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Localization of multiple targets is a challenging task due to immense complexity regarding data fusion received at the sensors. In
this context, we propose an algorithm to solve the problem for an unknown number of emitters without prior knowledge to
address the data fusion problem. The proposed technique combines the time difference of arrival (TDOA) and frequency
difference of arrival (FDOA) measurement data fusion which further uses the maximum likelihood of the measurements
received at each sensor of the surveillance region. The measurement grids of the sensors are used to perform data association.
The simulation results show that the proposed algorithm outperforms the multipass grid search and further effectively
eliminated the ghost targets created due to the fusion of measurements received at each sensor. Moreover, the proposed
algorithm reduces the computational complexity compared to other existing algorithms as it does not use repeated steps for
convergence or any biological evolutions. Furthermore, the experimental testing of the proposed technique was executed
successfully for tracking multiple targets in different scenarios passively.

1. Introduction

In the modern era of wireless technologies, the localiza-
tion of the target sensors such as aircraft, ships, or
unmanned vehicles is challenging. The challenge is mag-
nified further when positions and velocities of sensor tar-
gets cannot be estimated precisely which results in the
inaccuracy of sensor’s locations and massive consequences
in the practical environment [1]. Most of the previous
research studies utilized localization methods that mainly
depend on the accuracy and robust estimation, in which
the time difference of arrival (TDOA) has significant
importance. This TDOA is based on receiving the same
signal on different sensors or receivers varying in time.
Further, it is used to calculate the difference in the sig-
nal’s arrival with respect to the reference sensor. Emitter
devices have the benefit of providing the frequency differ-

ence of arrival (FDOA) which is the result of the relative
motion of the source and the target, which improves the
accuracy with the estimation of the velocity of the target
[2]. Passive localization of a target or multiple targets has
one advantage over active localization, that passive local-
ization is stealth in nature, which localizes the target
without letting the target know about the existence of
the sensors.

Consider passive localization using TDOA/FDOA mea-
surement to initially estimate a single target and develop
an algorithm to estimate multitargets. Compare the perfor-
mances using different metrics, including geometric dilution
of precision (GDOP) [3], measurement covariance, sensor’s
self-navigation error, data-link transmission delay, and sen-
sor geometry to help in better understanding of the research
topic. Also, there is a need for a well-developed, efficient, and
effective algorithm to localize the multitargets which should
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be able to deal with the complexity of the measurement
fusion and localize multitargets and further track the targets
without any prior information. So, consider the increasing
interest to have such an algorithm that can localize the
increasing number of emitter devices.

A previous work using passive localization extensively
focuses on a single target, whereas very few studies in
the literature are found related to multitarget localization.
Localization of multiple targets is very complicated and
difficult to estimate their positions than a single target as
sensors receive multiple signals, and it becomes a fusion
of signals, therefore becoming complex to associate the
exact signal to the target. It becomes worst in the presence
of high noise. Also, the data reduction can cause the loss
of possible target detection in a specific area due to
noise [4].

The localization problem is challenging. However, this
problem can be solved using different approaches—the
Taylor series [5] with a good initial guess. Chan and Ho
[6] and Ho and Xu [7] proposed a two-step weighted least
square (WLS) [8] and total least square and the semidefinite
programming (SPD) [9] method based on ML, whereas
localization of the target can also be achieved using a recon-
figurable intelligent surface (RIS) supported with millimeter-
wave multi-input multi-output radar system [10] and based
on link analysis in passive UHF RFID to identify real targets
and eliminate false targets [11].

Sensor geometry along with the number of sensors is
essential in localization. Strong sensor geometry results in
a small GDOP [3] value and will cause low position uncer-
tainty, where the number of sensors is the means of
measurements. As the number of sensors increased, the esti-
mate’s accuracy and efficiency increase, but the problem in
localization is to decrease the number of sensors without
decreasing the accuracy, or say reasonable accuracy should
be maintained [12]. In the future, the proposed algorithm
could be extended in vehicle identification using the RF
signals for traffic surveillance [13, 14].

The proposed algorithm is able to localize the unknown
number of targets having the complexity of the multiple
sensors with multiple grids; the algorithm is not complex
as it is not using repeated steps for convergence, not using
any biological evolutions used in the existing algorithms; in
a single scan, it computed likelihood for all sensors using
only one parameter grid and passes the results for multitar-
get estimation. It also eliminates the localization of the ghost
target which becomes an issue when the measurement data
fusion is received; here, we call them possible candidates
when considering the combinations of the measurements
from different sensors.

