].

For buildings with different structures, a single-
information judgment criterion cannot accurately identify
structural damage, nor can it improve the reliability of struc-
tural safety evaluation. Information fusion technology can
realize the processing and fusion of multisource sensor data,
extract key features, and comprehensively evaluate the safety
performance of the structure. Compared with the technol-
ogy that only considers a single damage feature, the informa-
tion fusion technology can greatly improve the sensitivity of
the structural health monitoring system to damage. Infor-
mation fusion technology can reduce the impact of uncer-
tain factors on damage identification and improve the
robustness of the health monitoring system. Meanwhile,
the combination of artificial neural network (ANN) and
information fusion is applied to structural damage identifi-
cation. This is conducive to the visual development of struc-
tural health monitoring. Therefore, the BPNN model is used
to study structural damage identification and location based
on modal frequency, displacement mode, and modal confi-
dence criteria. The information fusion of the three types of
feature information is used in damage identification and
location. The recognition result of the information fusion
and the recognition result of a single feature are compared
and analysed. The combination of information fusion and
ANN is used in structural damage identification. This has
far-reaching practical significance for the monitoring of
structural safety performance.

2. Literature Review

As a part of machine learning, the most basic way to realize
deep learning is to use the characteristics of neural networks
to use the network structure of multiple hidden layers to
extract data features. This method does not require human
intervention and includes models such as autoencoders, con-
volutional neural networks, and deep confidence networks.
With the advent of the big data process and the rapid

improvement of computer hardware performance, the rec-
ognition method of deep learning has become the research
object of many researchers. Yu et al. (2019) [9] proposed a
building structure damage recognition and location method
by deep convolutional neural network (DCNN), which
showed that this method had good generalization ability
and high recognition accuracy. Liu et al. (2019) [10] pro-
posed a method by parameter sensitivity to identify struc-
tural damage and damping defects of nonclassical damping
shear buildings. Wang et al. (2021) [11] proposed a new
method for structural damage identification by the low accu-
racy of structural damage recognition by time series data,
combined with the advantages of Hilbert-Huang Transform
and deep neural networks. Gao and Mosalam (2018) [12]
implemented the most advanced deep learning technology
in the application of civil engineering, that is, identifying
structural damage from images. Inspired by the challenges
of ImageNet and the development of computer hardware,
they proposed the concept of structured ImageNet. Among
them, four original baseline identification tasks are included:
component type identification, peeling state inspection,
damage level evaluation, and damage type determination.
They select relatively few images from Structural ImageNet
and manually label them according to four recognition tasks.
In order to avoid overfitting, the transfer learning of Visual
Geometry Group (VGGNet) was introduced, and two differ-
ent strategies were adopted. This method is feature extrac-
tion and fine-tuning. According to the characteristics of
these two strategies, two experiments were designed to find
relatively optimal model parameters and applicable scope.
The models obtained by these two strategies show good rec-
ognition results and different application potentials. Among
them, feature extraction and fine-tuning can be used for pre-
liminary analysis and further improvement, respectively.
These results indicate the potential application of deep
transfer learning in image-based structural damage recogni-
tion. The structural damage recognition system is an impor-
tant part of the structural health monitoring system. The
combination of ANN and damage recognition has become
a research hotspot.

Neural networks belong to intelligent recognition, and
there are some problems in practical applications. Neural
networks need a large amount of sample data to train, and
the training time is long. Meanwhile, the neural network
may fall into a local minimum during the training process.
More importantly, the recognition results of neural network
methods are very dependent on the selection and construc-
tion of damage indicators. How to choose and construct
damage-sensitive indicators is a problem that needs to be
solved urgently.

3. Materials and Methods

3.1. Structural Damage Recognition. There are certain
requirements for structural damage identification indicators.
Damage must meet certain conditions before it can be used
for identification. The specific conditions are shown in
Figure 1.
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(1) When an object vibrates freely, its displacement var-
ies with time according to sine or sine curve. The fre-
quency of vibration has nothing to do with the initial
conditions and is related to the inherent characteris-
tics of the system (such as mass, shape, and mate-
rial), known as the natural frequency. The
corresponding period is called inherent period. In
the engineering structure, the parameters of the nat-
ural frequency are easy to obtain and have high accu-
racy [13]. The characteristic equation about the
natural vibration of the system can be expressed as

