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Intruders on the Internet usually launch network attacks through compromised hosts, called stepping stones, in order to reduce the
chance of being detected. With stepping-stone intrusions, an attacker uses tools such as SSH to log in several compromised hosts
remotely and create an interactive connection chain and then sends attacking packets to a target system. An effective method to
detect such an intrusion is to estimate the length of a connection chain. In this paper, we develop an efficient algorithm to detect
stepping-stone intrusion by mining network traffic using the k-means clustering. Existing approaches for connection-chain-
based stepping-stone intrusion detection either are not effective or require a large number of TCP packets to be captured and
processed and, thus, are not efficient. Our proposed detection algorithm can accurately determine the length of a connection
chain without requiring a large number of TCP packets being captured and processed, so it is more efficient. Our proposed
detection algorithm is also easier to implement than all existing approaches for stepping-stone intrusion detection. The
effectiveness, correctness, and efficiency of our proposed detection algorithm are verified through well-designed network
experiments.
1. Introduction

This paper is an extension of our work originally presented at
the 39th IEEE International Performance Computing and
Communications Conference (IEEE IPCCC 2020) [1]. Many
attackers send attacking packets to remote target systems
through compromised machines, for the purpose of decreas-
ing the chance of being discovered [2–11]. The compromised
machines employed by the attackers are referred to as step-
ping stones. In a stepping-stone intrusion (SSI), an intruder
uses a chain of compromised machines on the Internet as
relay hosts and remotely logs in these machines by using soft-
ware tools such as SSH, rlogin, or telnet. The attacker sits in
front of his local host and types attacking commands that
are relayed via the stepping-stone hosts in the connection
chain until the attacking packets arrive the remote target sys-
tem that is under attack.

Since every TCP connection between a source node and a
destination node is independent of other connections even
though the connections might be relayed, accessing a remote
host via several relayed TCP connections makes it very diffi-
cult to determine the attacker’s actual geographical location.
Because the TCP protocol has such a property, the final tar-
get machine could only see the packets from the last connec-
tion of the chain. Therefore, it is extremely hard for a target
host to learn any information about the actual location of
the intruder.

A benefit of launching attacks using stepping stones is
that attackers could be hidden behind a long interactive
connection. If a SSI could be detected within the active
period of attacking, then the session could be cut off and
the target system could be protected. Although some
researchers worked on the back-tracing of SSI and studied
the upstream detection, most researchers focused on down-
stream SSI detection.

Intruders using SSI could build a connection chain given
in Figure 1 using software tools such as SSH to launch their
attacks. In Figure 1, we assume that Host 0 is used by the
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Figure 1: A sample connection chain.
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attacker to launch an attack against the target Host N via
compromised hosts Host 1, Host 2,…, Host i − 1, Host i,
Host i + 1,…, and Host N − 1. SSI detection may occur in
any of these stepping stones. The detection program is
assumed to reside in Host i which is referred to as a (detect-
ing) sensor. SSI detection is to determine if the detecting sen-
sor Host i is used as a stepping stone. The connection from
Host i − 1 to Host i is called an incoming connection to Host
i, and the connection from Host i to Host i + 1 is called an
outgoing connection from Host i. If there is at least one
relayed pair between all the incoming connections and all
the outgoing connections, then it is highly suspicious that
Host i is used as a stepping stone for intrusion.

One type of detection methods for SSI is to compare all
the outgoing connections with all the incoming connections
of the same host to see if there exists a relayed pair. This type
of methods is referred to as host-based SSI detection. Quite a
few approaches that can be applied to encrypted connections
have been proposed since the year 1995 including the
deviation-based [12] and time-based approaches [3, 4, 6,
13–18] for SSI detection. This type of methods only focuses
a single host and requires only the outgoing packets leaving
the host and incoming packets to the host. The main disad-
vantage of this type of approaches is that it usually introduces
high false-positive errors as some legal applications actually
use stepping stones to access remote servers. For example,
when a client browser requests some resources from a Web
server, the Web server may need to access a remote applica-
tion server that also may need to access a remote database
server. Moreover, this type of detection approaches is also
vulnerable to the intruder’s session manipulation that can
be done by using hacking techniques such as time-jittering
and/or chaff permutation.

