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In this paper, a sparse array design problem for non-Gaussian signal direction of arrival (DOA) estimation is investigated.
Compared with conventional second-order cumulant- (SOC-) based methods, fourth-order cumulant- (FOC-) based methods
achieve improved DOA estimation performance by utilizing all information from received non-Gaussian sources. Considering
the virtual sensor location of vectorized FOC-based methods can be calculated from the second order difference coarray of sum
coarray (2-DCSC) of physical sensors, it is important to devise a sparse array design principle to obtain extended degree of
freedom (DOF). Based on the properties of unfolded coprime linear array (UCLA), we formulate the sparse array design
problem as a global postage-stamp problem (GPSP) and then present an array design method from GPSP perspective.
Specifically, for vectorized FOC-based methods, we divide the process of obtaining physical sensor location into two steps; the
first step is to obtain the two consecutive second order sum coarrays (2-SC), which can be modeled as GPSP, and the solutions
to GPSP can also be utilized to determine the physical sensor location sets without interelement spacing coefficients. The second
step is to adjust the physical sensor sets by multiplying the appropriate coprime coefficients, which is determined by the
structure of UCLA. In addition, the 2-DCSC can be calculated from physical sensors directly, and the properties of UCLA are
given to confirm the degree of freedom (DOF) of the proposed geometry. Simulation results validate the effectiveness and
superiority of the proposed array geometry.

1. Introduction

In array signal processing, direction of arrival (DOA) estima-
tion has drawn considerable attention, which has been widely
applied in various fields, such as communication, radar, and
navigation [1, 2]. To obtain improved DOA estimation per-
formance, the sparse arrays with reduced mutual coupling
and enhanced degree of freedom (DOF) have been proposed,
whose adjacent sensor spacing is no longer limited to half
wavelength, as compared with uniform linear array (ULA).
Minimum redundancy array (MRA) [3], minimum holes
array (MHA) [4], coprime array (CA) [5], and nested array
(NA) [6] have been proposed, which are designed based on
the second-order cumulant (SOC) for Gaussian signals.
Besides, these arrays utilize second order difference coarray

(2-DC) or second order difference coarray of sum coarray
(2-DCSC) generated by vectorization operation to obtain
virtual sensors, which can be used to construct virtual non-
uniform linear array (NLA) or ULA. Once the equivalent
received signal of the virtual array is constructed, the DOA
estimates can be obtained by compressed sensing (CS) [7],
discrete Fourier transform (DFT) algorithm [8], and other
algorithms. Nevertheless, there still exist some drawbacks
for these sparse arrays. Specifically, there is no closed-form
expression of physical sensor positions for the MRA and
MHA. The CA structures generate holes in the difference
coarray which decreases the consecutive DOF, and the NA
structures suffer from severe mutual coupling due to the
dense part. In order to tackle these issues, some sparse arrays
with enhanced DOA estimation performance based on NA
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or CA have been proposed, such as augmented NA (ANA)
[9], the generalized CA with displaced subarrays (CADiS)
[10], unfolded coprime linear array (UCLA) [11, 12], and
augmented CA (ACA) [13].

It is noteworthy that all aforementioned sparse arrays
mentioned above are all designed based on SOC, which is
available for Gaussian signals. In practice, most sources are
non-Gaussian, and fourth-order cumulant (FOC) matrix is
exploited instead of SOC to calculate correlation matrix
[14, 15]. In particular, the FOC-based methods employ sec-
ond order difference coarray of sum coarray (2-DCSC) to
obtain virtual sensors with vectorization operation [16, 17].
As the 2-DC and second order sum coarray (2-SC) are uti-
lized successively, it is complicated to obtain the location
relationship between physical sensors and 2-DCSC. In [17],
Fu et al. employed virtual nested multiple-input multiple-
output (MIMO) array [18], which utilized fourth order
difference coarray of sum coarray (4-DCSC), termed as
NA-MIMO-DCSC. The authors optimized the process of
obtaining 4-DCSC separately, i.e., fourth order sum coarray
(4-SC) and 2-DC, which further improved DOF greatly when
FOC was employed in MIMO systems. Unfortunately, lim-
ited to the properties of NA, the virtual sensors still suffered
from a lot of redundancy in the steps of optimizing 2-DC.
More importantly, the design principle of NA-MIMO-
DCSC neglected the discussion of cross-sum coarray gener-
ated in the process of obtaining 4-SC.