K − λiMð Þϕi = 0: ð1Þ

K is the stiffness matrix of the structure, M is the mass
matrix, ϕi is the natural mode shape, and ϕi

TMϕi = 1.
Suppose the number of the structural unit is r, and the

total number of units ism. The stiffness is matrixed by Equa-
tion (1), which is expressed as

K = 〠
m

r=1
prK

e
r: ð2Þ

Ke
r is the element stiffness matrix, and pr is the quality of

the structure. When pr = 1, the structure is not damaged.
When pr = 0, the damage of this structure is very serious,
and it has been destroyed. Under normal circumstances, if
the structure is damaged, its stiffness matrix will produce
certain variables for frequency and mode shape. Therefore,
the perturbation equation of the structural equation can be
expressed as

K + ΔKð Þ − λi + Δλið Þ M + ΔMð Þf g ϕi + Δϕið Þ = 0: ð3Þ

ΔK represents the change in the stiffness matrix when
the structure is damaged, ΔM represents the change in the

mass matrix when the structure is damaged, Δλi is the
change in the eigenvalue, and Δϕi is the change in the eigen-
vector. Equation (3) can be expanded, as shown in

ΔKϕi − ΔλiMϕi = λiMΔϕi − KΔϕi: ð4Þ

Both K and M are real number matrices. Multiply the
left side of Equation (4) by ϕTi , as shown in

Δλi =
ϕTi ΔKϕi
ϕTi Mϕi

: ð5Þ

When the structure is damaged, the stiffness will
decrease, and there will be ΔK ≤ 0, so Δλi ≤ 0. Equation (6)
can be obtained from Equation (2):

ΔK = −〠
m

r=1
1 − prð ÞKe

r = 〠
m

r=1
αrK

e
r: ð6Þ

Ke
r is the element stiffness matrix, pr is the quality of the

structure, and αr and pr are corresponding, referring to the
quality of the structure. Substitute Equation (6) into Equa-
tion (5), for single damage structure, as shown in

Δλi = −
αrϕ

T
i K

e
rϕi

ϕTi Mϕi
i = 1, 2,⋯,nð Þ: ð7Þ

n is the degree of freedom. Equation (7) shows that the
frequency change of the structure is affected by two factors,
the degree of damage αr and the location of the damage.

(2) Damage identification by strain or displacement
mode, the expressions of structural displacement
and strain are shown in Equations (8) and (9)

v xð Þ = 〠
∞

r=1
φr xð Þqr tð Þ, ð8Þ

It is greatly affected by local damage and is a monotonic 
function of structural damage

Have clear bit coordinates

At the damage location, the damage identification quantity 
shall have an obvious peak change

In the non damage position, the change range of damage 
identification is less than the preset threshold

Basic
conditions

Figure 1: Necessary conditions for damage identification indicators.
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ε xð Þ = 〠
∞

r=1
ϕr xð Þqr′ tð Þ: ð9Þ

φr and ϕr are the rth order displacement mode and
strain mode of the structure; qrðtÞ and qr′ðtÞ are the displace-
ment mode and strain mode coordinates, respectively. Sup-
pose u, v, and w are the displacements of the elastic body
corresponding to the x, y, and z axes, respectively, and the
displacement can be expressed as Equation (10) through
modal superposition:

u = 〠
m

r=1
qrϕr xð Þ: ð10Þ

If the strain mode is set to ψε
r , then ψε

r can be expressed
as shown in

ψε
r =

∂
∂x

ϕr xð Þ: ð11Þ

Taking the derivative of Equation (10), the strain εx of
the structure can be obtained as

εx =
∂u
∂x

= ∂
∂x

〠
m

r=1
qrϕr xð Þ = 〠

m

r=1
qr
∂ϕr xð Þ
∂x

= 〠
m

r=1
qrψ

ε
r xð Þ:

ð12Þ

Assuming that the displacement is expressed in the form
of a vector, then the displacement vector fxg and the dis-
placement mode are as

xf g = u v wf g, ð13Þ

φrf g = φu
rf g  φv

rf g  φw
rf g½ �: ð14Þ

The displacement response can be obtained by superim-
posing the displacement mode, which is expressed in

uf g
vf g
wf g

8>><
>>:

9>>=
>>; = 〠

m

r=1
qr

φu
rf g

φv
ry

n o
φw
rzf g

8>>><
>>>:

9>>>=
>>>;
: ð15Þ

Suppose the normal strain in the three-dimensional
space is εx, εy, and εz . According to the theory of elasticity,
the displacement, strain, and shear strain can be expressed
in the form of a matrix, as shown in

εx αyx αzx

αxy εy αzy

αxz αyz εz

2
664

3
775 =

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

2
66666664

3
77777775
, ð16Þ

γxy = αyx + αxy,
γyz = αyz + αzy ,
γxz = αxz + αzx:

ð17Þ

Normally, the normal strain is measured in the actual
measurement. If only the normal strain is considered, then
the corresponding strain tensor can be expressed as

εx

εy

εz

2
664

3
775 = 〠

m

r=1
qr

∂
∂x

φu
rf g

∂
∂y

φv
rf g

∂
∂z

φw
rf g

2
66666664

3
77777775
= 〠

m

r=1
qr

ψε
rf gx

ψε
rf gy

ψε
rf gz

2
664

3
775: ð18Þ

fψε
rg is the mode shape of the rth strain mode. In actual

measurement, the strain mode shape corresponding to the
measured strain can be expressed as

Hs
ij = 〠

m

r=1

ψs
irϕjr/kr

1 − ω2/ω2
rð Þ + 2jξr ω/ωrð Þð Þ : ð19Þ

Among them, ξ is the damping ratio, and ω is the circu-
lar frequency of the structure. The specific calculation equa-
tions for these two quantities are

ξr =
cr

2
ffiffiffiffiffiffiffiffiffiffi
mrkr

p , ð20Þ

ωr =
ffiffiffiffiffiffi
kr
mr

s
: ð21Þ

If the frequency of the Sth order is the same as the exter-
nal excitation, Equation (19) can be changed to

Hε = ψε
msϕms

2jξsks
+ 〠

m

r=1,r≠s

ψs
irϕjr/kr

ω2/ω2
rð Þ + 2jξr ω/ωrð Þð Þ : ð22Þ

Except for the Sth order, the modes of other orders are
not considered. Then, Equation (22) is simplified, as shown
in

Hε
ij =

εi ωsð Þ
Fm ωsð Þ = ψε

msϕms

2jξsks
: ð23Þ

The corresponding Sth order strain mode can be
expressed as

ψε
ms =

2jξsks
ϕmsFm ωsð Þ εi ωsð Þ: ð24Þ

When the structure is damaged, the internal stress distri-
bution will be affected. Its stress distribution will change,
which will affect the strain mode. If fψε

rg and fψε
rdg are
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the predamage and postdamage strain modes, respectively,
the variation of the strain mode can be expressed as

Δψε
r ið Þ = ψε

rd ið Þ − ψε
r ið Þmrcrk: ð25Þ

Under different working conditions, the damage of the
structure is distinguished and located by the change of the
strain mode.

(3) Damage identification by modal confidence crite-
rion. If the structure is damaged, each corresponding
mode shape will change. The mode shape is
expressed by Modal Assurance Criterion (MAC)
[14], as shown in

MAC ϕð Þ =
ϕf j, ϕTdj
� �

ϕf j, ϕTf j
� �

ϕdj, ϕTdj
� � : ð26Þ

ϕf j and ϕdj are the jth mode modes before and after
damage, respectively. Equation (26) is the relationship
between the mode shapes before and after damage.

3.2. Information Fusion Technology. In the early days, the
information fusion technology was researched and applied
because of its military needs. At that time, the information
fusion technology was considered to start from multiple sen-
sor data and related information sources, combined with the
evaluation process, to achieve the positioning of the target
and the comprehensive evaluation of the threat and impor-
tance of the battlefield. The basic principle of information
fusion is by the biological brain processing a variety of infor-
mation streams, combined with computer technology, the
information acquisition system for regular processing
[15–17]. Calculate, analyse, and preprocess to get the status
information of the target. Combining different datasets,
more structural information is gotten.

In the information fusion process, the detected informa-
tion is converted into electrical signals, and then, the con-
verted signals are converted into digital signals. After
preprocessing and denoising, signal processing features are
extracted from feature fusion or direct data fusion [18]. Its
main advantage is multisensor information fusion technol-
ogy can obtain data integration through multiple sets of sen-
sors and can quickly and effectively process information
[19]. If part of the information fails during the information
processing, other information can be added, and the stability
of the system can be improved.

According to the abstraction level of the data, the infor-
mation fusion system can be classified (as shown in Table 1).

