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With the increase of Internet of vehicles (IoVs) traffic, the contradiction between a large number of computing tasks and limited
computing resources has become increasingly prominent. Although many existing studies have been proposed to solve this
problem, their main consideration is to achieve different optimization goals in the case of edge offloading in static scenarios.
Since realistic scenarios are complicated and generally time-varying, these studies in static scenes are imperfect. In this paper,
we consider a collaborative computation offloading in a time-varying edge-cloud network, and we formulate an optimization
problem with considering both delay constraints and resource constraints, aiming to minimize the long-term system cost.
Since the set of feasible solutions to the problem is nonconvex, and the complexity of the problem is very large, we propose
a Q-learning-based approach to solve the optimization problem. In addition, due to the dimensional catastrophes, we further
propose a DQN-based approach to solve the optimization problem. Finally, by comparing our two proposed algorithms with
typical algorithms, the simulation results show that our proposed approaches achieve better performance. Under the same
conditions, by comparing our two proposed algorithms with typical algorithms, the simulation results show that our
proposed Q-learning-based method reduces the system cost by about 49% and 42% compared to typical algorithms. And in
the same case, compared with the classical two schemes, our proposed DQN-based scheme reduces the system cost by 62%
and 57%.

1. Introduction

With the rapid development of the Internet of Vehicles (IoVs),
vehicles have generated an increasing number of intensive
computation tasks, such as online interactive applications,
route planning, and traffic flow prediction. However, since
these applications require a certain amount of computing
resources and have Quality of Service (QoS) requirements,
basic equipment in IoVs cannotmeet the needs of vehicles suf-
fering from hardware and other limitations [1].

To relieve the pressure of tight resources in IoV, Mobile
Cloud Computing (MCC) is often used as a promising solu-
tion in such cases. In MCC networks, cloud servers (CS)
have large volume of computation and communication
resources to provide offloading services to multiple users at
the same time [2]. However, since CS is usually deployed

far away from vehicles, MCC can lead to significant trans-
mission delays and system costs [3].

Mobile edge computing (MEC) is believed to serve as a
reliable paradigm due to its ability to improve the QoS of
vehicles in a way that reduces latency and energy costs [4].
To address latency-sensitive tasks while satisfying their
demand for resources, MEC sinks computing services to
the network edge, while network resources are also fully uti-
lized [5, 6]. In IoVs, MEC servers are deployed on roadside
units (RSUs), and vehicles within their coverage area are able
to receive offloading services. The computing resources in
MEC are still limited, which may result in some of the com-
putation tasks failing when the amount of tasks in the net-
work is too large [7]. Most of the previous studies have
considered the optimal allocation of computing resources
and model selection separately. Moreover, in terms of
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computation offloading, some studies offload computing
tasks from vehicles to edge servers or CS without consider-
ing the optimization of resources or the combination of
both. Therefore, it is necessary to put forward a combined
solution when solving practical problems.

Moreover, with the development of machine learning,
reinforcement learning (RL) is considered as an effective
method for finding optimal computation offloading strate-
gies in time-varying scenarios. Compared with other optimi-
zation methods, agents in RL can find an optimal policy by
observing the current environment to select actions as well
as obtaining future rewards by constantly interacting with
the environment [8]. Therefore, it is of great interest to
design an efficient RL-based computation offloading and
resource allocation scheme.

In this paper, we propose an efficient offloading scheme
in the edge-cloud network by jointly optimizing offloading
decision and resource allocation and ultimately achieving
the optimization goal of minimizing system costs. In the
concerned scenario, CS makes offloading decisions for each
vehicle based on the current system state. Distinct from
existing works, we consider both cooperation between CS
and RSUs, as well as cooperation between RSUs. We formu-
late the optimization problem as a mixed-integer nonlinear
programming (MINLP) problem, and to solve the optimiza-
tion problem, we first propose a Q-learning-based approach.
However, since Q-learning method may lead to dimensional
catastrophe when the state and action space become too
large [9], we further propose a DQN-based approach to
compensate for this drawback. The main contributions of
this article are as follows:

(i) We construct an edge-cloud network for time-
varying IoVs, in which CS together with RSUs can
process computing tasks for vehicles cooperatively

(ii) We study the cooperative offloading problem in
proposed model and formulate the optimization
problem as a MINLP problem, aiming to minimize
the system cost