The other type of detection methods to address the prob-
lems with the host-based methods is to estimate the number
of connections from the intruder’s host to the target host (as
shown in Figure 1), which is called the length of a connection
chain. If there exist three or more connections in a connec-
tion chain, it means that the user attempts to gain access to
a remote target host via three or most machines. It is well-
known that the more computers involved in an interactive
connection to gain access to a remote server, the slower the
traffic of data communication. The threshold number “three”
was discovered because most legal applications seldom used
three or more stepping stones to access a remote server. This
type of detection methods is referred to as the connection-
chain-based or network-based SSI detection.

However, the connection-chain-based detection methods
could produce a false negative error. Let us first introduce
two concepts of upstream and downstream detections. Esti-
mating the length of the connection chain from the sensor
(Host i) to attacker’s host (Host 0) as shown in Figure 1 is
referred to as upstream detection. Similarly, estimating the
length of the connection chain form the sensor (Host i) to
the target host (Host N) is referred to as downstream detec-
tion. The length of the entire connection chain from attacker
machine to the target machine equals the length of the down-
stream chain plus that of the upstream one. Unfortunately,
upstream detection is extremely challenging and has been a
long-standing open problem. Therefore, it is very hard to
estimate the length of the entire chain since we can only esti-
mate the length of the downstream connection chain. When
the detecting sensor is close to the target machine, the length
of the downstream connection chain is trivial, and the
upstream connection would dominate the length of the entire
chain. In such a case, all malicious intrusions will escape
detection due to the false negative errors.

If the downstream connection length is at least two (it
means that at least two stepping-stone hosts are present
between the sensor computer to the target host) plus the
upstream connection length; this makes the length of the
whole connection chain be three or more. Therefore, when
the downstream connection length is at least two, we con-
clude that it is highly suspicious that the session is initiated
by an attacker. Most existing detection algorithms by esti-
mating the length of a connection chain developed by far
only takes the downstream connection into consideration.
In this work, the length of a connection chain always means
the length of its downstream connection.

Let us give a literature review on network-based detec-
tion methods for SSI. The first detection algorithm using a
network-based approach was proposed by Yung [19] in
2002. Its basic idea is to estimate the length of a connection
chain by computing the RTT of a Send packet and matching
it with an ACK packet sent from an adjacent node. Although
the false positive error incurred by the approach proposed in
[19] is reduced a little bit, this detection approach also suf-
fers from producing false negative errors occasionally,
because the method developed in [19] used the ACK packets
instead of the actual echo packets. Based on the connection
chain set up in [19], the actual echo packets are not available
to capture.

Yang et al. [20] developed the step-function detection
approach to estimate a connection chain length in a LAN.
Compared to the detection algorithms proposed in [19], the
step-function approach reduced both the false positive error
and the false negative error. In [20], the first connection
chain created contains only one connection. Then, the con-
nection chain is extended to two connections, three connec-
tions, and so on.



Table 1: All notations used in this paper.

X A random variable

μ Mean of a random variable

σ Standard derivation

k The number of clusters

ci The center of the i-th clusters, i = 1, 2,⋯, k
C The set of k centers c1, c2,⋯, ckf g
Dataset-j A dataset of RTT values; j = 1, 2, or 3
σcurr Standard derivation based on the current cluster

σnew Standard derivation based on the updated cluster
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The key idea of the step-function method is to obtain the
RTTs by matching a Send packet with its corresponding
Echo packet which is available based on the way the connec-
tions are set up. However, the approach proposed in [20]
only worked when the data communications are limited
within a local area network. In the context of the Internet,
the same set of authors in [21] proposed the conservative
and greedy packet matching algorithm for SSI detection.
The weakness of such a conservative algorithm is that it can
only match very few packets, which makes the detection
method ineffective.

The best known connection-chain-based detection
method for SSI is the clustering and partitioning data mining
algorithm proposed by Yang and Huang [22]. This paper
developed an algorithm for SSI detection by using a cluster-
ing and partitioning data mining approach to compute the
RTTs of the packets captured from a connection chain. All
of the previously known approaches of matching Send and
Echo packets only compare one Echo packet with a Send
packet at a time. The method proposed in [22] looked
through all the possible packets to produce TCP packet
matches and made the matching accurate. Using the method
in [22], all the Send and Echo packets are captured from a
connection chain in a time interval, and then the timestamp
differences between a Send packet and those Echo packets
received after that Send packet are all calculated. The method
proposed in [22] made sure that the correct RTT of each
Send packet is among these timestamp differences. The max-
imum–minimum distance clustering algorithm (MMD) was
used to computer the real RTTs. The number of connections
in the chain is determined based on the number of clusters
generated by the MMD data mining algorithm. The results
obtained from the well-designed experiments in [22] indi-
cated that this approach can more accurately estimate the
connection chain length than all of the prior detection algo-
rithms for SSI and reduce both the false positive and false
negative errors.