3.3. BPNN. BPNN is a back propagation algorithm added to
the structure of the feedforward network. It has not only
input and output nodes, but also one or more hidden layer
nodes, which is a unidirectional propagation multilayer for-
ward network [20, 21]. BPNN consists of three parts: input

layer, hidden layer, and output layer. The hidden layer can
have multiple layers, and each layer can contain a different
number of neurons [22]. When BPNN works, import data
samples through the input layer. Then, through a series of
mathematical calculations, the law between the data is
obtained [23]. Finally, use these laws to calculate all forecast
datasets to get the forecast results. In the calculation process,
the data propagates forward, and the weights and biases of
hidden neurons are obtained randomly [24]. The neural net-
work propagates forward to obtain the sum of each neuron
and transmits the data on the neuron to the next layer of
neurons through the activation function. The BPNN struc-
ture with 2 hidden layers is shown in Figure 2.

3.4. Establishment of Neural Network Algorithm. In the
learning process of BPNN, errors are propagated back. The
core of the BPNN algorithm is the weight adjustment pro-
cess [25]. Take h-layer BPNN as an example to establish
the BPNN algorithm:

(1) Parameter definition. Suppose the total number of
samples is n, and the weight matrix is Vij. Among
them, i = 1, 2,⋯, n; j = 1, 2,⋯,m1. The sample value
of the input layer is expressed as

X = x1, x2,⋯,xnð Þ: ð27Þ

Layer 1: there are m1 neurons, and the weight matrix is
W1

ij, where i = 1, 2,⋯,m1; j = 1, 2,⋯,m2. The output value
is

y1 = y11, y12,⋯,y1m1

� �
: ð28Þ

Layer 2: there are m2 neurons, and the weight matrix is
W2

ij, where i = 1, 2,⋯,m2; j = 1, 2,⋯,m3. The output value
is shown in

y2 = y21, y22,⋯,y2m2

� �
: ð29Þ

Layer h: set up mk neurons, l output layer samples, and
the weight matrix is expressed as Wh

ij, where i = 1, 2,⋯,mk

; j = 1, 2,⋯, l; then, the output value is as shown in

yk = yk1, yk2,⋯,ykmk

� �
: ð30Þ

The sample value of the output layer can be expressed as

O = o1, o2,⋯olð Þ: ð31Þ

(2) The process of feedforward. Initialize first, given the
input sample, expected output and training sample
data, the weight is arbitrarily selected on (-1, 1)
[26]. The “gradient descent method” is used for
learning. The weights of the neural network are
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optimized, and the mean-square error (MSE) E is
used as the loss function, as shown in

E = 1
2 D −Oð Þ2 = 1

2〠
l

k=1
dk − okð Þ2: ð32Þ

D is the expected output value, O is the sample value of
the output layer, and l is the sample number of the output
layer.

The transfer function used by BPNN is the Sigmoid
function, as shown in

f xð Þ = 1
1 + ex

: ð33Þ

When the current is fed to the hth layer of the hidden
layer, the kth training value can be expressed as

nethk = 〠
mk

j=1
yhj •wh

j,k: ð34Þ

Substituting Equations (33) and (34) into Equation (32),
Equation (35) can be obtained:

E = 1
2〠

l

k=1
dk − f netkh

� �� �2
= 1
2〠

l

k=1
dk − f 〠

mk

j=1
yhj •wh

j,k

 !" #2
:

ð35Þ

When the current is fed to the first layer of the hidden
layer, Vij is the weight matrix of the first hidden layer and

the input layer. From Equations (33) and (34), the jth train-
ing value of the first layer of the hidden layer is

net1j = 〠
n

i=1
xi•vi,j: ð36Þ

Substituting Equation (36) into Equations (34) and (35),
the error of the output layer can be expanded into

E = 1
2〠

l

k=1
dk − f 〠

mh

j=1
wh

j,k•f 〠
n

i=1
xi•vi,j

 !" #( )2

: ð37Þ

The error of BPNN is a function of the weight value of
each layer.