(iii) After defining the state space, action space, and
reward function, we approximate the optimisation
process as a Markov decision process (MDP). Based
on the MDP, we propose Q-learning and DQN-
based methods to solve the optimisation problem,
respectively

(iv) Numerical results demonstrate that our proposed
schemes significantly reduce system cost compared
with other typical algorithms

The remainder of this paper is organized as follows.
Section 2 introduces the related work of this article. Section
3 describes the system model in detail, including the com-
putational model and the communication model. In Section
4, we describe the optimization problem and formulate the
optimization problem as an MINLP problem. In Section 5,
a Q-based method and a DQN-based method are proposed
for the optimization problem, respectively. Simulation

results and analysis are given in Section 6. Finally, Section
7 gives a summary of this paper.

2. Related Work

In recent years, research on computational offloading in
MEC and MCC scenarios has become increasingly popular
due to the need for practical scenarios. Specifically, in [10],
Mao et al. perform a joint optimization for power and com-
putational offloading in a MEC scenario using NOMA in
order to achieve the optimization goal of minimizing system
energy consumption. In [11], Ning et al. consider a MEC
heuristic offloading scheme based on partial offloading with
the optimization goal of reducing the system delay. In [12],
Kuang et al. use a hierarchical approach to obtain subopti-
mal solutions to optimize the offloading pattern and power
allocation in the MEC scenario. In [13], authors offload tasks
to nearby vehicles as well as edge devices, and in this way
solve the problem of computational offloading and probabi-
listic caching. In [14], Bi et al. consider the problem of ser-
vice delivery and deployment in a single-user MEC system
with the optimization goal of minimizing the overall system
latency.

Considering the different characteristics of MEC and
MCC, some studies have also considered the option of com-
bining both. In [15, 16], the authors studied the system
architecture of an edge-cloud system. In [17], Lin et al. pro-
posed a directional charging scheme and improved energy
transfer model in the MEC system. In [18], Wang et al. con-
sider the server allocation problem for edge computing sys-
tem deployment where each edge cloud is modeled as an
M/M/c queue. In [19, 20], authors study the computation,
communication, and the storage resources problems in both
IoV and MEC networks. Wang et al. in [21] consider using
D2D technology in MEC system to collect larger and better
quality sensing data.

For the problems in MEC and MCC scenarios, some
extant studies have used RL or DRL as solutions. In [22],
Wang et al. transform the edge caching problem as a Markov
decision process and propose a distributed cache replace-
ment strategy based on Q-learning to address the optimiza-
tion problem. In [23], Su et al. propose a Q-learning-based
spectrum access scheme to optimize spectrum and maximize
the transmission rate. In [24], Dinh et al. propose a Q-
learning-based scheme to solve the optimization problem
in a multiuser multiedge-node computation offloading sce-
nario. He et al. use a dueling DQN approach in [25] to solve
joint optimization problem in connected vehicle networks,
considering not only network gains but also caching and
computation gain in the proposed framework. In [26], Wang
et al. investigate the best strategy for resource allocation in
ICWNs by maximizing spectrum efficiency and system
capacity across the network and propose a DQN-based task
offloading scheme for MEC networks in urban cities. In [27],
Zhou et al. use a DDQN-based approach to solve the energy
minimization problem and simultaneously efficiently
approximate the value function.

Unlike these existing studies, the content of this paper
mainly considers the problem of MEC and MCC
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collaboration in an IoV environment. Through the collabo-
ration of edge-side and cloud-side servers, the paper is
aimed at minimizing the energy consumption of the system.
In order to solve the optimization problem of offloading
decision and resource allocation, we propose two algorithms
based on Q-learning method and DQN method,
respectively.

3. System Model

In this section, we first present an edge-cloud network
including mobile vehicles, RSUs equipped with MEC
servers, and cloud servers (CS). Next, we give precise defini-
tions of the model components.