A weakness of the MMD clustering and partitioning
approach developed in [22] is that a huge number of packets
have to be captured and processed. Therefore, this algorithm
is not efficient. This paper addresses these issues by introduc-
ing a novel algorithm to detect SSI via mining network traffic
using the k-means clustering algorithm [23–26]. The k
-means clustering algorithm is a data mining approach used
to cluster observations into groups of related observations
without any prior knowledge of those relationships. It is
well-known that the round-trip times will cluster around sev-
eral levels. As long as most of the outlier values can be
removed from the real RTTs in the input file, our k-means
clustering detection algorithm proposed in this work can
accurately determine the length of a connection chain. Also,
our proposed detection algorithm does not require a large
number of packets to be captured and processed. Thus, our
proposed method for SSI detection is more efficient than
MMD clustering and the partitioning approach developed
in [22]. The effectiveness of our innovative approach for
SSI detection is verified through well-designed experiments
by appropriately setting up the connection chains. The
experimental result showed that our proposed algorithm
can estimate the length of a connection more accurate than
the known detection methods presented in the literature.

It is worth mentioning some other work related to SSI
detection and/or network security. In order to help
researchers to understand how a session is chaffed and
develop new tools for detecting SSI as well as resisting
intruders’ chaff manipulation, [27] developed a C# program
to inject meaningless packets into a TCP/IP session. Refer-
ence [28] presented an adaptive network intrusion detection
method using fuzzy rough set-based feature selection and
pattern learning. This paper also introduced a greedy
approach of global optimal Gaussian mixture model cluster-
ing method in order to extract the intrinsic structure of net-
work instances to achieve highly discernable and stable
normal and intrusion pattern libraries for the subsequent
network intrusion detection. Many methods have been pro-
posed to detect stepping stones and resist evasive behavior,
but so far, no benchmark dataset exists to provide a fair com-
parison of detection rates. Reference [29] developed a com-
prehensive framework to simulate realistic stepping-stone
behavior that includes effective evasion tools and release a
large dataset. The detection rates of eight state-of-the-art
methods are evaluated by using this framework. Reference
[30] studied query-efficient adversarial attacks against auto-
matic speech recognition systems. This paper presented a
novel and effective attack on automatic speech recognition
systems. Compared with prior known methods in the litera-
tures, the approach proposed in [30] only needs limited
access to the output probabilities of neural networks and
achieves extremely high efficiency and success rates. Data
privacy relates to how data should be handled based on its
relative importance and is closely relevant to network secu-
rity. Reference [31] developed an approach for uploading
data in smart cyberphysical systems, in which both energy
conservation and privacy preservation are taken into consid-
eration. Reference [32] proposed a privacy-preserved data
sharing structure for industrial Internet of Things, in which
several competing clients could exist in distinct stages of
the system. Reference [33] developed a mechanism for trad-
ing range counting results. Under differential privacy, this
mechanism used a sampling method to produce rough
counting results which are theoretically verified to achieve
unbiasedness, bounded variance, and privacy guarantee.

All the notations used in this paper are listed in Table 1
for easy referencing.
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Figure 2: The distribution of packets’ RTTs for a connection chain.

4 Wireless Communications and Mobile Computing
The remaining of this paper is organized as follows. In
Section 2, we provide some preliminaries needed for the
detection algorithm design. In Section 3, we present our algo-
rithm for SSI detection by mining network traffic using k
-means clustering. Performance analysis of our proposed
detection algorithm is given in Section 4. Finally, we summa-
rize our paper and discuss some future research directions in
Section 5.

2. Preliminaries

In this section, we introduce some basic concepts in com-
puter networks that are required to design our detection
algorithm for SSI and the rationale of using packets’ RTTs
to estimate the length of a connection chain.