(3) The weight is adjusted. Taking Equation (37) as the
objective function, it is necessary to adjust the weight
matrix, in order to make the error E continue to
decrease. To obtain the partial derivative of Equation
(37), Equations (38) and (39) can be obtained:

Δwh
j,kh = −η

∂E
∂wh

j,kh
, ð38Þ

Δvi,j = −η
∂E
∂vi,j

: ð39Þ

η is the learning rate, and η ∈ ð0, 1Þ. Then the weight
value of the output layer can be adjusted to Equation (40)
by the chain rule:

Δwh
j,kh = −η

∂E
∂wh

j,kh
= η −

∂E
∂nethkh

 !
∂nethkh
∂wh

j,kh

= η• −
∂E
∂ok

� �
• ∂ok
∂nethkh

•
∂nethkh
∂wh

j,kh

= η• dk − okð Þok 1 − okð Þ•yhk ,

ð40Þ

where k = 1, 2,⋯, l; j =mk is the number of neurons in the h
th layer, and kh = 1 is the number of samples in the output
layer.

The specific algorithm flow of BPNN is shown in
Figure 3.

Table 1: Information fusion system classification.

Name Specific meaning

Pixel-level fusion
The data collected by the system is directly used for information fusion. It can retain the original information as much

as possible and provide a better decision for the system to identify identity.

Feature-level
fusion

Each sensor in the feature-level fusion system can collect feature data and extract feature data, and then, the fusion
system extracts feature information from the sensor.

Decision-level
fusion

First process the original data, identify, and extract the feature value, and get the result, and then, pass the result to the
decision centre for fusion processing.

Input layer Output layer

Hidden layer

Figure 2: Schematic diagram of BPNN structure.
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3.5. BPNN and Structural Damage Identification. The appli-
cation of BPNN in structural damage identification is to
match the actual detected structural features with the data-
base of normal state features. The ability of pattern recogni-
tion is used to effectively and orderly classify measurement
features. The learning and classification of BPNN is applied
to data classification. The process of BPNN’s identification
of structural damage is divided into four steps:

Step 1: the structure of the neural network is built. The
structure of the neural network selected is three layers The
specific number of nodes in the hidden layer is determined
by specific performance changes in network training and
learning

Step 2: the sample data is processed. Commonly used
methods to standardize data include dispersion standardiza-
tion and standard deviation standardization. The standardi-
zation method used is the dispersion standardization
method

Dispersion standardization: in fact, it is themethod ofmax-
imum and minimum values. This method treats the data as

x =
xij −min xij

max xij −min xij
, i = 1, 2,⋯, n, j = 1, 2,⋯,m: ð41Þ

x represents the standardized data value, xij represents the
unprocessed data value, min xij represents the minimum data
value, and max xij represents the maximum data value.

Step 3: the network is trained. In the process of sample
training, the parameters of the network are changed and
adjusted in order to make the final output value consistent
with the expected output value as much as possible

Step 4: the network is tested. The data of the test samples
is used to perform a series of tests on the performance of
those networks after the training is successful

3.6. Parameter Setting. The input vector used is composed of
damage sensitive characteristics of reinforced concrete

beams. Simple damage identification of structures is a binary
classification problem, so the expected output is expressed as
0, 1. However, in the structural damage location, due to the
need to distinguish different damage regions, the expected
output is set in the form of vector.

The BPNN model is established on MATLAB, and the
parameters are set through training and learning to con-
struct the damage recognition model. According to the dam-
age depth (20mm, 5mm) and the distance from the support
(10mm, 2500mm), four groups are set for comparative
analysis, A1 (20mm, 10mm), A2 (5mm, 10mm), and B1
(20mm, 2500mm).

B2 (5mm, 2500mm). The network training data and
the test dataset are, respectively, set to 1 × 100 and 1 × 20
matrices. The network output structure is selected as a 1
× 20 matrix. The expected output is assigned a value.
The label of the lossless dataset is recorded as 0, and the
label of the damaged feature dataset is recorded as 1.
The output result is close to 1 for lossless and close to 0
for damage. A total of 25 sets of data are randomly
selected, of which 20 sets of data are training samples,
and 5 sets are test samples.

4. Results and Discussion

4.1. Damage Identification Analysis by Single Feature. Use
displacement mode data for network training and adjust
parameters. The performance changes of the number of neu-
rons in different hidden layers of the displacement mode are
shown in Figure 4.

Figure 4 shows that for the displacement mode, as the
number of neuron nodes increases, the MSE continues to
decrease, and when the number of neuron nodes exceeds
7, it starts to increase again. Therefore, when the number
of neurons in the hidden layer is 7 and the number of itera-
tions is 200, the performance of the corresponding network
is the best.

