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An efficient and low-cost communication system has great significance in maritime communication, but it faces enormous
challenges because of high communication costs, incomplete communication infrastructure, and inefficient routing algorithms.
Delay Tolerant Vessel Networks (DTVNs), which can create low-cost communication opportunities among vessels, have
recently attracted considerable attention in the academic community. Most existing maritime ad hoc routing algorithms focus
on predicting vessels’ future contacts by mining coarse-grained social relations or spatial distribution, which has led to poor
performance. In this paper, we analyze 3-year trajectory data of 5123 fishery vessels in the China East Sea. Using entropy theory,
we observe that the trajectory of the vessel has strongly spatial-temporal distribution regularity, especially when previous states
were given. To predict accurate future trajectories, we develop a long-term accurate trajectory prediction model by improving
the Bidirectional Long-Short Term Memory (Bi-LSTM) model. Based on predicted trajectories and the confident degree of each
prediction step, we propose a series of routing algorithms called TPR-DTVN to achieve efficient communication performance.
Finally, we carry out simulation experiments with extensive real data. Compared with existing algorithms, the simulation results
show that TPR-DTVN can achieve a higher delivery ratio with lower cost and transmission delay.

1. Introduction

As the critical technology for smart ocean, a low-cost and
efficient maritime communication system plays a key role
in daily communication [1, 2]. Most maritime activities, such
as environmental monitoring, fishery operations, and knowl-
edge exchange, can be successfully implemented under the
above communication system [3, 4]. Existing maritime com-
munication systems, including satellite-based, sea-based, and
shore-based, have severe shortages in terms of high cost vol-
ume, limited network coverage, and absence of facilities [5],
which cannot meet the requirements of low cost, wider data
transmission in ocean regions [6].

With growing marine operations, the mobile vessel is
becoming extremely important in the ocean due to its storage
and communication capabilities. In the academic commu-

nity, considerable attention has been paid in the maritime
delay tolerant vessel networks (DTVN) [7–11]. The routing
algorithm of DTVN should make a correct decision on each
relay based on known or expected information to ensure an
effective data transmission. Thus, it is pivotal to get vessel
mobility trends and accurately predict future contacts
according to historical data [12, 13].

Recent works mainly focus on modeling mobile regular-
ity by setting up the default movement model and mining
social relationship [7, 8, 12, 14]. Most of the above work
achieves coarse-grained, which is not enough to describe pre-
cise mobility patterns. The future trajectory is one of the most
vital factors to build an efficient delay tolerant network sys-
tem [13]. Once given the future trajectory, it is feasible to cal-
culate expected contacts and get an optimal routing plan.
Thus, the gap between actual and predicted trajectory has
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significant effects on data delivery in DTVN, which means
that the accurate trajectory prediction model plays a vital role
in the routing process.

Vessels’ movement is free space moving due to lack of
map topology. Many factors such as fish distribution,
weather conditions, and ocean current have significant effects
on their movement [15–17], which makes traditional predic-
tion models on land not infeasible for vessel trajectory pre-
diction. For modeling vessels’ mobile regularity, some
researchers design models based on high-order Markov
chain, Bayes model, and deep learning methods [15, 16,
18]. By splitting area to nets, some machine learning models
can also be applied by transferring regression to classification
problem [19]. The methods based on long-term high-order
Markov and Bayes models can predict long-term trajectory.
However, the model has low cross-regional extendibility
based on our experimental study, which means that the
model cannot work when facing a new ocean area. Existing
deep learning-based methods all focus on short-term (less
than 20mins) trajectory prediction or vessel state estimation.
Besides, the regression results do not have proper evaluation
metrics on each prediction step, making routing algorithms
not adopt it.

To address the above problems, we design a trajectory
prediction algorithm to model the vessel’s mobile regularity
and get the long-term accurate predicted trajectory. Besides,
the routing algorithm takes the evaluation result of predicted
trajectory as a condition. Even the future trajectories are
available, the routing algorithm is essentially a global optimi-
zation problem, which is also an NP-hard problem. There-
fore, we need to properly design the routing algorithm
using predicted future trajectory and evaluation results, to
improve the routing performance.

In this paper, we propose a set of low-cost, large-scale
DTVN algorithms based on long-term predicted trajectories.
Firstly, we utilize entropy to verify the predictability of vessels
with massive actual traces data. It can be observed that the
regularity in trajectory has lower entropy with more previous
states and sailing features. Then, we design an improved Bi-
LSTM trajectory predict model with great cross-regional
extendibility to model the mobile regularity. To address the
predicted trajectory evaluation problem, we utilize the pre-
diction model’s performance on the test set to design the con-
fident degree of each predicted step calculation method.
Finally, a series of low-cost, large-scale DTVN routing algo-
rithms based on the predicted trajectory is designed.

We have made the following intellectual contributions in
this paper:

(1) It is the first work, to the best of our knowledge, to
exploit the precise mobility pattern of vessel networks
and use them for routing algorithms design in the
vessel maritime communication system

(2) We design an accurate long-term trajectory predic-
tion model based on improved Bi-LSTM to model
vessels’ mobility patterns, which achieves more than
9-hour accurate predictions. The trajectory predic-
tion model shows an excellent prediction perfor-

mance even the input sequences have never
appeared in training sets. It indicates that our model
can achieve a cross-regional trajectory prediction

(3) An advanced evaluation method on trajectory regres-
sion results is designed to solve the regression model
evaluation problem, making the predicted trajectory
fully used by our DTVN routing algorithms

(4) We propose a series of routing algorithms based on
predicted trajectory to solve the optimal routing
problem, which proves to be NP-Hard. Simulation
in extensive actual trajectory data set, including
5123 vessels in 3 years, shows that our routing algo-
rithm can achieve a higher delivery ratio than other
routing strategies with lower cost and delay

The rest of the paper is organized as follows. The system
model and problem formulation are given in Section 2. Sec-
tion 3 introduces our basic idea and challenges. The structure
of our trajectory prediction model is proposed in Section 4.
The routing algorithm based on trajectory prediction is pre-
sented in Section 5. Section 6 gives the introduction of dis-
tributed algorithms. Section 7 shows the performance of
our algorithm. Section 8 reviews related works. This paper
is concluded in Section 9.