2.1. Definitions of Send/Echo Packets. Let us use Figure 1 to
define Send and Echo packets. Host i is the detecting sensor.
In the incoming connection of Host i, a Send packet is
defined as a TCP packet received at Host i and sent from
Host i − 1, with the TCP.Flag.PSH it set; an Echo packet is
defined as a TCP packet received at Host i − 1 and sent from
Host i, with the TCP.Flag.PSH bit set. In the outgoing con-
nection from Host i, a Send packet is defined as a TCP packet
received at Host i + 1 and sent from Host i, with the
TCP.Flag.PSH bit set; an Echo packet is defined as a TCP
packet received at Host i and sent from Host i + 1, with the
TCP.Flag.PSH bit set.

Now let us use an example to explain which Send packet
and Echo packet are a matched pair. When a user types a
command on a command line in a Linux system, such as
“ls,” it might be sent to the server in one or two packets. Sup-
pose that the command “ls” is sent to the remote server in
two separate Send packets: “l” and “s.” When “l” is typed
on the user’s command line, the packet will be sent to the
server side. Once this Send packet is echoed, an Echo packet
sent back to the user’s host, letter “l”will be shown on the ter-
minal of the user’s host. Such Send and Echo packets are
called a matched pair. For the other letter “s,” a matched pair
can be similarly obtained: a Send “s” and an Echo “s.” Using
the timestamps of a matched pair of Send and Echo packets,
their packet RTT can be easily computed. The length of the
connection time of an interactive TCP session is represented
by the RTT of a matched pair. The RTT computed from the
matched pair of the Send and Echo packets of “l” is different
from the RTT computed from the matched pair of the Send
and Echo packets of “s”; these two numbers are very close
to each other because these two RTTs stand for the length
of the same connection in different time periods. A Send
packet could be echoed by one or Echo packets. Also, an Echo
packet could echo one or more Send packets.

2.2. The Distribution of Packets’ RTTs for a Connection
Chain. A packet RTT of a TCP connection is the sum of four
time delays including the processing delay, queuing delay,
transmission delay, and propagation delay of the underlying
connection [34]. For connection-chain-based SSI detection,
the length of a connection chain is estimated by using the
packet RTTs. The RTTs obtained from matched Send and
Echo pairs can be used to represent the network traffic. Yang
et al. [35] showed that the length of a connection chain is
equal to the number of clusters that are produced by using
the RTTs obtained from the connection chain.

Paxson and Floyd [4] found the fact that packet RTTs
obtained from a connection chain obey Poisson distribution.
This can be used to match TCP packets and further estimate
the number of connections in an extended connection chain.
Figure 2 shows a typical experiment from which packet RTTs
obey Poisson distribution, where the y-axis represents the
probability of the occurrence of each RTT, and the x-axis
represents the values of the RTTs with unit of microsecond.
The values of the RTTs shown in Figure 2 were from the
packets collected from a connection chain composed of four
connections. With this experiment, most values of the RTTs
are close to the mean μ = 138,500 (microsecond) of all the
RTTs, with at least 95% of the RTT values in the range
between 137,000 (microsecond) and 141,000 (microsecond)
(refer to Figure 2).

Assume that X is a random variable with mean μ and
standard deviation σ. If X follows the Poisson distribution,
then we have

X − μj j ≤ 2σ: ð1Þ

This inequality tells us that most values that X takes
should be close to its mean μ. The difference between X
and its mean μ is upper bounded within 2σ. That is, most
RTT values of a connection chain with fixed length must be
around its mean within a circle with radius 2σ. Therefore,
the RTTs corresponding to a connection chain with fixed
length belong to the same cluster with the mean μ as the clus-
ter center. Consequently, the RTT values of a connection
chain with distinct lengths belong to different clusters. Thus,
if we can design an algorithm to obtain the number of such
clusters, then we could easily obtain the matched packets
and the length of a connection chain.

It is well-known that many applications such as Web
applications use a host as a stepping stone to access a remote
server. But for most legitimate applications, it is very seldom
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to use three or more hosts as stepping stones to access a
remote server. The more hosts that are used to access a
remote server, the slower the data communication. If there
is no intention to hide malicious activities, it is unnecessary
to access a remote server via three or more stepping stones
as it could make the remote accessing inefficient. Therefore,
it is reasonable to assume that if a host uses three or more
stepping stones to access a remote server, that host is highly
suspicious as a malicious intruder.
3. Stepping-Stone Intrusion Detection Using k
-Mean Clustering

In this section, we develop an algorithm for SSI detection by
mining network traffic using k-means clustering. Initially, we
create a connection chain with only one connection from the
hacker’s host to the first stepping-stone host that will be used
as the sensor where a detection program such as TCPDump
is installed. Then, we extended the connection chain to a
chain containing two connections from the sensor host to
the target host. Following that, the chain is extended to con-
tain three connections and finally four connections. The
length of a connection chain means that of the downstream
chain from the sensor host to the target machine. For the
connection chain of two connections, its TCP Send and Echo
packets are captured, and then the RTTs of the chain are cal-
culated. Since the packets’ RTTs of a connection chain follow
Poison distribution, most RTTs are around the mean of the
RTTs of the connection chain. For the connection chain of
three connections, most of its RTTs are similarly around
the mean of the RTTs of this chain. The same is true for
the connection chain of four connections.