3.1. Model Architecture. The edge-cloud network we con-
sider is shown in Figure 1. The set of vehicles is denoted
by N = f1, 2,⋯, ng, and the set of MEC servers deployed
at roadside units (RSUs) is denoted by M = f1, 2,⋯,mg.
In particular, we set that in this system time is divided into
time slots of t ∈ f0, 1, 2,⋯, Tg, where T is the finite time
horizon. And the computing task on a vehicle i ði ∈NÞ in
time slot t is defined as ΛiðtÞ = fSiðtÞ, CiðtÞ,Dmax

i ðtÞg, where
CiðtÞ represents the total number of CPU cycles required to
process the task, SiðtÞ represents the size of the computing
task, and Dmax

i ðtÞ denotes the maximum delay tolerant of
the task. Typically, MEC servers are deployed at the edge
of the network, consisting of cellular networks to provide
services to vehicles. The CS, on the other hand, is deployed
away from vehicles and provides computing services
through the core network. In order to guarantee the reli-
ability of data transmission and provide offloading service
for vehicles, RSUs and CS are connected via core net-
works. In general, the amount of computing resources
and bandwidth is much higher on CS than on MEC
servers, but the offload service is more costly on CS. The
descriptions of the main symbols in this paper can be
found in Table 1.

In the relevant scenario, there are multiple vehicles driv-
ing on the road within the coverage of CS and RSUs. Here,
we denote Li,jðtÞ as the link between vehicle i and RSU j,
where Li,jðtÞ = 1 means that in time slot t vehicle i is in the
coverage area of RSU j and vehicle i is associated with
RSU j. In time slot t, vehicle i needs task offloading service.
After obtaining its motion information and task informa-
tion, the vehicle’s offloading request is sent to its associated
RSU. If its associated RSU does not have enough resource
and cannot fulfill its requirement, its task information will
be further sent to other RSUs in this area for cooperative off-
loading. If all the RSUs in this area fail to meet the task’s
demand for resources, the computing task will be offloaded
to CS. We define the offloading decision of vehicle i as the
integer variable xi,jðtÞ ∈ f0, 1g, where xi,jðtÞ = 1 means that
the computing task of vehicle i is offloaded to RSUs in time
slot t, and xi,jðtÞ = 0 means that the computing task is off-
loaded to CS. Based on the current resource status of the
RSUs, the offloading decision of the vehicle and the resource
allocation are made dynamically by the control center in the

CS. The task offloading process described above is shown in
Figure 2.

3.2. Communication Model. Each vehicle can only be con-
nected to one RSU at a time within the RSU’s coverage
range. We assign the bandwidth of bi,j to the link between
vehicle i and RSU j. As shown in eq. (1), we calculate the
data transmission rate according to Shannon’s formula

Ri,j tð Þ = bi,j tð Þ log2 1 +
Ptr
i,jhi,j
�w0

 !
, ð1Þ

where hi,j denotes the channel gain, Ptr
i,j denotes the trans-

mission power, and �w0 denotes the power level of white
noise.

3.3. Computation Model

3.3.1. Computing Model for CS. For xi,jðtÞ = 0, vehicle i
decides to offload the computation task to CS. Although
cloud servers have a huge volume of computing and com-
munication resources, the amount of resources available in
each current time slot is still limited considering the
maintenance cost of the resources and other factors. The
offloading process in this case is divided into the follow-
ing parts: (i) task transmission between vehicle and its
associated RSU, (ii) the process of uploading tasks to
CS, and (iii) task processing on CS. According to eq.
(1), we can obtain the data transmission rate between
vehicle and its associated RSU as Ri,j. The data transmis-
sion rate between CS and RSUs can be obtained as Ri,o.
To sum up, we can obtain the transmission times for
the first two processes as

Ttr
i,j =

Si tð Þ
Ri,j tð Þ

, ð2Þ

Ttr
i,o =

Si tð Þ
Ri,o tð Þ , ð3Þ

where SiðtÞ denotes the task size of the vehicle. We define
f i,oðtÞ as the assigned computational capacity from CS to
vehicle. Thus, we can obtain the computation time of this
process as

Tcp
i,o =

Ci tð Þ
f i,o tð Þ , ð4Þ

where CiðtÞ denotes the required CPU cycles of task.
Then, we define the total execution time to offload tasks
to CS as Ti,j. Thus, we have

Ti,j = Ttr
i,j + Ttr

i,o + Tcp
i,o: ð5Þ

Based on the above discussion, the system cost when
tasks are offloaded to CS is formulated as
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E1 =〠
i∈N

1 − xi,j tð Þ
� �

Ptr
i,jT

tr
i,j + Ptr

i,oT
tr
i,o + PCST

cp
i,o

�h i
, ð6Þ

where Ptr
i,j denotes the transmission power between vehicle

and RSUs, Ptr
i,o denotes the transmission power between

RSUs and CS, and PCS denotes the execution power of
CS.