In this paper, we propose a sparse array design method
for non-Gaussian signal from the perspective of global
postage-stamp problem (GPSP) [19, 20]. To further illus-
trate this method, the two steps of obtaining sparse array
geometry based on the structure of UCLA are described.
Specifically, the first step is to get the longest possible two
2-SC from given sensor number of each subarray, which
can be modeled as a GPSP. The solution to GPSP can also
be used to obtain initial physical sensor location sets with
half-wavelength interelement spacing. Subsequently, the
second step is to adjust the physical sensor location sets
by multiplying the appropriate coefficients, which can be
determined based on the structure of UCLA. To verify the
priority of the proposed array geometry, the properties of
UCLA about DOF and consecutive virtual sensors are also
provided. Furthermore, the expression between the DOF of
proposed geometry and physical sensors is presented, and
the relationship between 2-SC and cross-sum coarray is also
analyzed in Section 4.1.

In particular, the contributions of this paper are summa-
rized as follows:

(1) We investigate the array design problem of sparse
array with non-Gaussian signals and tackle this prob-
lem by obtaining the longest possible virtual 2-SC
and exploiting the properties of UCLA

(2) We formulate the obtaining longest possible 2-SC
problem as a GPSP and give a simple solution to
the GPSP, which can be used to determine the loca-
tion sets. Furthermore, we provide the closed-form
expression of maximumDOF and consecutive virtual

sensors of UCLA with 2-DC, which is used to analyze
the DOF of proposed array geometry

(3) We devise a sparse design principle which divides the
process of obtaining sparse array location into two
steps, i.e., obtaining the 2-SC from the given number
of subarray and determining the location of physical
sensors with multiplication operation

We outline this paper as follows. In Section 2, we present
the sparse array model and mutual coupling effect; besides,
the properties of UCLA are also investigated. Section 3 elab-
orates the GPSP and proposed array geometry with enhanced
DOF. Section 4 gives the performance analysis. Section 5 pro-
vides simulation results, and the conclusions are drawn in
Section 6.

Notations. Vectors and matrices are represented by utiliz-
ing bold low-case and bold-case characters, respectively. ⊗ is
Kronecker product, and ⊙ denotes Khatri-Rao product. ð⋅ÞT ,
ð⋅ÞH , ð⋅Þ−1, and ð⋅Þ∗ stand for the transpose, conjugate trans-
pose, inverse, and complex conjugation of a vector or matrix,
respectively. vecð⋅Þ denotes the vectorization operation. diag
ð⋅Þ is the diagonal matrix operator, and k⋅kF means the
Frobenius norm.

2. Preliminaries

In this section, we first present the definitions of 2-DC, 2-SC,
and 2-DCSC. Subsequently, considering that the 2-SC of
proposed array geometry is constructed based on the UCLA,
we exploit the properties of UCLA in terms of DOF and con-
secutive lag location. Finally, we provide the sparse array
model without mutual coupling and with mutual coupling,
respectively.

2.1. 2-DC, 2-SC, and 2-DCSC. For a linear array with L
physical sensors, whose location set can be denoted as S =
fd1,⋯di,⋯,dLg, where di, 1 ≤ i ≤ L represents the location
of i-th sensor.

Definition 1 (2-DC). The second order difference coarray
location D can be defined as [6]

D =D+ ∪D− = di − dj, di, dj ∈ S
� �

, ð1Þ

where D+ and D− represent the positive and negative ele-
ments of D, respectively.

Definition 2 (2-SC). The second order sum coarray location
Ss can be defined as [17]

Ss = di + dj, di, dj ∈ S
� �

: ð2Þ

Definition 3 (2-DCSC). The second order difference coarray
of sum coarray location Ddcsc can be defined as

Ddcsc = di − dj, di, dj ∈D
� �

= di1 + dj2
� �

− dj1 + di2
� �

, di1, di2, dj1, dj2 ∈ S
� �

,
ð3Þ
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where S andD represent the physical sensors and 2-DC loca-
tion sets, respectively.

2.2. The Properties of UCLA. Figure 1 shows the configura-
tion of UCLA, which is composed of two sparse uniform sub-
arrays that overlap at the origin. The sensor position of
UCLA can be represented as [11, 12]

SUCLA = −mNd 0 ≤m ≤M − 1jf g ∪ nMd 0 ≤ n ≤N − 1jf g,
ð4Þ

where M and N represent the physical sensors of subarray 1
and subarray 2, respectively. d = λ/2, and λ is the wavelength.

According to Definition 1, the 2-DC of UCLA can be
denoted as DUCLA, and DUCLA =D+

UCLA ∪D‐
UCLA. In addition,

the properties of UCLA are derived in the Lemma 4.