Data acquisition and feature 
extraction

Initialization

Determine the desired output and 
network structure

Set the network learning rate and 
the number of neuron nodes

Import training data

Reverse calculation error

Whether the error meets
the requirements

Network weight update

Train network and adjust 
parameters

End
Yes

No

Figure 3: BPNN algorithm flow.
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Use natural frequency data for network training and
adjust parameters. The performance changes of the number
of neurons in different hidden layers of natural frequencies
are shown in Figure 5.

Figure 5 shows that for the natural frequency, when the
number of neuron nodes exceeds 4, as the number of neuron
nodes increases, the MSE continues to increase. When the
number of neuron nodes is 4, the corresponding MSE value
is the smallest. Therefore, when the number of neurons in
the hidden layer is 4 and the number of iterations is 140,
the performance of the corresponding network is the best.

Use MAC data for network training and adjust parame-
ters. The performance changes of the number of neurons in
different hidden layers of MAC are shown in Figure 6.

Figure 6 shows that for MAC, when the number of neu-
ron nodes is 6, the corresponding MSE value is the smallest.
Therefore, when the number of neurons in the hidden layer
is 6, and the number of iterations is 195, the performance of
the corresponding network is the best.

For different working conditions and feature sets, differ-
ent data are tested. The output results are shown in Figures 7
and 8.

Figure 7 shows that when the damage centre is 10mm
away from the support, the damage depth is 20mm, and
the displacement mode is the characteristic data, the output
values of the two sets of data numbered 3 and 4 are greater

than 0.2, so the expected output requirements are not met.
When MAC and natural frequency are, respectively, charac-
teristic data, the output values of the five sets of data all meet
the requirements of expected output, and the expected dam-
age identification is achieved. Figure 8 shows that when the
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Figure 4: Performance changes of the number of neurons in
different hidden layers in displacement mode.
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Figure 5: Performance changes of the number of neurons in
different hidden layers with natural frequencies.
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Figure 6: Performance changes of the number of neurons in
different hidden layers of MAC.
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Figure 7: Structural damage identification results of A1 (20mm,
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Figure 8: Structural damage identification results of B1 (20mm,
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damage centre is 2500mm away from the support and the
damage depth is 20mm, the output values of these three
types of characteristic data are all less than 0.2. Therefore,
they can meet the requirements of expected output and
achieve the desired damage identification. In addition, the
output result corresponding to the natural frequency has
the best damage recognition effect in these three categories.

Compare the actual output value of the network with the
expected value, and the absolute value of the difference
between the two is shown in Figure 9.

Figure 9 shows that when the displacement mode is used
as the characteristic data, the difference between the network
output value and the expected value fluctuates relatively
large, and the robustness is relatively poor. When the natural
frequency is used as the sensitive feature of damage, the
accuracy is the highest, the difference between the network
output value and the expected value is the smallest, and
the network output is the most stable. Therefore, its network
recognition effect is also the best among these three
categories.

4.2. Structural Damage Identification Analysis by
Information Fusion. Five groups of data are extracted from
the data of 10mm and 2500mm from the damage centre
to the support, respectively, as test data, and the remaining
data constituted the training set. 1 is the label of nondam-
aged data, and 0 is the label of damaged data. If the output
value is greater than 0.85, it is close to 1. If the output value
is less than 0.25, it is close to 0. When the damage depth is
20mm, 5mm, and the two depths are mixed, the node per-
formance changes of the different hidden layer neurons cor-
responding to the network are shown in Figures 10–12.

Figure 10 shows that when the damage depth is 20mm,
and the number of neuron nodes is 7, the corresponding
MSE value is the smallest. Therefore, when the number of
neurons in the hidden layer is 7 and the number of iterations
is 205, the performance of the corresponding network is the
best.

Figure 11 shows that when the damage depth is 5mm,
the MSE fluctuates up and down as the number of neuron
nodes increases. When the number of neuron nodes is 5,
the corresponding MSE value is the smallest. Therefore,
when the number of neurons in the hidden layer is 5 and

the number of iterations is 167, the performance of the cor-
responding network is the best.