3.3.2. Computation Model for Associated Offloading. For xi,j
ðtÞ = 1 and Li,jðtÞ = 1, the vehicle’s associated RSU has

Cloud server

RSU 3

RSU 2RSU 4

RSU 1

Vehicles

RSUs with MEC
servers

Wired
transmission

Wireless transmission between
RSUs and vehicles

Figure 1: Network description.

Table 1

Notation Definition

M A set of RSUs

N A set of vehicles

Ptr
i,j The transmission power between vehicle and RSUs

Ptr
i,o The transmission power between RSUs and CS

PCS The execution power of CS

PRSU The execution power of RSUs

xi,j tð Þ The offloading decision of vehicle i

Cn tð Þ The CPU cycles of computing task for vehicle i

Sn tð Þ The task size of computing task for vehicle i

F j tð Þ The total computational capability of RSU j

Bj tð Þ The total radio capability of RSU j

f i,j tð Þ The computational resources of RSU j allocated to vehicle i

bi, j tð Þ The radio resources of RSU j allocated to vehicle i
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enough resource to process its computing task, then vehicle i
decides to offload the computation task to its associated
RSU. Thus, the task processing in this case can be divided
into two parts: (i) the transmission process from vehicle to
its associated RSU and (ii) task processing on the associated
RSU. Similar to the above, we have

Ttr
i,j =

Si tð Þ
Ri,j tð Þ

, ð7Þ

Tcp
i,j =

Ci tð Þ
f i,j tð Þ

, ð8Þ

where f i,jðtÞ denotes the assigned computational capacity.
The total execution time can be obtained as

Ti,j = Ttr
i,j + Tcp

i,j , ð9Þ

Based on the above discussion, the system cost for asso-
ciated offloading is formulated as

E2 = 〠
i∈N

〠
j∈M

xi,j tð ÞLi,j tð Þ PRSUT
cp
i,j + Ptr

i,jT
tr
i,j

� �h i
, ð10Þ

where PRSU denotes the execution power of RSUs.

3.4. Computation Model for Cooperative RSUs. For xi,jðtÞ = 1
and Li,jðtÞ = 0, since the associated RSU cannot meet its
requirements in terms of resources, vehicle i decides to off-
load the computation task to cooperative RSU j. The task
processing at this point consists of three processes: (i) the
transmission process from vehicle to its associated RSU,
(ii) the transmission process of the task between RSUs, and
(iii) task processing on the target RSU j. We define the com-

putational capacity assigned from target RSU to vehicle as
f i,jðtÞ, thus, we have

Ttr
i,j =

Si tð Þ
Ri,j tð Þ

, ð11Þ

Ttr
r,r =

Si tð Þ
Rr,r tð Þ , ð12Þ

Tcp
i,j =

Ci tð Þ
f i,j tð Þ

, ð13Þ

where Rr,r denotes the transmission rate between RSUs.
The total task execution time in this case is expressed as

Ti,j = Ttr
i,j + Ttr

r,r + Tcp
i,j: ð14Þ

Combining the above discussion, the system cost when
tasks are further offloaded to cooperative RSUs can be for-
mulated as

E3 =〠
i∈N

〠
j∈M

xi,j tð Þ 1 − Li,j tð Þ
� �

PRSUT
cp
i,j + Ptr

i,jT
tr
i,j + Ptr

r,rT
tr
r,r

�h i
,

ð15Þ

where Ptr
r,r denotes the transmission power between RSUs.

4. Problem Formulation

In this section, we first calculate the total system cost based
on the previous section. Then, we formulate an optimization
problem, aiming to minimize the long-term system cost.

Based on the previous section, we define total system
cost as follows

U tð Þ = E1 + E2 + E3: ð16Þ

By jointly optimizing computational offloading and
resource allocation in the proposed system, we formulate the
optimization problem with minimizing long-term system cost
as the optimization objective, which can be indicated as follows:

2 P 1ð Þ: min
x tð Þ,f tð Þ,b tð Þ

�U = lim
T⟶∞

1
T
〠
T−1

t=0
U tð Þ, ð17Þ

s:t:xi,j tð Þ ∈ 0, 1f g, ð18Þ
Ti,j ≤Dmax

i , ð19Þ

〠
n∈N

f i,j tð Þ ≤ Fj tð Þ, ð20Þ

〠
n∈N

bi,j tð Þ ≤ Bj tð Þ: ð21Þ

The meanings of the constraints are explained as follows:

(i) Constraint (18) indicates that the decision variable
is a Boolean value

Task information
Task offloaded to
vehicle's associate

RSU

Y

N

Y

RSU has enough
resource

Cooperative
offloading

One of the
RSUs has enough

resource

Task offloaded to
cloud servers

N

Outcome

Figure 2: Offload process.
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(ii) Constraint (19) guarantees that tasks need to be
completed within the maximum time delay

(iii) Constraint (20) guarantees that the computation
resources allocated by each RSU do not exceed its
current available computation resources

(iv) Constraint (21) guarantees that the bandwidth allo-
cated by each RSU does not exceed its current avail-
able bandwidth

According to the previous discussion, xi,jðtÞ represents
the Boolean variable for the offloading decision. Meanwhile,
f i,jðtÞ and bi,jðtÞ represent the computational resources and
the bandwidth allocated for the task, respectively. Also, there
are nonlinear conditions in the optimization problem.
Therefore, optimization problem P1 is a typical mixed inte-
ger nonlinear programming (MINLP) problem [28], which
is an NP problem and cannot be solved in polynomial time.

5. Problem Transformation and Solution

In this section, we describe the optimization problem as a
Markov decision process (MDP). Next, to solve the optimi-
zation problem based on Q-learning method and DQN
method, we define state space, action space, and reward
function of this problem.

5.1. State, Action, and Reward Definitions

(i) State Space. The state space indicates the current
state of the environment in the system. In the
concerned scenario, the system state of the avail-
able resources at current time slot is determined
by BjðtÞ −∑n∈Nbi,jðtÞ, and FjðtÞ −∑n∈N f i,jðtÞ,
which, respectively, represent the available band-
width and the available computation resources.
Moreover, in order to compare among the states to
determine if the system has reached the optimal
state, we need to obtain the system cost UðtÞ in each
time slot. Hence, the state vector can be obtained as
zt = ðUðtÞ, FjðtÞ −∑n∈N f i,jðtÞ, BjðtÞ −∑n∈Nbi,jðtÞÞ

(ii) Action Space. In our concerned scenario, agents
need to perform multiple actions including develop-
ing offloading decisions and deciding how much
resource to allocate at each time slot. Therefore,
the action vector consists of the offloading decision
vector, the computation resource allocation vector,
and the bandwidth resource allocation vector.
Hence, the action vector in current time slot can
be obtained as dt = ðxi,jðtÞ, f i,jðtÞ, bi,jðtÞÞ

(iii) Reward Function. The optimization objective in this
paper is to minimize the system cost, which is the
opposite of the meaning of the system reward
value. Therefore, we define the reward that agents
can obtain at state zt when performing action dt
as rðzt , dtÞ = −Uðzt , dtÞ, where Uðzt , dtÞ =UðtÞ is
the system cost of the current state

5.2. Markov Decision Process. In this step, we transform the
optimization problem into a MDP problem where agents
perform adaptive learning and decision making through
iterative interactions with the unknown environment.
The specific steps are as follows: first, an agent observes
the current system state zt . This intelligence performs
action dt based on the current policy π for each time slot.
As a mapping from the current system state to action, pol-
icy π can be obtained as π : Z ⟶ pðD = d ∣ZÞ, where D

denotes the set of actions and Z denotes the set of states.
The probability of an agent moving to the next state zt+1
is pðzt+1 ∣ zt , dtÞ, and the reward can be obtained as rt = r
ðzt , dtÞ.

To summarize what was discussed above, a state value
function VπðztÞ can be defined to indicate the long-term
effect of the current state. Hence, the state value function
VπðztÞ under the policy πðztÞ can be expressed as

Vπ ztð Þ = Eπ Rt ∣ z0 = zt½ � = Eπ 〠
∞

t=0
φtrt

 !
z0 = ztj

" #
, ð22Þ

where z0 denotes the initial state, and φ denotes the dis-
counting factor indicating the importance of future rewards.