This paper is organized to easily understand the research
purpose from the background and primary literature to the
research topic. Including the introduction, it is divided into
five sections. The second section describes the related work
to the proposed algorithm, while the third section explains
the proposed algorithm step by step using mathematical
equations and block diagrams. The fourth section shows
the results of the algorithm, and the last section concludes
this research paper.

2. Applications Using Maximum
Likelihood for Multitargets

Few applications make use of maximum likelihood for track-
ing multiple targets. But there is not much in the literature.
Following are the three optimization algorithms:

(1) Multipass grid (MPG)

(2) Genetic algorithm (GA)

(3) Directed subspace (DSS)

All the above algorithms use a set of certain threshold
measurements over several frames (data window length)
from a detection processor. The time to calculate a track
estimate is primarily a function of the maximization routine
used on the LLR (Log-Likelihood Ratio). This, in short,
depends upon the number of data frames involved in the
estimate, the detections in each data frame, and the number
of LLR calculations required by the maximization algo-
rithm [15].

The parameter space is the measurements comprised of
bearing, range, range rate, and amplitude values. Dissimilar-
ities in the dimensionality of the observation space, window
length, detector Pf a, and target SNR (signal to noise ratio)
are considered. Let us have a brief overview of each one by
one.

2.1. Multipass Grid (MPG). In this method, K steps are
involved. A set of values ck are monotonically decreasing,
here k = 1, 2,⋯, K , and are established with ck = 1. A grid
search is implemented over the parameter space using the
artificially improved measurement noise standard devia-
tions. The standard deviation of every measurement compo-
nent is amplified by multiplying it by a parameter defined c1.
From the grid search, the best value resulting is forwarded
to a local optimization routine, for example, a Newton-
Raphson or Davidon-Fletcher-Powell.

During each successive step, the smaller and new values
of measurement noise standard deviation are used. The local
optimization routine is started in steps from the parameter
value it had converged in the previous step [16]. Repeat
the process until k = K at which the measurement noise
standard deviations are restored to their actual value. Once
it has converged by the local optimization routine at the final
step, the track estimate is obtained [17].

Using a multipass grid search has an advantage as it
requires less computation than a comprehensive search.
However, for the more composite difficulty, the multipass
grid requires a large number of evaluations and additional
calculations to achieve the results.

2.2. Genetic Algorithm (GA). Over a discrete parameter
space, a stochastic search is performed using a set of rules
based on biological evolutionary development. Theory sug-
gests that when using the GA, one is essentially searching
more of the parameter space than that is reflected in the
number of LLR evaluations corresponding to a purely
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random search computing up to the cube of the number of
LLR evaluations used in the genetic search.

Genetic algorithm is effective and capable of searching
the global maximum which has been shown for a varied
class of objective functions [18] and in many cases has per-
formed the best of other optimization methods [19].

In practice, the employment of GA is not able to find the
global maximum with probability 1 of the random neutral
function. Results in [20] show the asymptotic convergence
beyond the critical population size. However, it is challeng-
ing to limit the essential population size in a particular prob-
lem. Table 1 lists the steps which are performed to generate
one generation using a genetic algorithm [18].

2.3. Directed Subspace (DSS). This algorithm is motivated by
a methodology of using the data information of the mea-
surements to guide the search. Directed subspace utilizes
the measurement information itself to select and search
regions of parameter space that might contain the LLR
global maximum while avoiding those parameter space
regions that cannot have this maximum.

In many tracking applications, the space of measure-
ments is defined as the subspace of the parameter space that
can be of any dimensional measurement space. For example,
range, range rate, and bearing become a 3-dimensional mea-
surement space. Range and bearing can map to the Cartesian
positions and range rate is a counterpart to radial velocity.
Table 2 lists the steps in the direct subspace algorithm
search [19].

Once the LLR values are computed over the grid using
the measurements, a local optimization algorithm [21] is
used for the final converged parameter.

2.3.1. Window-Based ML-PDA Algorithm. The window-
based ML-PDA algorithm is developed in a way to use in
real-time applications; to compute the track estimate, a sub-
set of the Nw most recent data frames is used [22]. When a
new frame is received with data, the ML-PDA algorithm is
recurred, as it adds the new data frame; the oldest data frame
is removed from the data set, which creates a sliding window
for localization and tracking update.