Many data mining clustering algorithms were proposed
(see [22] and there references therein). Among all these
known data mining clustering approaches, the k-means clus-
tering method is a simple unsupervised learning algorithm
that gives a solution to the well-known clustering problem
[23–26]. In this paper, the k-means clustering algorithm is
used in the design of our detection algorithm for SSI. With
the k-means clustering algorithm, k is the number of clusters
that is fixed and predetermined.

The key idea is to find the appropriate k centers, one for
each cluster. These k centers need to calculate in a cunning
approach so that the overall standard derivation calculated
based on these k centers is minimized. It is easy to see that
we need to place the k centers as far away as possible from
each other. References [23–26] gave detailed description for
the k-means algorithm and explanation how this algorithm
can be implemented. The k-means clustering algorithm is a
perfect choice of data clustering in this paper due to the
unique properties of the dataset computed from the time-
stamp differences of Send and Echo packets. Such a method
is one of the best approaches that can accurately estimate a
connection chain length. Because most legal applications sel-
dom employ three or more intermediate hosts to access a
remote server, if a target system is accessed via three or more
stepping stones, then it is most likely that the session is
manipulated by a malicious hacker for SSI. Therefore, it is
sufficient to only use the three values 2, 3, and 4 for the value
of k, respectively.

Next, we describe the rationale of designing detection
algorithms for SSI by using the k-means clustering, given
three RTT datasets obtained from connection chains of
length two, three, or four, respectively. But we do not know
which dataset was collected from a connection chain of
length two, three, or four. When k = 2, we run the k-mean
clustering algorithm on these three RTT datasets. It is
observed that the output generated by the dataset corre-
sponding to the connection-chain length two would produce
the smallest standard derivation. According to such an obser-
vation, for these three datasets, we may conclude that the
dataset that produced the output with the smallest standard
derivation was obtained from the connection chain of length
two. We have a similar observation for k = 3. We execute the
k-means clustering algorithm on these three datasets. It is
observed that the output generated by the dataset corre-
sponding to the connection-chain length three would pro-
duce the smallest standard derivation among the three
datasets. According to such an observation, for these three
datasets, we may conclude that the dataset that produced
the output with the smallest standard derivation was
obtained from the connection chain of length three. For k
= 4, we also have a similar observation. As a result, by mining
network packets using the k-means clustering method, we
can estimate the length of a connection chain.

Suppose that Y = fy1, y2,⋯, yng is a set of n data points.
Let C = fc1, c2,⋯, ckg be the set of k centers that will be used
by the k-mean clustering algorithm. We partition Y into k
disjoint subsets Y1, Y2,⋯, Yk, where the data points in Y j

are associated with their nearest center cj in C for each 1 ≤ j
≤ k by associating each point in Y to the nearest center in
C. For each 1 ≤ j ≤ k, let Y j = fyj1 , yj2 ,⋯, yjYg. The standard
derivation σ of the given dataset Y according to the k-means
clustering is defined to be the square root of its variance:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
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〠
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Let dataset-1, dataset-2, and dataset-3 denote the three
RTT datasets obtained from three connection chains of dis-
tinct length 2, 3, or 4, respectively. But we do not know which
RTT dataset was obtained from which connection chain
beforehand. Our proposed algorithm for SSI detection using
the k-means clustering method can accurately determine
which RTT dataset was obtained from the connection chain
of length 2, 3, or 4, respectively. Our proposed detection algo-
rithm for SSI is described in Algorithm 1.

Let us explain Algorithm 1 that is used to estimate the
length of a connection chain. The value of the integer k is
between 2 and 4.