Lemma 4. The following properties hold for UCLA:

(a) There are MN distinct lags in set D+
UCLA or D‐

UCLA

(b) D+
UCLA contains the consecutive lags with element

spacing d = λ/2 in the range of ½ðM − 1ÞðN − 1Þd,
MNd − d�

Proof. See the Appendix A.
As described in Lemma 4, the DOF of UCLA can be

given by

DOFUCLA = 2MN − 1: ð5Þ

2.3. Sparse Array Model without Mutual Coupling. Assume
that there are K far-field narrowband uncorrelated non-
Gaussian signals impinging on a nonuniform linear array
with DOAs ðθk, k = 1, 2,⋯, KÞ, where θk denotes the eleva-
tion angle of the k -th target. The location set of nonuni-
form linear array with L physical sensors can be denoted
as S = fd1, d2,⋯,dLg; then, the received signal xðtÞ can
be expressed as [21].

x tð Þ =As tð Þ + n tð Þ, ð6Þ

where AðθÞ = ½aðθ1Þ, aðθ2Þ,⋯,aðθKÞ� ∈ℂL×K represents the
steering matrix, and aðθkÞ = ½e−j2πd1 sin ðθkÞ/λ, e−j2πd2 sin ðθkÞ/λ,
⋯,e−j2πdL sin ðθkÞ/λ�T ∈ℂL×1 is the steering vector, λ denotes
wavelength. sðtÞ = ½s1ðtÞ, s2ðtÞ,⋯,sKðtÞ�T ∈ℂK×1, 1 ≤ t ≤ J de-
otes the non-Gaussian signals matrix with mean zero, where
J represents the total number of snapshots and nðtÞ ∈ℂL×1 is
the additive Gaussian noise with variance σ2n and mean zero.

The FOC matrix of the received signal xðtÞ can be calcu-
lated by [14, 15]

C4,x = 〠
K

k=1
c4,sk a θkð Þ ⊗ a∗ θkð Þ½ � a θkð Þ ⊗ a∗ θkð Þ½ �H

= 〠
K

k=1
c4,ska4,x θkð ÞaH4,x θkð Þ,

ð7Þ

where

a4,x θkð Þ = a θkð Þ ⊗ a∗ θkð Þ, 1 ≤ k ≤ K , ð8Þ

whose elements can be constructed by aðθkÞ with the specific
form e−jπðdi−d jÞ sin θk , di, dj ∈ S. c4,sk = CumðskðtÞ, skðtÞ, s∗k ðtÞ,
s∗k ðtÞÞ denotes the FOC of sKðtÞ, where Cumð⋅Þ is the cumu-
lant operator.

To obtain the equivalent received signal from the virtual
array, we vectorize C4,x as [17, 22]

z = vec C4,xð Þ =Avec θð Þp, ð9Þ

where

Avec θð Þ = a∗4,x θ1ð Þ ⊗ a4,x θ1ð Þ, a∗4,x θ2ð Þ�
⊗ a4,x θ2ð Þ,⋯,a∗4,x θKð Þ ⊗ a4,x θKð Þ�

= avec θ1ð Þ, avec θ2ð Þ,⋯,avec θKð Þ½ �,
ð10Þ

whose elements are constructed by a4,xðθkÞ with the spe-

cific form e−jπðdi−djÞ sin θk , di, dj ∈D, and p = ½σ2
1, σ22,⋯,σ2

K �T ,
σ2
kðk = 1, 2,⋯,KÞ denotes the power of k-th source.

2.4. Sparse Array Model with Mutual Coupling. In practice,
each sensor will inevitably be affected by the radiation of
from its adjacent sensors, and consequently, the received sig-
nal should be modified in the presence of mutual coupling.
That means the mutual coupling effect must be taken into
consideration. Specifically, the signal model in (6) can be
refined as

~x tð Þ =CAs tð Þ + n tð Þ, ð11Þ

where C represents the mutual coupling matrix. By utilizing
the B-band model in [23], the elements in the mutual cou-
pling matrix can be represented by

Ci,j =
0 di − dj

�� �� > B

c di−d jj j di − dj

�� �� ≤ B

8<: ,

1 = c0 > c1j j >⋯ > cBj j > cB+1j j = 0,

ð12Þ

where di, dj ∈ S and c1 = 0:3ejπ/3, cl = c1e
−jðl−1Þπ/8/l, l ∈ ½2, B�,

B = 100 represents the maximum spacing between the

Subarray 1

Subarray 2Md

Nd

–2 –1–(M–1)

N–1210

0

Figure 1: Unfolded coprime linear array.
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coupled sensor pairs [23]. In order to measure the strength of
the mutual coupling effect, the coupling leakage is introduced
and is defined as

L Mð Þ = C − diag Cf gk kF
Ck kF

: ð13Þ

Based on the mutual coupling model in (12), the equiva-
lent signal model in (9) can be reconstructed as

~z =CvecAvecp, ð14Þ

where Cvec = ðC ⊗C∗Þ∗ ⊗ ðC ⊗ C∗Þ.