2. System Model and Problem Formulation

In this section, we introduce the system model of DTVN.
Then, we describe the optimal target of system, expected
delivery probability, and system evaluation metrics including
system cost, delivery delay, delivery ratio, and system effi-
ciency. Finally, we prove that the system optimization prob-
lem is NP-Hard.

2.1. SystemModel.All vessels in DTVN are considered to be a
set of nodes represented by S. Node trajectory s in S is speci-
fied as a sequence of states over a period of time (t1, tn)

Ts = cs, t1, cs, t2,⋯, cs, tnf g, s ∈ S: ð1Þ

In Ts, each state cs,t has its information, including lati-
tude, longitude, speed, and direction. For nodes si and sj in
S, we use Disðsi, sjÞ to denote the distance between them
and utilize rsi, rsj to reflect their communication radius.
Therefore, si and sj can form a communication link when
Disðsi, sjÞ is smaller than min ðrsi, rsjÞ. The whole set S can
form a link set at the time t, which can be specified

Lt = si, sj
� �

si, sj ∈ S
��� �

,

Dis psi ,t , psj ,t
� �

<min rsi ,rsj

� �
:

ð2Þ

For a packet p, we use δðpÞ and ζðpÞ to denote its source
and destination. The p could be copied for transfer to the
node when they have links between them. Then, the packet
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set Pn of size n is defined as

Pn = pi δ pið Þ, ζ pið Þð Þ δ pð Þ, ζ pð Þ ∈ Sjf g,
i = 1, 2,⋯, n:

ð3Þ

We also set TTL (time-to-live) for the packet’s remaining
living time, TTLmax for the maximum living time, H for
remaining hops, and Hmax for maximum hops. Packet deliv-
ery will fail if pi does not get to its destination under the sit-
uation that TTL or H is equal to 0.

We next give the formal definitions of four system evalu-
ation metrics system cost, delivery delay, delivery ratio, and
system efficiency.

Definition 1 (system cost). System cost represents the net-
work occupation in the packet delivery process. In our sys-
tem, ϕðpÞ is defined as the number of copies generated in
the delivery process of p. Therefore, the system cost of Pn
can be given by

ϕ Pnð Þ = 〠
n

i=1
ϕ pið Þ, pi ∈ Pn: ð4Þ

Definition 2 (delivery delay). To measure the delivery time of
p from source δðpÞ to destination ζðpÞ, χðpÞ is denoted as the
delivery delay of p. tðδðpÞÞ is defined as the timestamp of p at
the source node. So tðζðpÞÞ is at the destination node. Deliv-
ery delay of p can be defined as χðpÞ = tðζðpÞÞ − tðδðpÞÞ. The
system delivery delay is the average delay of Pn, which can be
given by

x Pnð Þ = 1
n
〠
pi∈Pn

x pið Þ ð5Þ

Definition 3 (delivery ratio). Delivery ratio is defined as the
proportion of the packets successfully delivered to total
packets number n. The delivery ratio can be given as ð∣p
success∣/nÞ.

Definition 4 (system efficiency). A high-performance com-
munication system should have a high delivery ratio with
low cost and delay. Hence, we define system efficiency as
the proportion of the delivery ratio to system cost multiply-
ing delivery delay. The efficiency of Pn is defined as

Efficiency Pnð Þ = psuccessj j
nX Pnð Þ × ϕ Pnð Þ ð6Þ

2.2. Problem Formulation. The target of the system is to
deliver all packets from sources to destinations, respectively.
Our system’s objective is to maximize system expected deliv-
ery probability. Several definitions are given as follows.

Definition 5 (packet expected delivery probability). Given a
packet p with its source δðpÞ and destination ζðpÞ, the packet
expected delivery probability ϱp is the expected delivery
probability of p, which can be calculated by a function f ðÞ.

ϱp can be given by

ϱp = f δ pð Þ, ζ pð Þð Þ, δ pð Þ, ζ pð Þ ∈ S: ð7Þ

ϱp is a fixed value if all the future trajectories T can be
obtained. Additionally, it can be changed with nodes’ differ-
ent predicted future trajectories over time.

Definition 6 (system expected delivery probability). Each
packet p in Pn can get ϱp at the current time, the system
expected delivery probability would be defined as ∑p ∈ Pn ϱ
p.

The goal of our system is to maximize the system
expected delivery probability. In conclusion, the whole opti-
mal target of the system can be given by

max 〠
p∈Pn

ϱp: ð8Þ

2.3. Complexity Analysis. To address the expected delivery
probability maximization problem, the algorithm needs to
choose proper communication paths and a reasonable spec-
trum resource allocation strategy. The whole optimal prob-
lem is NP-hard due to its simplification problem. One can
reduce the optimal resource allocation problem to the
weighted maximum independent set problem (i.e., NP-hard
problem).

Note that the links within interference distance cannot
allocate the same spectrum resources, which might generate
mutual-interference. A portion of links within the network
Lt can allocate the same channel resources, constituting the
reuse set. We use fωng to represent all possible reuse sets in
Lt . Assuming that all communication paths are already
known, and all reuse sets are allocated the same amount of
subchannel resources.