At Step 1, the k-means clustering algorithm is called on
dataset-1. Here is the procedure: initially, we randomly select
k points in Y as the k centers for the clustering algorithm that
executes the steps below:



Input: k, dataset-1, dataset-2, and dataset-3.
Output: the RTT dataset obtained from the connection chain of length k.
(1) Call the k-means clustering algorithm on dataset-1. Assume σ1 represents the standard derivation outputted based on Equation (2)

using the k clusters obtained at the end of the k-means clustering algorithm execution
(2) Call the k-means clustering algorithm on dataset-2. Assume σ2 represents the standard derivation outputted based on Equation (2)

using the k clusters obtained at the end of the k-means clustering algorithm execution
(3) Call the k-means clustering algorithm on dataset-3. Assume σ3 represents the standard derivation outputted based on Equation (2)

using the k clusters obtained at the end of the k-means clustering algorithm execution
(4) If σ1 = min fσ1, σ2, σ3g, return dataset-1; /∗ if σ1 is the smallest one among all three standard derivations, the dataset-1 is obtained

from the connection chain of length k ∗/
(5) If σ2 = min fσ1, σ2, σ3g, return dataset-2; /∗ if σ2 is the smallest one among all three standard derivations, the dataset-2 is obtained

from the connection chain of length k ∗/
(6) If σ3 = min fσ1, σ2, σ3g, return dataset-3; /∗ if σ3 is the smallest one among all three standard derivations, the dataset-3 is obtained

from the connection chain of length k ∗/

Algorithm 1: Algorithm to estimate the length of a connection chain
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(i) To generate the k clusters, each point in Y is scanned
and assigned to the cluster center whose distance
from the cluster center is minimum of all these clus-
ter centers

(ii) Calculate the standard derivation σcurr using the cur-
rent partition and cluster centers according to Equa-
tion (2)

(iii) For each cluster, recompute the new cluster center
which is the average of the data points in the cluster

(iv) Use these new cluster centers to reproduce the k
clusters following the same procedure described in
step (i)

(v) Recompute the standard derivation σnew using the
updated partition and cluster centers according to
Equation (2)

(vi) If σnew ≥ σcurr then Exit; otherwise, go back and
repeat step (iii) above
When the k-means clustering algorithm exits, the stan-
dard derivation is minimized using the cluster centers and
partition obtained at the last round of the algorithm. Thus,
after the algorithm’s last round completes, the standard
derivation can no longer be smaller through changing
the positions of the cluster centers. According to Equation
(2), the value of σ1 is the standard derivation obtained by
using the k clusters calculated at the last round of the k
-means clustering.

Similarly, at Steps 2 and 3 of Algorithm 1, the k-means
clustering algorithm is called on dataset-2 and dataset-3,
respectively. Then, σ2 and σ3 are in turn computed. If σ1 is
minimum among the three values σ1, σ2, and σ3, then the
dataset dataset-1 is the one that was obtained from the con-
nection chain of length k. The similar conclusions are also
true for the two datasets dataset-2 and dataset-3.

Finally, Algorithm 1 will be executed for the values of
k = 2, 3, and 4. Hence, Algorithm 1 can accurately determine
the length of each of these three connection chains from
which the three RTT datasets were collected.
4. Performance Analysis of the Proposed
Detection Algorithm

In this section, we analyze the performance of our proposed
Algorithm 1 above for SSI detection by mining network traf-
fic using the k-means clustering approach. The window size
we used to generate the RTT datasets in the experiments is
three for all the captured packets. That is, for each Echo
packet, we compute the timestamp differences between this
Echo packet and up to three previous Send packets. We will
verify the effectiveness and correctness of our proposed
detection algorithm for SSI through well-designed network
experiments. In total, we collected 20 collections of datasets,
each of which contains three datasets obtained from connec-
tion chains of length 2, 3, or 4, respectively. Assume that we
do not know the length of the connection chain where each
of these datasets was collected from. Our proposed detection
algorithm can accurately determine which dataset was col-
lected from a connection chain of length 2, which dataset
from a connection chain of length 3, and which dataset from
a connection chain of length 4.

In our experiment, we initially created a connection chain
with only one connection from the intruder’s host to the first
stepping-stone host S1 that will be used as the detecting
sensor where a detection program such as TCPDump is
installed. Then, the connection chain is extended to the host
S2 and then to the host S3. Now the length of the down-
stream chain (from the sensor S1 to the host S3) is two. After
that, the connection chain is extended to contain three con-
nections and, finally, up to four connections in the down-
stream connection from the sensor host S1 to the victim
host. See Figure 3 for the connection chain of length four.