3. Sparse Array Design Principle

Motivated by the advantages of the sparse arrays over the
uniform arrays, several sparse array configurations as well
as design methods have been proposed. Unfortunately, most
existing array design methods generate the difference coarray
based on the SOC while the FOC with great potentiality in
improving array performance is neglected. In this part, we
devise a sparse array principle based on 2-DCSC employed
by vectorized FOC-based method.

In fact, because 2-DCSC performs twice 2-DC operations
on physical sensors, which can also be converted into 2-SC
and 2-DC operations, successively, as described in (3). The
relationship between virtual sensors and physical sensors is
complicated; it is difficult to obtain the closed-form expres-
sion of physical location with large DOF. We optimize the
process of obtaining the location of physical sensor location
into two steps, i.e., obtaining longest possible 2-SC of each
subarray, constructing physical sensor location set based on
the structure of UCLA. Specifically, the first step can be mod-
eled as GPSP, whose solution can be used to determine the
physical sensor set lacking interelement spacing coefficients.
The second step employs the structure of UCLA to adjust
the self-sum coarray set obtained by the first step, which
can also be used to determine the spacing of physical sensors.
As a result, the physical sensor location set can be obtained.
According to (3), the 2-DCSC can be calculated from physi-
cal sensor set directly.

3.1. Global Postage-Stamp Problem (GPSP). The GPSP is a
well-known combination problem that has not yet been fully
solved, which can be described as follows: for given positive
integers h and k, a set with k nonnegative integers is deter-
mined by

Sk = 0 = a1<⋯<akf g: ð15Þ

Remark 5. The elements in Sk need to be summed h times to
realize the consecutive numbers 0, 1, 2,⋯, nhðSkÞ. Besides,
the value of nhðSkÞ should be as large as possible.

The solution to the GPSP has been investigated in [19,
20]. Herein, we also give a simple method to solve GPSP. Spe-
cifically, h can be considered as the maximum number of
stamps on an envelope; Sk is the set of stamp denominations
with k non-negative value. Then, the computational com-
plexity of obtaining all possible combinations is OðkhÞ. An
example is given to illustrate the solution method to GPSP
explicitly. When Sk = f1, 3g, in this case, 1 and 2 stamps
are required to obtain postages 1 and 2, respectively. For
postage 3, there are two combinations, i.e., one stamp with
postage 3 or three stamps with postage 1. According to
Remark 5, because of the existence of postage 0, the number
of stamps currently required should be as small as possible.
Besides, it can be concluded that the minimum k can be
obtained by comparing all the postage combinations. The
process of this method is summarized in Algorithm 1, where
h = 2. It is noteworthy that Sk is treated as prior information
to obtain nhðSkÞ. When Sk is unknown, its (i + 1)-th element
should satisfy

ai+1 ∈ ai + 1, ai × h + 1½ �, ð16Þ

where ai represents i-th element of Sk, 1 ≤ i ≤ k. Then, all
elements of can be obtained by enumerating all the values
of ai. The result of Algorithm 1 is listed in Table 1, which is
also provided in [20].

3.2. Sparse Array Design Based on UCLA. The design
methods for sparse arrays based on SOC only utilize 2-DC
or 2-SC once, which can be extended to FOC-based array
directly by adding 2-DC calculation. But this approach
neglects the specifical output of first operation, resulting in
a large amount of redundancy, and the DOF loss is inevitable.

Input: stamps value set Sk , number of stamps types k, sum times h = 2
Output: Maximum consecutive postage nhðSkÞ
1: initialize: dp½0� = 0, i = 0
2: while dp½i� < h do
3: i + +, dp½i� = i, j = 0
4: while j < k&Sk½j� ≤ i do
5: if dp½i − Sk½j�� + 1 < dp½i� then
6: dp½i� = dp½i − Sk½j�� + 1, j + +7: end if
8: end while
9: end while
10: return i − 1ðnhðSkÞÞ

Algorithm 1: The algorithm of solving the GPSP with known Sk.
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Suppose that the physical sensors are composed of multiple
linear subarrays, and the number of elements in each subar-
ray has been given.