For reuse set ωn, we select the links with a minimum data
rate in one path and use κn to represent the sum of these
links. Then, we let the vertex weight equal to the sum of the
reuse sets’ data rate. Edges between vertexes represent differ-
ent reuse sets that have partially repeated links (i.e., no edge
between two vertexes represents that two reuse sets are totally
different). Even knowing fκng and completed trajectory Ti
∈ S, this reduction can also be established. So, the weighted
maximum independent set problem means to find reuse sets,
which has a maximum sum data rate without repeated
links.

For any instance I of the weighted maximum indepen-
dent set problem, we can construct the instance I ∗ of the
optimal resource allocation problem by using the partition-
ing ω ∈ fωng to vertex set ν ∈ fνng in I and using κ as weight
for vertex νn. So, if different ω has partially repeated links in
I ∗, there are edges between them. The reduction can be
accomplished in polynomial time, and it can verify that a fea-
sible solution in I is a feasible solution.
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3. Basic Idea and Challenges

In this section, we first verify the basic idea and algorithm
feasibility. Also, challenges will be listed during the process
of feasibility validation.

3.1. Basic Idea. In Section 2, we formulate the target of our
algorithm. From problem formulation, we observe that the
essential problem is how to predict future contacts among ves-
sels. Obviously, if future trajectories can be reached or accu-
rately predicted, we may measure the future contacts of the
vessels in these trajectories. As a consequence, the DTVN
routing problem can be converted into a trajectory forecast
and predicted trajectory evaluation. The basic idea for our
routing algorithm can be divided into four steps. The basic
idea of our routing algorithm can be divided into four steps:

Step 1: long-term precise future trajectories should be pre-
dicted by applying a proper algorithm to massive historical
data of vessels

Step 2: to make trajectories that can be used by the routing
algorithm, predicted trajectories should be evaluated by spe-
cially designed measurement methods

Step 3: based on predicted trajectories and their evalua-
tion results, our system calculates the future contacts’
probabilities

Step 4: the routing algorithm utilizes contacts’ probabili-
ties to make a proper decision on each hop. A simple channel
arrangement method should be applied during the data
transmission process to solve the global optimal routing
problem, which has been proved to be NP-Hard

3.2. Feasibility Validation. The effectiveness of the algorithm
depends on whether the future trajectory of vessels can be pre-
dicted. To validate the predictability of the vessel’s trajectory,
we use conditional entropy, which has been commonly used
tomeasure the disorder degree of time series data. Conditional
entropy describes the disorder degree in the situation that
some previous states have been given. The data is more pre-
dictable when it has lower conditional entropy than others.

From Section 2, we know that a vessel has Ts = fcs,t1,
cs,t2,⋯, cs,tng, s ∈ S. Firstly, we need to discretize the data
in Ts. Meanwhile, we set the location into 500m × 500m
girds among the ocean and use the center coordinate to
indicate each sample’s location. Speed and direction are,
respectively, discretized by 1 km and 20°. For all the cj of
Ts, we count how many times cj occurs and denote it as
ocj, where 1 ≤ j ≤ ðLOC × SPE × DIRÞ:

(i) LOC represents the gird number

(ii) SPE represents the discretized speed number

(iii) DIR represents the discretized direction number

In terms of frequency ðocj/nÞ, we calculate the marginal
entropy HðTsÞ of Ts by equation (9)

H Tsð Þ = 〠
LOC×SPE×DIR

j=1

Ocj

n
× log2

1
Ocj

/n
: ð9Þ

Extend Ts to asequence of two-tuples Ts
1 = fðc1, c2Þ, ðc2

, c3Þ,⋯,1ðcn − 1, cnÞg, count how many times ðcα, cβÞ occurs
in Ts and denote it as oα, β, finally get joint HðTs

1, TsÞ
entropy as equation (10)

H T1
s , Ts

� �
= 〠

∀1≤α,β≤ LOC×SPE×DIRð Þ

oα,β
n − 1

× log2
1

Oα,β/ n − 1ð Þ :

ð10Þ

Then, conditional entropy HðTs
1 ∣ TsÞ of Ts

1 can be cal-
culated by equation (11)

H Ts
1 ∣ Ti

� �
=H Ts

1, Ts

� �
−H Tsð Þ: ð11Þ

Based on previous equations, we can keep calculating the
conditional entropy of Tk

i , and eventually, the conditional
entropy of Tk

i is derived as equation (12).

H Tk
s TsT

1
s ⋯ Tk−1

s

���
� �

=H Tk
s TsT

1
s ⋯ Tk−1

s

���
� �

−H Tk
s TsT

1
s ⋯ Tk−2

s

���
� �

−⋯H Tsð Þ:
ð12Þ

We use entropy theory to analyze our data set. The data
set from the Vessel Monitor System in China East Sea, which
collects fishery vessel states from May 2015 to May 2018. We
select 5123 vessels with good data integrity. System records
vessels’ sailing features including ship ID, latitude, longitude,
speed, and direction on every 3 minutes. The whole data set
has a range of 120°E to 130°E and 25°N to 35°N. Before ana-
lyzing, we sort all samples in time, remove duplicate and
abnormal samples, to avoid any negative effects. Moreover,
the local average interpolation method is applied to complete
missing samples.

Figure 1(a) shows that the vessel’s trajectory uncertainty
will decrease when more previous states are given. It illus-
trates that more historical data will help the mining mobility
pattern of vessels. We also analyze the mutual effect of condi-
tional entropy between features. We use different combina-
tions of features, including location, speed, and direction, to
measure whether the trajectory is more predictable with dif-
ferent feature combinations. Figure 1(b) illustrates that these
additional features are of great benefit to regularity mining.
To sum up, it is highly possible that vessel’s future trajectory
can be predicted by specifically mining historical data.