Finally, combined with the optimization objective, the
agents need to obtain the optimal strategy in the current
state to maximize the cumulative reward. Therefore, the
optimization problem can be translated into an optimal state
value function as

Vπ∗
ztð Þ =

max
π

r zt , dtð Þ + φ〠
zt+1

p zt+1 ∣ zt , dtð ÞVπ∗
zt+1ð Þ

" #
:

s:t:constraintsin 19ð Þ − 22ð Þ
ð23Þ

Thus, the optimal action for state zt can be obtained as

d∗t = argmax
dt

Vπ zt , dtð Þ: ð24Þ

5.3. Q-Learning-Based Solution. As an efficient value-based
model-free iterative learning algorithm, the Q-learning
approach enables agents to continuously approximate the
optimal Q-value by learning the optimal action in the corre-
sponding environment at each time slot. Specifically, agents
of Q-learning method need to obtain the results of the state-
value function for each policy and update the two-
dimensional Q-table with the corresponding Q-values. Thus,
agents can get the optimal strategy for each state based on
the magnitude of the Q-values.

Specifically for the content of this paper, we use a Q-
learning method to solve the optimization problem. The
optimal action values can be defined as Qðz, dÞ, and the
optimal state value function can be obtained as

Vπ∗
ztð Þ =max

dt
Qπ zt , dtð Þ: ð25Þ
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Therefore, the cumulative reward after performing
action dt can be obtained as

Qπ zt , dtð Þ = r zt , dtð Þ + φ〠
zt+1

p zt+1 ∣ zt , dtð ÞVπ∗
zt+1ð Þ: ð26Þ

Summarizing the two formulas above, the expected
reward can be obtained as

Qπ zt , dtð Þ = r zt , dtð Þ + φ〠
zt+1

p zt+1 ∣ zt , dtð Þ max
dt+1

Qπ zt+1, dt+1ð Þ:

ð27Þ

The iterative formula for the optimal Q-value can be
obtained by updating the state-action function as

Q zt , dtð Þ =Q zt , dtð Þ
+ ε r zt , dtð Þ + φ max

dt+1
Q zt+1, dt+1ð Þ −Q zt , dtð Þ

� �
,

ð28Þ

where ε ∈ ð0, 1Þ denotes the learning rate parameter.
Combining the above discussion, our proposed algo-

rithm is shown in Algorithm 1. In order to make a trade-
off between the exploration and the exploitation, we use ε
-greedy strategy to choose actions [29].

5.4. DQN-Based Solution. In the time-varying scenarios, we
consider the number of vehicles and the size of the tasks
are stochastic in nature. This leaves the possibility of a huge
action-state space, where although the above Q-learning-
based solution can obtain the best policy by updating the
Q-table, it may lead to a dimensional disaster in real scenar-
ios. If we stick to the above Q-learning-based solution,

Input: state space Z , action space D, learning rate ε, discount factor φ
Output: the Q-values for every state-action pair
1: Initialize Qðz, dÞ arbitrarily for ∀z ∈Z , d ∈D
2: for each episode do
3: for each step of episode do
4: In the current state zt choose an action with a random probability ϕ
5: If ϕ < ε then
6: randomly select an action dt
7: else
8: select dt = argmax

d
Qðzt , dtÞ

9: end if
10: Execute action dt , observe the reward rt and the next state zt+1
11: Update Qðzt , dtÞ according to eq.(29)
12: Update state zt ⟵ zt+1
13: end for
14: end for

Algorithm 1: Q-learning-based joint computation offloading and resource allocation algorithm.

Two-
dimension

table

Q-learning

Network
structure

DQN Q-predict

Interactive

Collect

Environment Loss function

Reply
memory

Sample

(Action,state) DQN-target

Q-target

Figure 3: The network structure of DQN.
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finding the corresponding Q-value in a huge Q table can be
costly in time and memory.

To avoid this drawback of Q-learning method, we fur-
ther use a DQN-based approach to solve the optimization
problem. Compared to Q-learning, DQN is essentially an
improvement method. As a value function approximation,
in order to solve the problem of large state space, also known
as dimensional disaster, DQN uses the architecture of deep
neural network (DNN) to replace Q-table. As a nonlinear
approximator of the optimization problem, the DNN in
DQN can capture the complex interaction between states
and actions [30]. After taking the states as the input to the
DQN network, we can get the Q-value of the actions as the

output. By doing so, we can estimate the Q-value as Qðzt ,
dtÞ ≈Qðzt , dt ; θÞ, where θ are the weights of the DQN.
Therefore, as in eq. (25), the optimal action in this method
can be obtained as

d∗t = argmax
dt

Vπ zt , dt ; θð Þ: ð29Þ

In actual engineering application, DQN mainly needs to
solve two obvious problems: low sample utilization rate and
unstable value obtained by training. In order to deal with
these two problems, DQN uses the following two key
technologies