Without loss of generality, assume that the physical sen-
sors are composed of two subarrays withM and N elements,
respectively. As illustrated in Section 3, to obtain the longest
possible 2-SC of each subarray, the integer sets SM and SN
are solved from GPSP in (15) with k =M,N , h = 2, which
can be used to determine the largest possible lags n2ðSMÞ
and n2ðSNÞ. It is noteworthy that the sets SM and SN can
be considered as the initial physical location sets without
coefficients. Based on Remark 5, if all elements of SM are neg-
ative, the consecutive integer set obtained from M is

−n2 SMð Þ,⋯,−2,−1, 0f g, ð17Þ

where SM represents a set withM elements and n2ðSMÞ is the
largest possible integer mentioned in Remark 5. Similarly, the
consecutive positive integer set obtained from N is

0, 1, 2,⋯,n2 SNð Þf g: ð18Þ

Based on the structure of UCLA, we multiply all the ele-
ments in (17) and (18) by certain coefficients d1 and d2,
respectively; then, the new sets can be constructed as the
two cosubarrays of UCLA. Specifically, the cosubarray 1 of
UCLA location set associated with (17) can be expressed as

SsM = −n2 SMð Þd1,⋯,−2d1, d1, 0f g, ð19Þ

where d1 = ðn2ðSNÞ + 1Þd is the interelement spacing of
cosubarray 1; d = λ/2, and λ is wavelength. The cosubarray
2 location set associated with (18) can be expressed as

SsN = 0, d2, 2d2,⋯,n2 SNð Þd2f g, ð20Þ

where d2 = ðn2ðSMÞ + 1Þd is the interelement spacing of
cosubarray 2. Note that d1 and d2 should be set as coprime
integers.

Finally, we calculate the location set of physical sensors
according to the correspondence between the physical array
S and coarrays Ssc. The coarrays Ssc = SsM ∪ SsN determined
by (19) and (20) can be considered as the 2-SC result of each
subarray or the self-sum coarray of S. Considering that the
2-SC of SM and SN have been multiplied by d1 or d2, then
the physical sensor location S can be determined by multi-
plication operation,

S = d1SM ∪ d2SN : ð21Þ

Based on the discussion described above, we give an
example of the proposed geometry shown in Figure 2 to
verify. For given element number in two subarrays with
M = 5,N = 4, firstly, the initial consecutive integer sets
SM = f−6,−5,−3,−1, 0g, SN = f0, 1, 3, 4g, and the largest pos-
sible values n2ðSMÞ = 12, n2ðSNÞ = 8 can be obtained by the
solution to GPSP, which have been listed in Table 1. Subse-
quently, the cosubarrays spacing d1 = 9d, d2 = 13d can be
obtained by the specifical structure of UCLA. The two 2-
SC cosubarray locations can be expressed as SsM = 9d ×
f−12,⋯,−1, 0g, SsN = 13d × f0, 1,⋯,8g. Consequently, the
physical sensor location set is represented by S = 9d ×
f−6,−5,−3,−1, 0g ∪ 13d × f0, 1, 3, 4g.
3.3. The Design Procedure of the Proposed Array Structure.
We summarize the detailed steps for implementation of
obtaining the proposed array geometry as follows:

(1) Based on Table 1, the integer sets SM and SN and the
longest possible consecutive numbers n2ðSMÞ and
n2ðSNÞ can be determined by the solution to GPSP
from given number of sensors M and N

(2) Obtain the location sets of two 2-SC SsM and SsN

(3) Determine the physical sensor set S by performing
multiplication operation on SM and SN

4. Performance Analysis

In this part, we evaluate the performance of the proposed
array geometry compared to other arrays from the view-
points of achievable DOF, mutual coupling, redundancy
ratio, and Cramer-Rao Bound.

4.1. Achievable DOF. We analyze the achievable DOF of the
proposed array geometry. Considering that the SsM and
SsN can be associated with the cosubarrays of UCLA Ssc,
then according to Lemma 4, the DOF for the 2-DC of Ssc
is 2ðn2ðSNÞ + 1Þðn2ðSMÞ + 1Þ − 1. Based on Definition 1,

Table 1: Result of Algorithm 1.