3.3. Challenges. For time-series data prediction, some tradi-
tional models like Bayes or Markov chain have been applied
[17, 18, 20]. Based on entropy results, a trajectory prediction
model based on the high-order Markov chain has been real-
ized. We use data from May 2015 to May 2016 to train the
state transition matrix and the rest for testing. The test results
of average continuous prediction time (ACPT) are shown in
Table 1. It is obvious that 3-order Markov model with loca-
tion, speed, and direction could only continuously predict
the trajectory for 15.4 minutes on average. The continuous
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prediction time can improve to 46.3 minutes on average, with
49.7% more distance bias when only applying the location
feature. There are 32.2% data in the test set that cannot apply
this model, because these models can only work when cur-
rent states are in the training set. A trajectory cannot be pre-
dicted when vessels change their working area, type, or time.
Moreover, the Markov model’s continuous prediction time
and availability will continue decreasing with higher-order,
limiting the usage of historical data. Therefore, traditional
models like Bayes or Markov chain have shortages on both
long-term prediction and cross-regional extendibility. The
first challenge is listed as follows:

Challenge 1: on account of traditional models’ shortages,
a novel trajectory prediction model needs to be designed to
solve the historical data usage problems, long-term continu-
ous prediction, and cross-regional extendibility. Section 4
addresses this challenge.

Since vessels’ location, speed, and direction are all contin-
uous variables, it is more suitable to use the regression model
and sliding window to predict trajectory continuously. How-
ever, the regression results do not have a proper metric to
evaluate each predicted step. The routing algorithm cannot
make relay decisions without assessment criteria. So, chal-
lenge 2 and 3 are listed as follows:

Challenge 2: a metric that can approximately represent
the probability that the vessel appeared at a predicted loca-

tion, which should be calculated using a novel evaluation
method. The evaluation result needs to be directly adopted
by the routing algorithm. This challenge is addressed in Sec-
tion 5.1.

Challenge 3: a series of distributed routing algorithms
with channel arrangements need to be proposed utilizing a
novel evaluation method and predicted trajectories. The
global optimal routing problem is NP-Hard, according to
Section 2.3. This challenge is addressed in Section 5.2, Section
5.3, and Section 6.

4. Trajectory Prediction Model

In this section, we present our trajectory prediction model
based on Bi-LSTM in detail. Firstly, the advantages of Bi-
LSTM for time-series data are briefly introduced. Then, the
detail of our model and its performance are given. Finally,
we verify the cross-region extendability of our model.

4.1. Bi-LSTM for Time-Series Prediction. Neural networks
have a powerful ability to fit most functions. According to
the universal approximation theorem, even a single hidden
layer with no linear activation function neural network can
approach any continuous finite dimension function with
high precision.

For series data, many studies show that Recurrent Neural
Network, like LSTM and GRU, has good learning perfor-
mance to sequence learning problem [21, 22]. To solve the
vanishing gradient and exploding gradient problems that
might happen in RNN, the LSTM adds a cell, an input gate,
a forget gate, and an output gate. The cell remembers values
over arbitrary time intervals, and the three gates regulate the
flow of information into and out of the cell. Some researchers
propose that the Bidirectional LSTM shows a more robust
learning ability in sequence data learning [20]. Different from
traditional LSTM, one Bi-LSTM unit includes two LSTM
units. They can control the forward and backward
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Figure 1: Conditional entropy CDF with different k and features.

Table 1: Average continuous prediction time (ACPT) of 3-order
Markov model.

Features ACPT (minutes)

Location 46.3

Location, speed 27.7

Location, direction 32.2

Location, speed, direction 15.4
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information flow in their cell state, respectively. In Figure 2,
we could notice that the input state in the Bi-LSTM unit
can flow in two directions. The unit in the next layer has con-
nected with forward and backward units, which make it have
a broader receptive field. Compared with LSTM, the Bidirec-
tional LSTM is more suitable to predict the long-term trajec-
tory in the ocean field.

4.2. Model Design and Performance. Our dataset’s raw data is
the vessel’s state every 3 minutes in 3 years, including time,
ship ID, latitude, longitude, speed, and direction. To train
the neural network, we first need to get the training sample
by transferring the time series to the supervised learning
problem. We need to get the input state sequence and output
sequence from the original series of states. Assuming the
length proportion between the input and output sequence
ism, and the length of the predicted sequence isI. For given
state sequence fc1, c2,⋯, cng, the samplei in sample set is the
following:

Samplei = xi : <ci,⋯, ci +mI − 1>,yi : <ci +mI,⋯, cif
+ m + 1ð ÞI − 1 > g,

ð13Þ

where 1 ≤ i ≤ n − ðm + 1ÞI + 1. In this paper, we set m = 3
and I = 1h in our model, which means that the model uti-
lizes 3-hour historical information to predict the future 1-
hour information. In addition to the location, our model also
gives the prediction results of speed and direction. Therefore,
if TTL is more than 1 hour, we can utilize the sliding window
for long-term trajectory predictions. We shuffle the sample
set and split the training, validation, and test sets according
to the ratio of 7 : 2 : 1. Our model applies normalization to

avoid the negative effect of feature range in the learning
process.

Figure 2 illustrates our model structure. Our model has
four important parts, including convolution, Bi-LSTM,
attention, and dense layers. We apply the stack of 1D convo-
lutional layers at the beginning. The convolutional layer can
process the grid structure data, including time series as 1D
grids or graph as 2D grids. Because of the translation equiv-
ariant of convolution kernel, this layer helps our model learn
spatiotemporal invariant patterns and reduce its capacity.
The following layers also can get a bigger receptive field by
the stack of the convolutional layers. As we know, one convo-
lution kernel can only learn one pattern. Different convolu-
tion parameters like stride and activation functions have a
significant impact on the model’s performance. Therefore,
we stack 3 layers of convolution with 64, 32, and 16 kernels
with ReLU and set the stride = 3 in our improved model.