For the connection chain of two connections, we moni-
tored and captured its TCP Send and Echo packets and then
computed the RTTs for the connection chain. The RTT data-
sets were generated by using a window of size three. We
found that most of its RTTs are actually around the mean
of these RTTs of the connection chain. Theoretically, this is
true according to the distribution of the packets’ RTTs of a
connection chain we discussed in Section 2. Then, we
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Figure 3: A connection chain of length four (from the sensor host S1 to the victim’s host).

Table 2: The standard derivations outputted by the 2-mean
clustering algorithm on the three RTT datasets collected from
connection chains of lengths 2, 3, and 4, respectively.

RTT dataset Chain length Standard derivation

Dataset-1 2 678238.35

Dataset-2 3 760574.99

Dataset-3 4 758813.90

Table 3: The standard derivations outputted by the 3-mean
clustering algorithm on the three RTT datasets collected from
connection chains of lengths 2, 3, and 4, respectively.

RTT dataset Chain length Standard derivation

Dataset-1 2 68994.78

Dataset-2 3 5377.87

Dataset-3 4 6621.19

Table 4: The standard derivations outputted by the 4-mean
clustering algorithm on the three RTT datasets collected from
connection chains of lengths 2, 3, and 4, respectively.

RTT dataset Chain length Standard derivation

Dataset-1 2 7542.40

Dataset-2 3 1870.36

Dataset-3 4 1733.15
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perform the same procedures for the connection chains of
three and four connections, respectively. For the connection
chain of length three, most of its RTTs are indeed around
the mean of the RTTs of the connection chain. The same is
true for the connection chain with length four. Let dataset-
1, dataset-2, and dataset-3, respectively, represent the data-
sets of packets RTTs generated from the captured TCP Send
and Echo packets collected from the connection chains of
lengths 2, 3, and 4, using a window of size 3.

Then, we run the 2-means clustering algorithm (i.e., all
items in the dataset are divided into 2 clusters) on the data-
sets dataset-1, dataset-2, and dataset-3. For each input data-
set, this 2-means clustering algorithm outputs the standard
derivation calculated using the 2 clusters obtained at the last
iteration of the 2-means clustering based on Equation (2).
The standard derivations outputted by this clustering algo-
rithm are listed in Table 2. Based on this table, the RTT data-
set we collected from the connection chain of length 2
achieves the smallest standard derivation in this case.

Similarly, we run the 3-means clustering algorithm (i.e.,
all items in the dataset are divided into 3 clusters) on the
datasets dataset-1, dataset-2, and dataset-3. The standard
derivations outputted by this clustering algorithm are listed
in Table 3. Based on this table, the RTT dataset we collected
from the connection chain of length 3 achieves the smallest
standard derivation in this case.
Finally, we run the 4-means clustering algorithm (i.e., all
items in the dataset are divided into 4 clusters) on the data-
sets dataset-1, dataset-2, and dataset-3. The standard deriva-
tions outputted by this clustering algorithm are listed in
Table 4. Based on this table, the RTT dataset we collected
from the connection chain of length 4 achieves the smallest
standard derivation among all three datasets.

Therefore, we can accurately determine the length of the
connection chain where each of the three RTT datasets was
collected from by using our proposed detection algorithm
based on the k-means clustering.

5. Conclusion and Future Research Directions

We proposed in this paper an efficient detection algorithm
for SSI by using the k-means clustering algorithm to estimate
the length of a (downstream) connection chain. Our pro-
posed detection algorithm using the k-means clustering can
accurately determine the connection chain length. Also, the
proposed algorithm does not require capturing and process-
ing a large number of TCP packets. Therefore, our proposed
detection algorithm for SSI is efficient. Due to the use of the
k-means clustering approach, our proposed algorithm is
easy to implement as well. Through well-designed network
experiments by setting up three connection chains, the effec-
tiveness and correctness of our proposed detection algo-
rithm for SSI are verified. For future research work, one
can appropriately modify some steps of the k-means cluster-
ing algorithm so that the detection algorithm for SSI can sig-
nificantly reduce both the false positive and false negative
errors compared to all existing approaches. Also, the detec-
tion methods based on the k-means clustering require that
there should be as less outlier values of round-trip times as
possible. Therefore, additional algorithms are needed to
remove these outlier values of round-trip times from the
input file of the detection algorithm.
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