k n2 Skð Þ Sk

4 8 0 1 3 4

5 12 0 1 3 5 6

6 16 0 1 3 5 7 8

7 20 0 1 2 5 8 9 10

7 20 0 1 3 4 8 9 11

7 20 0 1 3 4 9 11 16

7 20 0 1 3 5 6 13 14

7 20 0 1 3 5 7 9 10

8 26 0 1 2 5 8 11 12 13

8 26 0 1 3 4 9 10 12 13

8 26 0 1 3 5 7 8 17 18

9 32 0 1 2 5 8 11 14 15 16

9 32 0 1 3 5 7 9 10 21 22

10 40 0 1 3 4 9 11 16 17 19 20

11 46 0 1 2 3 7 11 15 19 21 22 24

11 46 0 1 2 5 7 11 15 19 21 22 24

12 54 0 1 2 3 7 11 15 19 23 25 26 28

12 54 0 1 2 5 7 11 15 19 23 25 26 28

12 54 0 1 3 4 9 11 16 18 23 24 26 27

12 54 0 1 3 5 6 13 14 21 22 24 26 27

13 64 0 1 3 4 9 11 16 21 23 28 29 31 32

5Wireless Communications and Mobile Computing



the position of 2-DC is symmetric about the origin. To illus-
trate this, we present the nonnegative part of the 2-DC of Ssc,
as shown in the upper part of Figure 3. Besides, the DOF of
NA-MIMO-DCSC has been given in [17], which can be
expressed as

DOFNA‐MIMO‐DCSC = 2n2 SMð Þ n2 SNð Þ + 1ð Þ + 1, ð22Þ

where DOFNA‐MIMO‐DCSC represents the DOF of array NA-
MIMO-DCSC. As for the proposed array geometry, we can
obtain the following relationship

DOFproposed ≥ 2 n2 SNð Þ + 1ð Þ n2 SMð Þ + 1ð Þ − 1, ð23Þ

where DOFproposed represents the DOF of the proposed array
geometry.

As expounded in the appendix, the 2-DC can be decom-
posed into self-difference coarray and cross-difference
coarray; similarly, the 2-SC can also be decomposed into
self-sum coarray and cross-sum coarray. For the proposed
geometry, the processes of obtaining two 2-SC of the two
subarrays are separated, where only self-sum coarray is
utilized while the cross-sum coarray is neglected, i.e., all ele-
ments in Ssc are included in the 2-SC of S. Thus, the 2-DCSC
of S contains all elements in the 2-DC of Ssc. Consequently,
equation (23) is established. The nonnegative part of 2-DCSC
of the proposed geometry is also given in the bottom part of
Figure 3 to verify analysis mentioned above.

However, the DOF of proposed geometry only has lower
bound without closed-form expression, because the location
of cross-sum coarray of the 2-SC is not available. Interest-
ingly, for NA-MIMO-DCSC, the 2-DCSC and the 2-DC of
Ssc exactly coincide.

According to (22) and (23), we have

DOFproposed‐DOFNA‐MIMO‐DCSC ≥ 2n2 SNð Þ: ð24Þ

It can be concluded that the proposed array geometry can
offer larger DOF than NA-MIMO-DCSC, which is also
verified in Figure 4 below.

Definition 6 (redundancy ratio). For a physical array with
total number of virtual sensors T obtained from difference
coarray and the achievable DOF is given by DOFp, we define
the redundancy ratios as

η = 1 −
DOFp
T

: ð25Þ

For a linear array with L physical sensors, in general, the
number of virtual sensors is T = L2 when the correlation
matrix is calculated by SOC-based method, and when FOC-
based method is exploited, T = L4. Redundancy ratio can be
considered as an important indicator which reflects the
efficiency of virtual sensors.

4.2. Cramer-Rao Bound. The Cramer-Rao Bound (CRB) can
be obtained from the inverse of the Fisher information
matrix (FIM). According to [24, 25], we give the FIM for
the signal model in (9) via vectorization-based methods as

FIM = J
∂z
∂β

	 
H
CT
4,x ⊗C4,x

� �−1 ∂z
∂β , ð26Þ

where J denotes the number of snapshots, z = vecðC4,xÞ and
C4,x can be obtained by (7). β = ½θ1,⋯, θK , σ2

1,⋯,σ2K �T , σ21,
⋯, σ2

K , represent the power of non-Gaussian signals.

0 10 20 30 40 50 60 70 80 90 100

Co-array
Hole

Upper
Bottom

Figure 3: Comparison of the 2-DC of Ssc and 2-DCSC of S.