We use Bi-LSTM layers after convolution parts to avoid
gradient explosion or vanish, which may lead to unstable
state problems during the training process. Benefit from gate
units and cell state, the typical LSTM has the memory of his-
torical steps and stable gradient. Compared with typical
LSTM, the Bi-LSTM has a more powerful fitting ability in
sequence prediction. In each time step, the output of Bi-
LSTM considers both forward and backward information.
We choose four layers of Bi-LSTM with 64 cells and use soft-
sign as an activation function. The softsign is better than tanh
in this task, because it has a more gentle gradient perfor-
mance than tanh. Additionally, we also choose proper weight
initialization values based on the activation function. In this
part, some residual connections between Bi-LSTM layers
are added to avoid gradient vanishment.

The attention mechanism is added after the Bi-LSTM
part. The attention mechanism can be used in time series pre-
diction problems and show great performance in many
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Figure 2: The structure of trajectory predict model and Bi-LSTM.
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datasets. The attention, along with time steps, can make the
model focus on some important sequences. In this scenario,
the latitude and longitude are more important and have more
variability than speed and direction. The model will treat all
features equally if we do not use attention.

As shown in Figure 2, the attention layer gets the atten-
tion score by comparing the similarity of the last-hidden state
with all history hidden states by the scaled-dot. Considering
the Last hidden state, it has information learned from the
whole input sequence, but the information from the begin-
ning of the input sequence might disappear through long
time steps. Therefore, one of the meanings that we design
the attention layer is to integrate the information from the
whole sequence. After that, softmax will be utilized to nor-
malize the score. So, the context vector will be the weighted
sum of attention score and hidden historical states. Then,
we concat the context vector and Last hidden state as the out-
put of attention layer.

scorei =
hiddenlast ⋅ hiddeniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimhidden
p , i = 1,⋯,mI − 1: ð14Þ

At the end of the model, we add dense layers after the
attention layer to obtain the output. In parameter setting,
we stack two dense layers with 8ℑ and 4ℑ cells with ReLU
and Linear activation function, respectively. Huber(), which
has excellent robustness to outlier point, is adopted as the
network’s loss function. We mainly set the callback, includ-
ing early stopping and learning rate decay. The model will
stop training if MAE do not reduce in 30 epochs. We use
0.001 as the learning rate at the first ten epochs and use expo-
nential learning rate decay. Finally, we set a total of 500
epochs to train the model with previous callbacks.

Figure 3(a) indicates the average error on the test set. We
can notice that our model can predict future trajectory in 1
hour with an average error of less than 300 meters. To further
check the efficiency of our model, we use the sliding window
to estimate the 9-hour trajectory. The model could give a lon-
ger predicted state sequence using slide window but might
reduce the performance because using inaccuracy predicted
states as input. And it also requires the model to predict all
the features in state, which increases the complexity of trajec-
tory prediction. The result shows that our model can achieve
a 9-hour trajectory prediction with an average error of less
than 2.73 kilometers.

4.3. Cross-Region Extendability Validation. As mentioned in
Challenge 1, traditional models do not have cross-region
extendability. To verify our model’s extendability, we artifi-
cially divide the data set based on each vessel’s activity range.
We use samples within 60% distance from port to farthest
point for model training and the rest for testing. Figure 3(b)
shows that the test set’s average error is 30% larger than that
in Figure 3(a). Compared with long communication distan-
ce(average 30 km), this error can be tolerated. The possible
reason for this extendability is that our model learns some
patterns from other state information, like speed and direc-
tion. Also, the stack of convolutional layers makes our model
learn the spatiotemporal invariant patterns. In conclusion,

cross-region extendability improves robustness during the
applying process.

5. Global Routing Algorithm

In this section, we design the DTVN routing algorithm with
global knowledge [?]. Like conventional delay-tolerant net-
works, vessels with larger expected encounter probability
are more likely to meet in the future. When two vessels are
within their range of contact, the packet should be copied
and forwarded to the vessel with higher expected delivery
probability inH hops. Therefore, the expected delivery prob-
ability calculation is the crucial issue of this algorithm. The
process of expected delivery probability calculation is intro-
duced in Sections 5.1 and 5.2. Section 5.3 will give a compre-
hensive overview of the routing algorithm.

5.1. Confident Degree of Predicted Trajectory

Definition 7 (confident degree of predicted trajectory). Confi-
dent degree of predicted trajectory approximately represents
the probability that the vessel is on its expected position.

Since the regression results of the improved Bi-LSTM model
do not include such metrics, to evaluate the results of pre-
dicted trajectories, we propose the confident degree calcula-
tion method based on the model’s performance on the test
set.

The mean error μn and standard deviation σn for each
prediction step n on test set can be obtained after the model’s
training process. μn and σn can show the model’s perfor-
mance on historical data, which helps to determine the
expected effects. For all prior assumed distributions, if we
have a mean and standard deviation, the normal distribution
has the highest entropy, which means that it shall have the
highest adaptability. So we choose a normal distribution to
fit the error of each predicted step.

The errorn, which is the errors of step n, is denoted as the
random variable. We could assume that errorn ∼Nðμn, σn2Þ.
The Probability Density Function (PDF) with μn and σn can
be given by

f n errornð Þ = 1ffiffiffiffiffiffi
2π

p
σn

e− errorn−μnð Þ2/2μ2ndx: ð15Þ

Then, N ðμn′ , σ′
2
nÞ can be fitted according to the results of

equation (14). Therefore, the probability of errorn less than
ðμn′ + 3σn′Þ is 99:87%. However, the predicted error can be tol-
erated in the routing scenario when the communication
radius R is large enough. So the confident degree of the pre-
dicted trajectory should not only relate with μn′ and σn′, but
also relate with R. Considering that vessels are moving in
2D space, in this paper, the confident degree of predicted tra-
jectory on step n can be given by

Ev,n = 99:87%
R − μn′ + 3σn′

� �� �2

R2
, μn′ + 3σn′
� �

≤ R, ð16Þ
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where υ is the identifier of vessel υ. When ðμn′ + 3σn′Þ ≥ R, we
define Eυ,n = 0, because the error is too large to guarantee
communication. The Eυ,n could also be denoted as Eυ,t where
t is the timestamp of step n. Eυ,t can be approximately treated
as the probability of vessel appeared on predicted location
based on empirical error and communication radius.