Figure 12 shows that when the feature data with damage
depths of 20mm and 5mm together form the data of the
network training set, the MSE decreases and then increases
with the increase of the number of neuron nodes. When
the number of neuron nodes is 6, the corresponding MSE
value is the smallest. Therefore, when the number of neu-
rons in the hidden layer is 6 and the number of iterations
is 155, the performance of the corresponding network is
the best.
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Figure 9: Difference between network output and expected output.
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Figure 10: Performance changes in the number of neurons in
different hidden layers with a damage depth of 20mm.
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Figure 11: Performance changes of the number of neurons in
different hidden layers with a damage depth of 5mm.
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Figure 12: Performance changes of the number of neurons in
different hidden layers with different damage sizes.
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In these three different training situations, the actual
output values of the network are compared, and the result
analysis is shown in Figure 13. The actual output value of
the network with the expected value are compared, and the
difference between the two is shown in Figure 14.

Figure 13 shows that the distance from the damage cen-
tre to the support is 10mm, and the data of the network
training set consists of a damage depth of 20mm and a dam-
age depth of 5mm; the corresponding output values are all
less than 0.2. Therefore, it can meet the requirements of
expected output and achieve the desired damage
identification.

Figure 14 shows that when the distance from the damage
centre to the support is 2500mm, and the data of the net-
work training set consists of a damage depth of 20mm and
a damage depth of 5mm; the corresponding output values
are all less than 0.2. Therefore, they can meet the require-
ments of expected output and achieve the desired damage
identification. When the feature data with damage depths
of 20mm and 5mm together form the data of the network
training set, the corresponding output result is closer to the
expected value, so the damage recognition effect is the best
in these three categories.

Figure 15 shows that comparing the output of the net-
work with a mixture of two damage depths with the output
of a single damage depth, when the feature data with damage
depths of 20mm and 5mm together form the data of the
network training set, the corresponding accuracy is higher.

4.3. Damage Location Analysis. Structural damage identifica-
tion can not only determine whether the structure is in a safe
state but also provide a more accurate basis for the safety
identification of the structure by identifying the location of
the structural damage, which is easy to maintain and inspect
the structure. The output result of damage location is shown
in Figure 16.

Figure 16 shows that the accuracy of damage location by
the displacement mode structure is relatively high. Com-
pared with the accuracy of single damage location by natural
frequency and MAC, the accuracy of damage recognition by
information fusion will be higher. This shows that the appli-

cation of information fusion technology in damage location
is still feasible.

By the above discussion, in the current neural network
model, the displacement mode can realize the damage loca-
tion when it is used as the characteristic parameter. But the
network error is larger than that when it is used for damage
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Figure 13: Data fusion damage identification result of 10mm
distance from the damage centre to the support.
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identification. For the damage of other characteristic param-
eters on certain locations, it is impossible to locate the dam-
age. The possible influencing factors include:

(1) Compared with damage identification, damage loca-
tion requires more accurate analysis of feature data.
When BPNN performs operations with higher accu-
racy requirements, it also requires higher data
requirements and requires more complete datasets
to complete the learning of structural characteristics

(2) The selected feature data are theoretically sensitive to
damage location, but different features have different
sensitivities to damage location. As the whole charac-
teristic of structure, natural frequency is affected by
other factors besides damage location, so there is a
big error in reflecting damage location. The displace-
ment mode is more sensitive to the structural damage
location, so the recognition accuracy is relatively high.
The MAC values obtained from the vibration mode
parameters are also more sensitive to the damage
and less sensitive to the damage location

5. Conclusions

Nowadays, with the continuous development of science and
technology, AI is used in the damage identification of struc-
tures, which helps to improve the calculation speed of the sys-
tem. As a result, the accuracy of structural damage detection is
improved. The damage recognition of the building structure is
studied, BPNN and information fusion are used as the basis,
and the BPNN is established and trained. The displacement
mode, natural frequency, MAC, and three kinds of information
fusion with only one characteristic information are used as
input data, and the result of BPNN identification damage is
analysed. The results show that when the natural frequency is
used as the sensitive feature of damage, the accuracy is the
highest, the difference between the network output value and
the expected value is the smallest, and the network output is
the most stable. Therefore, its network recognition effect is also
the best among these three categories. Comparing the output of
the mixed network of two damage depths with the output of a
single damage depth, it corresponds to higher accuracy and
more accurate damage identification. The research provides a
reference for the optimization of building survey technology
and has certain practical value. The disadvantage is that when
selecting the structural parameters, the influence of some exter-
nal factors such as the environment or the instrument is not
considered. So, in the future, it is necessary to establish a system
that can be used in a complex environment.
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