Subarray 1

Subarray 2

SM(n2(SN)+1)d

SN(n2(SM)+1)d
–5–6 –3 –1 0

9d

13d
1 3 4

(a)

Co-subarray 1SSM

Co-subarray 2SSN

–12 –11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0

9d

13d
1 2 3 4 5 6 7 8

(b)

Figure 2: (a) Physical sensors location S; (b) sum coarray Ssc = SsM ∪ SsN .
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Figure 4: The 2-SC, 2-DCSC, and DOF comparison of different arrays and their CS spectrum with mutual coupling.
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Consequently, the CRB of the DOA estimation with the
proposed geometry via vectorization operation can be
expressed as

CRB θkð Þ = FIM−1 θð Þ� �
k,kð Þ, θ = θ1,⋯, θK½ �, 1 ≤ k ≤ K: ð27Þ

5. Simulation Results

In this section, 500 Monte-Carlo simulations via CS algo-
rithm are employed to validate the superiority of the pro-
posed array geometry in the presence of mutual coupling.
Define the root mean square error (RMSE) as

RMSE = 1
K
〠
K

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
500〠

500

i=1
θ∧k,i − θkð Þ2

s
, ð28Þ

where θk denotes the true elevation of the k-th target and bθk,i
is the estimated value of θk in the i-th ði = 1,⋯, 500Þ Monte
Carlo simulation. K is the total number of the incident sig-
nals which are uncorrelated far-field non-Gaussian. Besides,
the searching interval of CS algorithm is Δ = 0:01∘, and
the coefficients of mutual coupling are set as shown in
Section 2.4.

5.1. RMSE Performance Comparison of Different Sparse
Arrays versus SNR. In this part, we compare the RMSE per-
formance of the different sparse arrays involved in Figure 4,
including the CA [5], NA [6], ACA [13], unfolded ACA,
UCLA [11], ANAI-1 [9], ANAI-2 [9], MRA [3], proposed
geometry, and NA-MIMO-DCSC [17]. Besides, the location
sets of physical sensors in the above arrays with 8 sensors
are also given in Figure 4. Figures 5 and 6 depict the DOA
estimation performance and CRB performance comparison
of different arrays versus SNR, respectively, where J = 1300
and θ = ½−40∘,−30∘,−20∘,−10∘, 0∘, 10∘, 20∘, 30∘, 40∘�.

As shown in Figures 5 and 6, it is observed that the DOA
estimation performance of all arrays improves with the
increase of SNR, and in particular, the proposed array geom-
etry outperforms the other sparse arrays. The ACA and CA
achieve the worst RMSE performance due to the reduced
DOF, and the dense part of the NA results in significantly
higher mutual coupling. The UCLA enjoys the maximum
DOF and the minimum coupling leakage among the arrays
design based on SOC, leading to better performance. The
self-sum coarray of proposed array geometry is devised to
the UCLA, which takes full advantage of the UCLA. Accord-
ing to Figure 4, the coupling leakage of the proposed geome-
try is much lower than the others, and the DOF is also
significantly higher than other arrays, especially those based
on SOC design. Due to the optimization of DOF and mutual
coupling, the proposed array geometry achieves the best
RMSE performance which is superior to CA, NA, ACA,
UACA, UCLA, ANAI-1, ANAI-2, MRA, and NA-MIMO-
DCSC.

5.2. RMSE Performance Comparison of Different Sparse
Arrays versus Snapshots. Figures 7 and 8 depict the RMSE
performance of different arrays versus snapshots, where

SNR = 0dB and θ = ½−40°,−30°,−20°,−10°, 0°, 10°, 20°, 30°,
40°�. As can be seen in Figures 7 and 8 that with the increased
number of snapshots, the CRB and DOA performance
become better due to the more accurate FOC matrix.

SNR/dB (In the absence of mutual coupling)

CRB of CA
CRB of NA
CRB of ACA

CRB of UCLA

CRB of MRA

CRB of unfolded ACA

CRB of ANAI-1
CRB of ANAI-2

CRB of proposed array
CRB of NA-MIMO-DCSC

–15 –10 –5 0 5 10

100

10–2

10–1

10–3

Figure 5: CRB performance of different arrays versus SNR.

SNR/dB (In the presence of mutual coupling)

CS for CA
CS for NA
CS for ACA
CS for unfolded ACA
CS for UCLA
CS for ANAI-1
CS for ANAI-2
CS for MRA
CS for proposed array
CS for NA-MIMO-DCSC

–10 –8 –6 –4 –2 0 2 4 6 8 10

100

10–2

10–1

10–3

Figure 6: DOA estimation performance of different arrays versus
SNR.
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It is also shown clearly in Figures 7 and 8 that the pro-
posed geometry achieves the best DOA estimation perfor-
mance among all the compared sparse arrays. The 2-DCSC

of CA, NA, ACA, UACA, UCLA, ANAI-1, ANAI-2, and
MRA are obtained from extending SOC to FOC directly,
which perform twice 2-DC on arrays manifolds succes-
sively. As a result, lots of redundancy is generated, which
means a reduction in DOF, but NA-MIMO-DCSC and
the proposed geometry are all based on the solution to
GPSP, which reduces redundancy ratio greatly, resulting
in the superior DOA estimation and CRB performance to
the other sparse arrays.