Figure 4(a) shows the distribution of the error in the 11th
step of the vessel “Zhe31828” and its fitted distribution. We
can see that the distribution of the error is fitted to the nor-
mal distribution. Confident degree results are shown in
Figure 4(b). We can observe that the confident degree
changes with different communication radius. The confident
degree declines in long-term prediction. The vessel with a
smaller communication radius has a lower confident degree
due to its tolerance for error.

5.2. Calculation of Packet Delivery Probability within n Hops.
For each vessel υ at time t, the confident degree of predicted
trajectory Eυ,t can be obtained. We use υ and τ to denote two

nodes in the ocean. ϱnυ, τðtstart, tendÞ stands for expected
delivery probability in time period ½tstart, tend� from υ to τ at
just n hops, which means ϱnυ, τðtstart, tendÞ does not include
the situation that packet is delivered in less than n hops.

When υ and τ are expected to meet (within their commu-
nication range) at time t, the one-hop delivery probability is
Eυ,t × Eτ,t . So, the one-hop delivery probability can be given
by

ϱ1v,τ tstart, tendð Þ = 1 −
Y

t∈ tstart ,tend½ �
1 − Ev,t × Eτ, tð Þ, ð17Þ

Where t is the start time of expected contacts. The
accompanying time is not considered in this equation to
avoid repeated calculation. The meaning of t is the same in
the following derivation procedures in this subsection.

The condition of two-hop delivery can be treated as two
one-hop delivery procedures with the time constraint. The
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delivery probability of two-hops can be calculated as follows:

ϱ2v,τ tstart, tendð Þ = 1 −
Y

tstart≤t≤tend

1 − ϱ1v,m tstart, tð Þ × ϱ1m,τ t, tendð Þ� �
:

ð18Þ

Then, three-hop delivery probability can be divided into
one one-hop delivery procedure and one two-hop delivery.

The three-hop delivery probability can be derived by

ϱ3v,τ tstart, tendð Þ = 1 −
Y

tstart≤t≤tend

1 − ϱ1v,m tstart, tð Þ × ϱ2m,τ t, tendð Þ� �
:

ð19Þ

Therefore, the delivery probability of n hops is given by

ϱnv,τ tstart, tendð Þ = 1 −
Y

tstart≤t≤tend

1 − ϱ1v,m tstart, tð Þ × ϱn−1m,τ t, tendð Þ� �
:

ð20Þ

Considering the routing in DTVN, a vessel has a packet p
that needs to be delivered to ζðpÞ with its remaining hops H
and time-to-live TTL. When the vessel meets its neighbor υ at
time tc, neighbor’s delivery probability within (H − 1) hops
needs to be calculated. The equation can be given by

ψH−1
v,ς pð Þ tc, tc + TTLð Þ = 1 −

YH−1

i=1
1 − ϱiv,ς pð Þ tc, tc + TTLð Þ

� �
:

ð21Þ

5.3. Algorithm Description. The routing algorithm based on
long-term trajectory prediction is described as follows.
Assuming that each vessel can obtain recent historical knowl-
edge and trajectory prediction model of other vessels, and
vessels sharing the same channel resource set need to com-
pete for limited useful links.

For packet list P in vessel υ, the source vessel first calcu-
lates ψH−1

v,ςðpÞðtc, tc + TTLÞ of each p in P on υ’s neighbors.

The algorithm selects the relay node with the largest
delivery probability. If links in the area are over link limita-
tion, the algorithm will transfer the packet by probability
rank to avoid channel collision.

When the packet p is copied and transferred, the system
will update the copied packet’s information. The algorithm
would renew Hpcopy. The packet will be abandoned if its
TTL becomes 0. The packet p will stop forwarding when H
is 0. The algorithm will repeatedly find the best relays for
packets until packets in P are all delivered.

As an example, we show a small area of DTVN including
vessel a,b,c,d,e in Figure 5. Vessel a met its neighbors b,c at
time t0 and wants to deliver its packet to e. The purple lines
with arrow show the predicted trajectories of each vessel.
Dotted line circles are vessels’ expected location with confi-
dent degree, where t0 < t1 < t2 and t2 − t0 ≥ TTL. Therefore,
the one-hop expected delivery probability between c and e
can be calculated by ϱ1c,e = Ec,t2 × Ee,t2. Because c and e does

not have other expected encounters. So ψc,e
H−1ðt0, t0 + TTL

Þ is ϱ1c,e. Vessels b and e have direct expected encounter at
time t2. So, the one-hop expected delivery probability
between b and e can be calculated by ϱ1b,e = Eb,t2 × Ee,t2. Ves-
sel b and e have a two-hop expected encounter situation
where b meets d at t1 and d meets e at t2. Hence, ϱ2b,e = ð
Eb,t1 × Ee,t1ÞðEd,t2 × Ee,t2Þ. According to equation (20), ψH−1

b,e
= 1 − ð1 − ϱ1b,eÞð1 − ϱ2b,eÞ. In this case, α should compare its
own expected delivery probability with ψb,e

H−1 and ψc,e
H−1

to decide next relay.