The existing work requires a large number of evaluations
and computations to achieve results where the employment
of GA is not able to find the global maximum with probabil-
ity 1 of random neutral function. It is challenging for existing
work to limit the essential population size in a particular
problem, whereas the proposed algorithm requires no con-
vergence and less computation. Some of the productive work
regarding the multitarget localization and object recognition
algorithms are experimented using different distributed
algorithms, and some of them are introduced for tracking
of vehicles along with other items of interest [23–26].

3. Proposed Multitarget Localization
and Tracking

In conventional passive localization and tracking, localiza-
tion of multiunknown targets is a hard problem. Unlike in
single-target localization, sensors receive multiple measure-

ments that depend on the number of targets in the specific
region, which causes a problem for the receiver to associate
measurements to the specific targets.

Figure 1 shows the arrangement of three sensors along
with three targets in a surveillance region. Localization of
multiple targets is complex due to the data association ambi-
guity; i.e., there is no information of which TDOA/FDOA
measurement is associated with the specific target [27].
The more complex problem occurs when the measurements
from the target are not received by the sensor, and there
might be few measurements that are considered false. Such
problems exist in a real scenario [17]. Receiving multiple
measurements also creates ghost targets which become more
challenging for the ghost targets in the surveillance region to
be eliminated [28]. To solve this issue, an algorithm is pro-
posed to address the data association ambiguity by using
the maximum likelihood of the measurements, which is fur-
ther processed to localize the multiple targets using the least
number of sensors. Maximum likelihood estimation (MLE)
is extensively used for a single target for minimizing the
estimation problem [29]. Multiple grids are created consid-
ering the complexity of the multiple sensors, whereas the
algorithm is not complex as it is not using repeated steps
for convergence or any biological evolutions of a genetic
algorithm [19].

Consider the simplicity of this algorithm that is solving
the fusion of measurements. Moreover, it can accurately
localize the targets using a computed likelihood for all sen-
sors. It has only one parameter grid and passes the results
for multitarget estimation. Our proposed algorithm con-
firms the unknown number of targets that can be localized
correctly when the number of false alarms is low and the
high probability of detection.

3.1. Main Steps Summary. The proposed algorithm is
divided into different steps to understand the functionality

Table 1: Steps of genetic algorithm.

Step Action

1 Calculate the fitness function for every population fellow

2 Selection of the reproduction population

3 Selection of the reproduction population mates

4 Child population production (cloning or crossover)

5 Apply alterations to the child population

6 Trial experiment for convergence

Table 2: Steps of the direct subspace algorithm.

Step Action

1 Setting grid density for the free parameter(s)

2 Mapping one measurement to parameter space

3
Using the measurements, calculate LLR over the grid of

free parameter(s)

4 Repeat steps 2 and 3 for all measurements in the data set

5 Forward the finest result in the local optimization routine
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of this work in a significant way. Consider the N number of
sensors SN positioned ðxN , yNÞ in the 2-dimensional surveil-
lance region that received M number of measurements from
an unknown number of targets UM positioned ðxM , yMÞ in 2
dimensions.

3.1.1. First Step. This step involves the receiving of measure-
ments and processing for the next step. In addition, each
sensor receives M measurements at a time, which is equal
to N ×M measurements, having MN possible combinations.
Each possible combination is responsible for generating a
candidate. Measurements can be written in vector form for
each sensor.

SN = mN
1 ,mN

2 ,mN
3 ,⋯,mN

M

� �
: ð1Þ

Here, mN
M = ~mN

M + nM , where ~mN
M = dM − dN .

According to equation (1), ~mN
M is the Mth range differ-

ence measurement received by sensor N . dN is the range
of the target at sensor N . Assume that the received mea-
surements contain the measurement noise which is con-
sidered to be independent zero-mean Gaussian random

noise nM ~Nð0, σ2Þ. To deal with the measurement associ-
ation to the targets, it is essential to create the combina-
tion of all the measurements received on all the sensors
and obtain the candidates from each combination as visu-
alized in Figure 2, which can be written as

Ck = m1
M ,m3

M ,⋯,mN
M

� �
1×N : ð2Þ

Ck is the set of measurements that are associated with
the kth candidate.