6. Conclusion

In this paper, a sparse array design method for non-Gaussian
signals DOA estimation is presented from the perspective of
GPSP, and a sparse array geometry based on UCLA is given
to illustrate. For vectorized FOC-based DOA estimation
algorithms, we divide the process of obtaining physical sen-
sor location sets into two steps. Specifically, the first step of
obtaining the longest possible 2-SC is modeled as a GPSP,
whose solutions can also be employed to determine the initial
physical location sets without spacing coefficients. Then, the
second step is to multiply the physical sensor sets by appro-
priate coefficients based on the structure of UCLA. Besides,
the properties of UCLA in terms of DOF and the location
of consecutive lags are exploited. Numerical simulations cor-
roborate the superiority of the proposed geometry in terms of
DOF, mutual coupling, CRB, and DOA estimation perfor-
mance. Considering the relationship between 2-DCSC and
physical sensors is quite complicated, the design principle
with splitting 2-DCSC into 2-SC and 2-DC will contribute
to our future work effectively.

Appendix

Proof of Lemma 4

(a) According to Definition 1, the difference coarray of
UCLA D+

UCLA is the union of self-difference coarray
set D+

sUCLA and cross-difference coarray set D+
cUCLA,

specifically

D+
sULA = ds ds =Nmdjf g ∪ ds ds =Mndjf g,

D+
cULA = dc dc =Mnd +Nmdjf g,

ðA:1Þ

where 0 ≤m ≤M − 1, 0 ≤ n ≤N − 1. Obviously,
D+

UCLA =D+
cUCLA ∪D+

sUCLA, D
+
sUCLA ⊆D+

cUCLA, i.e.,

D+
UCLA =D+

cUCLA = dc dc =Mnd +Nmdjf g: ðA:2Þ

Suppose that dc1 =Mn1d +Nm1d and dc2 =Mn2d +
Nm2d are two arbitrary elements in set D+

UCLA, where
0 ≤ n1, n2 ≤N − 1 and 0 ≤m1,m2 ≤M − 1. If dc1 =
dc2, then

M
N

= m2 −m1
n1 − n2

, ðA:3Þ

where −M <m2 −m1 <M and −N < n1 − n2 <N .
Combing that M and N are coprime integers,

400 600 800 1000 1200 1400 1600 1800

Snapshots (In the presence of mutual coupling)

CS for CA
CS for NA
CS for ACA
CS for unfolded ACA
CS for UCLA
CS for ANAI-1
CS for ANAI-2
CS for MRA
CS for proposed array
CS for NA-MIMO-DCSC

2000 2200
10–3

10–2

10–1

100

Figure 8: DOA estimation performance of different arrays versus
snapshots.
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CRB of NA-MIMO-DCSC
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Figure 7: CRB performance of different arrays versus snapshots.
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equation (A.3) cannot hold. Based on Definition 1,
the elements in D+

UCLA and D−
UCLA are opposite to

each other; thus, there are MN distinct lags in set
D+

UCLA or D−
UCLA.

(b) It is necessary to prove that there exists 0 ≤m ≤M
− 1, 0 ≤ n ≤N − 1 so that dc =Mnd +Nmd contains
all consecutive elements in the set ½ðM − 1ÞðN − 1Þd,
MNd − d�, i.e.,

M − 1ð Þ N − 1ð Þd ≤ dc =Mnd +Nmd ≤MNd − d:

ðA:4Þ

The condition 0 ≤m ≤M − 1 can be rewritten as

0 ≤Nmd ≤N M − 1ð Þd: ðA:5Þ

Considering (A.4) and (A.5) jointly, we can get the
following relationship as

N M − 1ð Þd − M − 1ð Þ N − 1ð Þd ≤Mnd ≤MNd − d,
ðA:6Þ

which can be simplified as

−M + 1
M

≤ n ≤
MN − 1

M
: ðA:7Þ

Because of the constraints ðð−M + 1Þ/MÞ < 0 and
ððMN − 1Þ/MÞ >N − 1, then the integer n must
satisfy the following condition

0 ≤ n ≤N − 1: ðA:8Þ

Combining the result of (A.8) with 0 ≤m ≤M − 1 in
(A.5), the continuity of dc is proved.
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