1: Initialize replay memory set D
2: Initialize action-value function with random weights θ
3: Initialize target action-value function with weights θ− = θ
4: for episode =1, M
5: Initialize sequence z1 = fr1g and preprocessed sequence τ1 = τðz1Þ
6: for t =1,2,...,T do
7: With probability ε select a random action dt
8: Otherwise select dt = argmax

d
Qðzt , dt ; θÞ

9: Execute action dt , observe the reward rt and the next state zt+1
10: Set zt+1 = zt , dt , rt+1 and preprocess τt+1 = τðzt+1Þ
11: Store experience ðτt , dt , rt , τt+1Þ in D
12: Sample random minibarch of experience ðτi, di, ri, τi+1Þ from D
13: Set yi = ri if episode terminates at step i + 1
14: Otherwise yi = rt+1 + φ maxdQðτi+1, di+1 ; θiÞ
15: Perform a gradient descent step on ðyt −Qðτi, di ; θÞÞ2 with respect to the network parameters θ
16: Every C step reset
17: end for
18: end for

Algorithm 2: DQN-based joint computation offloading and resource allocation algorithm.
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Figure 4: Convergence performance.
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(i) Experience Replay. An experience pool is constructed
to remove data correlations which is a dataset con-
sisting of the recent experiences of the intelligences

(ii) Freezing Q-Target Networks. The parameters in the
goal are fixed for a time period (or for a fixed num-
ber of steps) to stabilize the learning goal

Next, we describe the specific execution steps of DQN.
Figure 3 shows the network structure of DQN and the
difference between DQN and Q-learning. The network first
outputs a prediction Q-value Qðzt , dtÞ, then selects the next
action based on this Q-value and passes it into the environ-
ment for interaction, then obtains a new state value and con-
tinues to feed it into the training. At the same time, the
results of each interaction with the environment are stored
in a fixed-length experience pool. A target Q-network with
the same structure and parameters is copied from the Q-
network at certain steps to stabilize the output target, and
the target Q-network samples the data from the experience
pool to output a stable target value yt . And yt can be
obtained as

yt ≡ rt+1 + φ max
d

Q zt+1, dt+1 ; θtð Þ: ð30Þ

And the update of the value function of Q-value can be
obtained as

Q zt , dtð Þ⟵Q zt , dtð Þ + ε yt −Q zt , dtð Þ½ �: ð31Þ

DQN approximates the value function using a deep con-
volutional neural network. The value function here corre-
sponds to a set of parameters, which in a neural network
are the weights of each layer of the network, denoted by
θ. At this point, updating the value function is actually

updating the parameter θ. When the neural network is
determined, θ indicates the value function. And the update
method of θ is the gradient descent, which can be
expressed as

θt+1 = θt + ε yt −Q zt , dt ; θtð Þ½ �∇θt
Q zt , dt ; θtð Þ: ð32Þ

In each training iteration, we train the DQN network
by minimizing the loss function. In the previous Q-
learning based method, we updated the Q-table by iterat-
ing through it using the rewards and the current Q-table
at each step. Then, we can use this calculated Q-value as
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Figure 5: Effects of different number of vehicles on system cost.
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the label to design the loss function, and we use the mean
squared difference between the approximate and true
values to represent the loss function, which can be
obtained as

Loss tð Þ = Eπ Q zt , dtð Þ −Q zt , dt ; θtð Þð Þ2� 	
: ð33Þ

To summarize the above about DQN, the specific algo-
rithm steps are shown in Algorithm 2. Same as the Q-
learning-based method, we use ε-greedy strategy in the
selection of actions.

6. Performance Evaluation

In this section, we evaluate numerical results of the proposed
joint computation offloading and resource allocation algo-
rithm in a dynamic edge-cloud network and compare it with
other typical schemes.

6.1. Simulation Settings. In the simulation experiments, we
consider a dynamic scenario in which there are several vehi-
cles driving in this area and several RSUs distributed on the
roadside. Similar to the experimental in [31], for each vehi-
cle, the required CPU cycles of the computing tasks are ran-
domly selected in the range of [0.4, 0.6, 0.7, 0.8, 0.3, 0.2, 0.8,
0.9, 0.4, 0.5, 0.2, 0.3, 0.8, 0.9, 0.4] Gcycles.