Considering all the combinations, the possible candidate
can be given by

Possible candidates = k =MN : ð3Þ

3.1.2. Second Step. Sensors are placed in a surveillance
region; a grid of measurements is created for each sensor
before scanning so that it can monitor the region for targets.
The grid depends on the defined surveillance region. To
reduce the computation, a 350 km × 350 km surveillance
region is considered. This means each grid for a specific sen-
sor is 350 km × 350 km. In an example considering 3 sensors,

km

km

T3

T2

T1

S1

S2

S3

Figure 1: Multitarget scenario with three sensors and targets in a surveillance region.

1 2 3 M

S1

S2

SN

Figure 2: Graphical representation of M measurements received at N sensors and possible combinations.
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each is having a grid of measurements between different
points that are shown in Figure 3.

Each grid of the sensor can be written as

SGi =

mi
0,0 mi

1,0 ⋯ mi
350,0

mi
0,1 mi

1,1 ⋯ mi
350,1

⋮ ⋮ ⋱ ⋮

mi
0,350 mi

1,350 ⋯ mi
350,350

2
666664

3
777775
, ð4Þ

where SGi is a grid of measurements for ith sensor of the
surveillance region and mi

x,y is the measurement at ith sensor
received from the ðx, yÞ location in the region.

3.1.3. Third Step. It is considered that each sensor receives
only one measurement maximum produced by each target
at a particular time instant under consideration. For every
measurement received at the sensor, the likelihood is mea-
sured with respect to the specific sensor’s grid created in
step 2.

The individual likelihood at sensor i as a result of associ-
ating the Mth measurement with location X. The likelihood
function is given by

Li Xkð Þ = 1ffiffiffiffiffiffi
2π

p
σ2

exp −1
2σ2 Ck − SGi½ �′ Ck − SGi½ �

� �
, ð5Þ

where LiðXkÞ is the likelihood of the kth measurement set at
the ith sensor in (5). If the likelihood of the received mea-
surement is more than the threshold, this likelihood result
is shortlisted along with all the associated measurements of
different sensors for each grid. To associate and localize
the presence of the target, it is assumed that the maximum
likelihood for all sensors is greater than the probability ξ,
that is,

ML S1ð Þ&ML S2ð Þ&⋯&ML SNð Þ > ξ: ð6Þ

Here, the value ξ is critical in precising the candidates to
be shortlisted in the next steps; its value results in a narrow
and wide likelihood curve. MLðSNÞ is the maximum likeli-
hood of N th sensor. Shortlisted measurements are forwarded
to the next step.

3.1.4. Fourth Step. The shortlisted likelihood measurements
are used to estimate the positions Xest for each measurement
using a weighted least square (WLS). Meanwhile, for each
candidate measurement Ck, using the WLS candidate
position Xc is estimated, where SN is the positions of the sen-
sors in 2-D ðxN , yNÞ; UM is the position of the targets in 2-D
ðxM , yMÞ; ~mN

M is the Mth measurement received by sensor N
without noise; nM is the zero-mean Gaussian random noise
ofMth measurement nM ~Nð0, σ2Þ; Ck is the set of measure-
ments belonging to the kth candidate; k =MN , where N is
the number of sensors and M is the number of targets; SGi
is the grid of measurements of surveillance area at ith sensor;
mi

x,y = kux,y − Sik; mi
x,y is the measurement value in between

the ith sensor and (x, y) location of the monitoring area; ux,y
is the instantaneous value for the grid at (x, y) in 2-D; LiðXkÞ
is the likelihood of the kth measurement at ith sensor;MLðSiÞ
is maximum likelihood of the ith sensor; XC is the position in
(x, y) of candidate measurements Ck using WLS; and Xest is
the position in (x, y) of shortlisted measurements by ML
using WLS.

3.1.5. Fifth Step. The generated position of candidates XC
and the shortlisted likelihood measurements Xest in step 4
are compared in a way that, for each candidate, the root
mean square (RMS) value is calculated to each of the short-
listed likelihood measurements and search for the minimum
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Figure 3: Graphical representation of measurement grids for three sensors.

Table 3: Proposed algorithm procedure.

Step Action

1
Obtain the possible candidates using the

received measurements

2 Generate the grids for each sensor of the surveillance region

3 Shortlist the maximum-likelihood of the measurements

4
Using WLS to estimate the positions of the candidate and

shortlisted measurements

5
Find the nearest measurement to candidates for

potential targets

6
Remove duplicates, and average all estimates with the

same tags

7
Repeat steps 3 to 6 for tracking for static sensors, otherwise

repeat steps 2 to 6
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value of RMS, if the minimum value is found as per the
threshold β set for accuracy.