6. Distributed Routing Algorithm

The previous section introduces the algorithm with global
knowledge, including vessels’ current location and mobility
pattern. However, global knowledge is not available in dis-
tributed situations. Hence, we design the practical distributed
algorithms with limited knowledge. In this section, we pro-
pose two distributed algorithms under fully distributed and
cellular distributed situations.

6.1. TPR-Distributed Design. Compared with the global rout-
ing algorithm, the distributed algorithm further considers the
actual application scenarios. So, the algorithm needs to make
routing decisions utilizing incomplete knowledge of vessels
and packets. In this situation, each vessel needs to have the
ability to predict future contacts based on the received infor-
mation and share its local information with meeting vessels.
Each packet records its source node ζðpÞ, destination node
ϱp, H, and TTL.

Therefore, each vessel can construct a local meeting
graph in a period by exchanged information, and they can
give prediction by sliding window and form the local link
set Łt in time t. When nodecur meeting node v on time tc,
the optimal target of packet p in one node is shown in Equa-
tion (8).

Information exchanging between vessels is vital in the
fully distributed scenario. Thus, we design the data structure
of exchanged information inf considering the efficiency and
cost. It includes two parts: the current state sequence and pre-
diction model, because other information, such as the evalu-
ation table, contact graph, and future trajectory, could be
calculated by these two parts.

As shown in Algorithm 1, the node n and its meeting
node v both merge and update their local information. After

b
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Decisio
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Ed,t1

Ed,t2

Ee,t2Ec,t2

d
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a

Figure 5: Illustration example of routing algorithm in DTVN.
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that, both sides can construct a new local contact graph and
form a local link set based on updated information. For each
packet p in node n, pwill be delivered to v, when v has greater
ψH−1
v,ςðpÞðtc, tc + TTLÞ. If links in the area are over link limita-

tion, the algorithm will transfer the packet by probability
rank to avoid channel collision.

6.2. TPR-Cellular Design. Considering the cellular coverage
range along the coast, we also design a cellular-based distrib-
uted algorithm called TPRCellular. Vessel within the cellular
coverage area can provide communication with base stations
in high efficiency. Hence, we assume the vessel in this area
has the global knowledge of all the vessels. After moving
out of the cellular coverage, each vessel’s knowledge will stop
updating. Nevertheless, they could make the routing decision
based on predicted trajectory by predictionmodel and sliding
window. Theoretically, by utilizing a sliding window, our
model can endlessly predict future trajectory without consid-
ering the accuracy. So, this algorithm’s routing performance
will test our model’s accuracy on long-term trajectory predic-
tion. We assume that vessels do not exchange their knowl-
edge when meeting with each other. Except for the
predicted trajectory length, the TPR-Cellular algorithm is
nearly the same as the global routing algorithm.

7. Performance Evaluation

We evaluate the performance of TPR-DTVN with metrics
defined in Section 2.1. We first present the methodology for
performance evaluation, introduce compared algorithms,
and finally show simulation results.

7.1. Methodology and Experimental Setup. We perform
trajectory-driven simulations to evaluate the performance
of TPR-DTVN compared with Epidemic, Random Walk
(RW), and Community-Based Routing (CBR).

We train the trajectory model and perform a simulation
experiment on a Linux server, which is based on ubuntu
18.04 with 64 core CPUs and 4 pieces of 1080ti GPUs. We
use a total of 5123 vessels that had appeared from May
2015 to May 2018. The first 24 months’ data train trajectory
prediction models in default. For each packet, we randomly
pick its source and destination pairs which have at least one
contact before, because vessels that have not encountered
each other barely have communication requirements. The
number of packets varies from 200 to 1800. 5 simulations

are carried out over 5 separate fishing months (Oct 2017,
Nov 2017, Dec 2017, Jan 2018, and Feb 2018) to achieve aver-
age results. The default system parameters are shown in
Table 2.

2.

7.2. Compared Algorithms. Three compared algorithms are
briefly introduced as follows:

(1) Epidemic. Packets are flooded throughout the net-
work, which provides upper bound on delivery ratio
and system cost with lower bound of delay

(2) Random Walk (RW). This algorithm randomly
decides whether to forward a packet and randomly
selects a relay if there is more than one neighbor ves-
sel. In simulation experiments, the probability of for-
warding a packet is set to 40%. This algorithm
represents the algorithms without knowledge

(3) Community-Based Routing (CBR) [12]. CBR utilizes
vessels’ historical contacts to form communities.
Intercommunity betweenness centrality and famil-
iarity are used to build a probability network for rout-
ing. This algorithm represents the algorithms with
social knowledge

7.3. Comparative Results.We compare different routing algo-
rithms’ performance in delivery ratio, delay, cost, and effi-
ciency. We vary the packet number from 200 to 1800 to
simulate different network overhead. Figures 6(a) and 6(b)
show six algorithms in terms of delivery ratio and average
delay. The epidemic has the best performance in both metrics
as expected. We can observe that TPR-Global, TPR-Distrib-
uted, TPRCellular, and CBR perform better than RW due
to historical information. TPR-Global achieves a 21% higher

Input:n,v,infn,infv,tcur.
Variables:n: the current node; v: the meeting node; infn,infv: information of node n, v; vn: stored information of node n; tcur: current
time.
1: vn = vn ∪ v.
2: Merge and Update: infn,infv ← infn ∪ infv.
3: For each vessel in vn, predict trajectory and evaluation table of all nodes between tcur to tcur + TTL by their model and sliding window.
4: Construct contact graph based on infn.
5: For each p ∈ Pn, n calculate ψH−1

v,ςðpÞðtc, tc + TTLÞ.
6: Transmit each p to v when v has greater ψH−1

v,ςðpÞðtc, tc + TTLÞ.

Algorithm 1: TPR-distributed Algorithm.