6.2. Simulation Results. In the next simulation experiments,
in general, our proposed schemes are compared with the
random offloading and resource allocation (RORA) scheme
and greedy offloading and resource allocation (GORA)
scheme [32].

Figure 4 reveals the convergence performance of our two
proposed algorithms. In terms of general trends, both curves
tend to increase in reward value and then converge after a
period of time. However, the number of training episodes

to reach convergence and the final convergence to the
reward value differ due to the difference between these two
methods. What can be seen from the figure is that the Q-
learning method reaches convergence after about 280 train-
ing episodes, while the curve of the DQN method reaches
convergence after about 250 training episodes. In addition,
the DQN-based approach allows for higher reward values
at the time of final convergence.

Figures 5 and 6 show how the total system cost and aver-
age delay is affected by changes in the number of vehicles,
respectively. We intercepted the curve with independent
variables changing in the range of 10-50. According to the
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optimization objective equation, the number of vehicles has
direct effect on the system cost and average delay, so the gen-
eral trend of all curves is that the system cost and average
delay are positively related to the number of vehicles. As
joint optimization schemes of computation offloading, the
system cost of our proposed Q-learning based algorithm
and DQN-based method keeps increasing, and they always
work better compared to the other two schemes in the figure.
This is because our proposed schemes consider the offload-
ing decision making of RSUs and CS cooperatively, by which
the utilization efficiency of network resources can be
increased and system cost has been greatly reduced. For
example, when the number of vehicles equal to 30, our pro-
posed Q-learning-based method reduces the cost of the sys-
tem by about 16% and 5% compared to the classical
solutions RORA and GORA, respectively. And in the same
case, compared with the classical two schemes, our proposed
DQN-based scheme reduces the system cost by 18% and
7.5%. When we take the average delay as the dependent
variable, the performance improvement of our proposed
Q-learning-based method relative to RORA and GORA
can reach 18% and 4%. And likewise, the performance
improvement of our proposed DQN-based method relative
to RORA and GORA can reach 19.9% and 9%.

Figures 7 and 8 show how the total system cost and the
average delay are affected by changes in the computation
capacity of RSUs, respectively. Compared to the two graphs
above, the curves in Figures 7 and 8 show more dramatic
changes. In general, the system cost and average latency
are reduced with the increase of the computation capacity
of RSUs. However, the performance varies due to the differ-
ent schemes. Obviously, our two proposed solutions have

some performance advantages. Specifically, for computa-
tional resources, when the computation capacity of RSUs is
equal to 30 (in GHz), when compared to RORA and GORA,
the performance improvement of our proposed Q-learning-
based method can reach 49% and 42%. And the perfor-
mance improvement of our proposed DQN-based method
relative to RORA and GORA can reach 62% and 57%.

In addition, in order to reflect the impact of two key
techniques, experience replay and freezing Q-target net-
works, on DQN method, we tried to add two experiments
without one key technology under the same experimental
conditions, and the effect is shown in Figure 9. Since the
impact of the above two techniques on DQN is mainly in
eliminating data correlation and speeding up convergence,
the effect of the scheme after removing these two techniques,
respectively, is similar to Q-learning method. From the eval-
uations, these two key technologies have a relatively obvious
performance additive effect on the DQN method. Without
these two key techniques, DQN method’s performance is
close to Q-learning method.

In summary, we have compared our proposed scheme
with RORA and GORA. From the experimental results, it
is clear that the proposed scheme minimizes the system cost
and has some advantage over the other two schemes. For the
proposed two schemes, compared with the Q-learning-based
method, the DQN-based method has a better performance
due to the advantages of using deep neural networks.

7. Conclusion

In this paper, we propose a joint computation offloading and
resource allocation scheme for the edge-cloud network. The
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DQN
DQN without experience replay
DQN without freezing Q-target networks
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optimization problem aims to minimize the system cost,
including the computation cost and the radio cost. Mean-
while, we also consider the capacity constraints and the
latency constraints. Then, we transform the original optimi-
zation problem into a Mixed Integer Nonlinear Program-
ming problem. Eventually, a Q-learning-based method for
computation offloading and resource allocation is developed
to enable tractable analysis. To avoid the dimensionality
catastrophe due to the two-dimensional table structure of
Q-learning, we further propose a DQN-based algorithm to
solve the optimization problem. Through a series of compar-
ative experiments, it is clear that the proposed schemes have
good performances in system cost minimization.

Data Availability
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