RMS = XC − Xestk k < β: ð7Þ

In equation (7), if for specific XC the above condition
satisfies, then it is shortlisted and Xest is associated with the
XC candidate by assigning a tag number, which helps to
count the number and increment the index number of XC
and forwarded to step 6.

Yes

No
Discard

Discard

Yes

No

List of targets

Target 1

Target 2

Target M

Step 5

Step 6

Step 4

Step 2: inputStep 1: Input

Step 3

Averaging
for each
Xest

Define the sensors
position: SN (xN,yN)

Measurements received
at each sensor SN from

target UM

Generate
combinations = MN

Obtain possible
candidates

Ck

Unknown targets:
UM(xM ,yM)

Create grid of
measurement for

each sensor SN

Measurement of
candidates Ck

Measurement
likelihood

at all sensors SN for
each candidate Ck

if
ML(SN) > 0.5

for each
Ck

Short list
measurements obtained

by ML

Estimate Xest position
for each

shortlisted measurement
using WLS

Estimate XC position
for each candidate
Ck measurements

using WLS

Shortlist Xest for
the nearest XC

IF
RMS = ||XC - Xest|| < 200 m

for each XC and for Xest

Remove all
duplicates of Xest

Figure 4: Flow diagram of proposed algorithm for multitarget localization and tracking.
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3.1.6. Sixth Step. Shortlisted results can have duplicate mea-
surements that produce the same result. These duplicate
measurements are removed, which improves the computa-
tion and takes an average of all the shortlisted results associ-
ated with XC, and the process is repeated according to the
number of targets localized.

T j =
1
L
〠
L

i=1
Xi
est j : ð8Þ

T j is the jth target localized, L is the count of shortlisted

associated measurements, and Xi
est j is the shortlisted mea-

surements associated with a jth target.

3.2. Algorithm Procedure. The algorithm steps are explained
in the last section, and its procedure is explained in Table 3.
The proposed algorithm reduces the computation to localize
and track the multiple targets and also reduces the complex-
ity as compared to the existing work whereas the result pro-
duced using the proposed algorithm is effective and efficient
as shown in the simulation section.

4. Simulations

The flowchart of the proposed localization and tracking
scenario with details is described in Figure 4. To better
understand the algorithm, simulation is performed in
MATLAB to explain the methodology and compare it with
existing methods. For simulation, three sensors and six tar-
gets were considered in 2-dimensional space. We consider
two targets and repeat this step for three to six targets. The
surveillance region is defined to be 350 km by 350 km con-
sidering far-field targets. Tables 4 and 5 show the positions
and velocities of the sensors and targets, respectively, where
the sensors are considered to be static, and both targets are
moving with constant speed.

The three sensors and two targets can generate a maxi-
mum of eight candidates that can be the potential targets.
Using equation (3), it is explained in Figure 5 with the green
points:

k =MN = 23 = 8, ð9Þ

as k is the number of possible candidates. So, at this point,
eight measurements are received by all the sensors and grids
of the surveillance region are created and the further likeli-
hood of the measurement is calculated.

The computation increases as the value increases which
depends on the number of targets and sensors. Figure 6
shows the curves for all the individual likelihood without
any condition of threshold comparison. In Figure 6, the blue
box represents the reference sensor. The past algorithm used
the grid with different dimensions of the parameter, whereas
our algorithm can localize using only a single dimension of
parameter measurement. A multidimensional parameter
grid can produce more accurate results as it has more infor-
mation to process, next. Figure 7 shows the result of the
localized target areas in the surveillance region. The localized

areas can have an additional area other than the actual target
due to the measurement noise in the received measurements.

Figure 8 shows the results of the maximum likelihood of
the measurements in red, these are the shortlisted measure-
ments, and the rest of the measurements which do not sat-
isfy the condition are discarded. Furthermore, the accuracy
of the localization for the unknown targets depends on the
thresholds, which are adjusted by performing multiple runs
and compare the results to get more accuracy. β is set to
200 meters, and ξ is equal to 0.5. Both can be varied depend-
ing on the results and monitoring environment.

Figure 9 shows the localization of two targets, and
Figure 10 is the zoomed plots, in which the algorithm is

Table 5: Multitarget algorithm—target positions and velocity.