Table 2: Default system parameters.

Parameter Default value

Number of vessels 5123

Communication radius 20 km

Hmax 20

TTLmax 6 hours

Number of packets 200, 600, 1000, 1400, 1800
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delivery ratio than CBR with a nearly 70% delay of it. The
reason is that CBR only uses contact information without
considering the time factor. Although CBR can find who is
familiar with the destination node, it cannot predict future
contacts’ approximate time. On the contrary, TPR-DTVN’s
probability calculation process is with the limitation of TTL
, leading to more accurate results. Figure 6(c) shows the costs
of six algorithms. TPR-DTVN and CBR have a lower cost
than others, because wasted data transmission is avoided
with historical knowledge guidance.

Figure 6(d) demonstrates the efficiency of all the algo-
rithms. TPR-Global achieves the highest overall efficiency
than the comparative algorithms. Because of the high cost
of packet flooding, Epidemic’s efficiency is uncompetitive.
RW has the lowest efficiency due to its aimlessness. Also,
TPRDistributed has a 16.25% higher efficiency than TPR-
Cellular.

Although historical knowledge is different, TPRDistribu-
ted and TPR-Cellular have similar performance. Even if
TPR-Cellular has the knowledge of all vessels, the vessels
need to use longer prediction to get future trajectory based
on its knowledge when the vessel moves out of cellular cover-
age. So the prediction accuracy is lower than that of TPR-
Distributed. TPR-Distributed has limited knowledge, but its
knowledge is up-to-date. These reasons make these two dis-
tributed algorithms have similar performance.

7.4. Impact of Communication Radius. We compare the per-
formance of TPR-Global, TPR-Distributed, and TPR-
Cellular with different communication radius, including
10 km,15 km, and 20 km. With the decrease of communica-
tion radius, we notice that the performance in all metrics
decreases in Figure 7. Delivery ratio with R = 10 km has
decrease 65% than that of R = 20 km. Meanwhile, the average
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delay is twice of R = 20 km. Compared with 20 km communi-
cation radius, these algorithms’ efficiency in 15 km and 10 km
average decrease 72.79% and 97.11%, respectively. The rea-
son is that the communication opportunities of R = 10 km
are not enough to achieve data delivery in this vessel density.
WiMAX technology can achieve maritime communication
with more than 40 km communication distance, which leads
to fierce channel competition. Although the shorter commu-
nication radius will have less competition, it cannot grantee
routing in our scenario. Considering the performance and
channel resources, we set the communication radius to
20 km in our experiment.

7.5. Impact of Data Set Usage. The size of data set usage has a
direct effect on TPR-Global and two distributed algorithms
due to its dependency on the accuracy of the predicted trajec-
tory. We compare the performance of different sizes of data
sets, including the recent 24, 16, and 8 consecutive months.
In Figure 8, with the decrease of data set, the performance
of the three algorithms has notably declined. Compared train
by 24 months data set, two algorithms’ efficiencies in 16
months and 8 months average decrease 26.74% and 76.19%,
respectively. We thought it is because the trajectory predicts
model with 24 and 16months data can learn complete mobil-
ity pattern of four seasons. 8 consecutive months cannot
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cover the mobility pattern of a season, which leads to poor
performance. Therefore, we should choose more than 12
consecutive months of data to train our model to obtain
excellent algorithm performance.

8. Relate Works

DTVN, which utilizes WiMAX to achieve vessel-to-vessel or
vessel-to-coast communication, is complementary to mari-
time wireless mesh networks [6, 23]. There have been several
researches applying traditional routing algorithms in MAN-
ETS. Mohsin et al. evaluate traditional algorithms’ delivery
ratio under different node densities and mobility behaviors

to validate the feasibility of DTVN [8]. Lambrinos et al. use
real small-scale traces to simulate different protocols’ perfor-
mance and identify where they fall short from the perspective
of our particular domain [24].

Some studies apply fixed mobility models or encounter
models for the design of DTVN routing algorithms. These
algorithms are often suitable for vessels with stable mobility
behavior, such as container ships, cruise ships, and waste-
dumping vessels. Raj et al. presume that all vessels obey the
Gaussian-Markov mobility model [7]. The forwarding met-
rics are determined for routing on the basis of this assump-
tion. Lanepost [25] and Mar-DTN [26] are standard
graphic-based optimal routing algorithms. These algorithms
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build an opportunistic routing graph based on each vessel’s
fixed expected routes and use the graph for forwarding deci-
sions. Liu et al. [27] and Qin et al. [28] study delay-tolerant
routing problems in the seaway model that all vessels are
moving in fixed seaways. Vessels predict the speed and
arrival time based on proper models and utilize them for
decisions.

Mining personalized characteristics of each node in the
network are more beneficial for routing algorithm perfor-
mance than fixed model [13, 29, 30]. Some vessels’ moving
patterns, like fishery vessels, are easier to be affected by objec-
tive factors, which cannot directly apply fixed models. Nodes
in the network use neighbors’ personalized models for rout-
ing decisions. These models need to be dynamically updated
based on historical data. FBR and CBR [12] dynamically con-
struct communities based on vessels’ recent contacts. Based
on unique social relationships, vessels build a probability net-
work for efficient packet delivery.

9. Conclusion

This paper proposed a set of routing algorithms called
TPRDTVN for efficient data transmission in vessel networks.
TPR-DTVN uses a forwarding metric that characterizes the
expected delivery probability of relay nodes. To address the
challenge of long-term trajectory prediction, we design a
Bi-LSTM-based trajectory prediction model and an evalua-
tion method to get the practicable predicted trajectory. Then,
we evaluate expected delivery probability with predicted
information. Extensive trace-driven simulations show that
our algorithms can achieve a higher delivery ratio with lower
cost and transmission delay.
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