Target
Position Velocity

X (km) Y (km) _X (m/s) _Y (m/s)

Target 1 300 190 -20 -15

Target 2 200 300 -20 -15

Target 3 250 150 -20 -15

Target 4 300 300 -20 -15

Target 5 300 50 -20 -15

Target 6 250 250 -20 -15
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Figure 5: Candidate positions for two targets.

Table 4: Multitarget algorithm—sensor positions and velocity.

Sensors
Position Velocity

X (km) Y (km) _X (m/s) _Y (m/s)

Sensor 1 75 200 0 0

Sensor 2 50 25 0 0

Sensor 3 112 100 0 0
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not only able to localize the targets but also can rectify the
ghost created in the maximum likelihood process.

If the sensors are not moving, the measurement grid will
not be regenerated. On the other hand, if sensors are in
motion, the sensor’s measurement grid has to regenerate
continuously to estimate the high position accuracy of the
targets. The increase in the received measurements indicates
an increased number of targets, which causes an increase in
the possible candidates also. Figure 11 shows the localization
of three targets with a different number of possible candi-
dates in each plot, and Figure 12 shows the localization of
five targets. Once the locations are localized, the proposed
algorithm can be used in a simulation to track the targets
which are successfully tested using two targets.

If the sensors are not moving, the measurement grid
will not be regenerated. On the other hand, if sensors
are in motion, the sensor’s measurement grid has to
regenerate continuously to estimate the high position
accuracy of the targets. The increase in the received mea-
surements indicates an increased number of targets, which
causes an increase in the possible candidates also.
Figure 11 shows the localization of three targets with a dif-
ferent number of possible candidates in each plot, and
Figure 12 shows the localization of five targets. Once the
locations are localized, the proposed algorithm can be used
in a simulation to track the targets which are successfully
tested using two targets.
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Figure 9: Two localized targets (dense black) with candidates
(green).
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Once the algorithm runs and localizes the targets, the
procedure is repeated for newly received measurements
on different sensors and localize the targets again and keep
track of old and new shortlisted measurements which pro-
vides the complete track of targets. Figures 13 and 14
show the results in which their updated positions are
tracked using maximum likelihood, where Figure 13 shows
the scenario of intersecting two targets and Figure 14
shows the simple scenario of two targets moving in the
straight path.

The proposed algorithm does not have any window
size, as it gives a different approach to solve the multitar-
get localization problem. To compare the proposed algo-
rithm’s performance to other algorithms, i.e., multipass

grid search and directed subspace search, we consider the
results from [26] and calculate the mean runtime of the
simulation of the single estimate for window size Nw from
5 to 10. The results show in Figure 15 [26] that the
proposed algorithm (red curve) performed better than
multipass grid search overall but for directed subspace
search, the proposed algorithm results better after Nw = 8.
Directed subspace is ineffective due to a search in a specific
area. Further, in Table 6, the simulation shows that the run-
time of the proposed algorithm increased very slightly and
gradually.

In a single scan, this algorithm as compared to other
existing work can localize and track the unknown number
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Figure 13: Tracking of two moving targets intersecting at a point.
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Figure 12: Localization using the algorithm for five targets.
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of targets without repeated steps for convergence or biolog-
ical evolution. Hence, the proposed algorithm is effective
and simple to implement as compared to the existing work
which reduces the computation.

5. Concluding Remarks

This research proposed an algorithm based on TDOA/
FDOA and optimization of the shortlisted measurement.
This proposed technique provides localization and tracking
of multitargets using the maximum likelihood of the mea-
surement and further addresses the data association problem
of the received measurements and targets.

This algorithm can localize the unknown number of tar-
gets having the complexity of multiple sensors with multiple
grids. The proposed algorithm reduces complexity as it does
not use repeated steps for convergence and any biological
evolutions. A single scan computes the likelihood for all sen-
sors using only one parameter grid and passes the results for
multitarget estimation.

It also reduces the localization of the ghost target by
eliminating the data fusion issue. Therefore, this method will
be the best-suited candidate when considering the combina-
tions of the measurements from different sensors. In the
future, an improvement can be made in the algorithm by
considering multiparameter approach and including the
maximum likelihood of those measurements to increase
the position accuracy. Also, this algorithm can work in
meters for considerably distant fields. Other optimization
models can be combined to authenticate the algorithm’s
efficiency and effectiveness.
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