
Research Article
Microgrid Group Control Method Based on Deep Learning under
Cloud Edge Collaboration

Yazhe Mao,1 Baina He ,1 Deshun Wang,2 Renzhuo Jiang,1 Yuyang Zhou,1 Xingmin He,1

Jingru Zhang,1 and Yanchen Dong1

1College of Electric and Electronic Engineering, Shandong University of Technology, Zibo 255000, China
2China Electric Power Research Institute, Nanjing 210003, China

Correspondence should be addressed to Baina He; hebaina@sdut.edu.cn

Received 2 December 2020; Revised 3 February 2021; Accepted 5 March 2021; Published 18 March 2021

Academic Editor: Yuanpeng Zhang

Copyright © 2021 Yazhe Mao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aiming at the economic benefits, load fluctuations, and carbon emissions of the microgrid (MG) group control, a method for
controlling the MG group of power distribution Internet of Things (IoT) based on deep learning is proposed. Firstly, based on
the cloud edge collaborative power distribution IoT architecture, combined with distributed generation, electric vehicles (EV),
and load characteristics, the MG system model in the power distribution IoT is established. Then, a deep learning algorithm is
used to train the features of the data model on the edge side. Finally, the group control strategy is adopted in the power
distribution cloud platform to reasonably regulate the coordinated output of multiple energy sources, adjust the load state, and
realize the economic operation of the power grid. Based on the MATLAB platform, a group model of MG is built and
simulated. The results show the effectiveness of the proposed control method. Compared with other methods, the proposed
control method has higher income and minimum carbon emission and realizes the economic and environmental protection
system operation.

1. Introduction

With the continuous advancement of new energy power
generation technology, communication technology, Inter-
net technology, and other power industry technologies
and new-generation information and communication tech-
nologies, the IoT technology and the distribution network
are deeply integrated to form the Internet of distribution
things and microgrids (MG). The use of networked supply
and intelligent management technology can play a series
role between the user side and distributed energy [1, 2].
With the continuous development of power grid technol-
ogy, MG is a relatively independent system, which can
not only operate independently but also constitute a multi-
energy complementary intelligent MG group. Among
them, the shortcomings of the intermittent power output
of distributed power can be compensated by reasonable
regulation, so as to ensure the quality and reliability of
the power supply [3].

At present, MG still faces greater challenges in regulating
distributed generation (DG), battery energy storage system
(BESS) equipment, and loads [4, 5]. Ref. [6] proposes a
“source-storage-load” coordination balance algorithm based
on deep learning, which enables the system and user load
to achieve Nash equilibrium without prior information, and
optimizes the MG’s intelligent control capabilities. With the
development of research on the mobile BESS characteristics
of EV, it enters the MG as a special DG [7]. Ref. [8] con-
structed a real-timeMG optimal energy management system,
by using the random forest method to predict the EV driving
mode to schedule the charging and discharging of the EV
battery, which not only improves the consumption of distrib-
uted energy but also improves its utilization efficiency. Ref.
[9] studies the energy management framework of intelligent
MG and analyzes the energy optimization among household
load, EV, BESS, and distribution network. Most of the con-
trol strategies proposed in the above literature are from the
perspective of MG and use demand response to guide users
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to optimize the MG economy [10]. However, the uncertainty
of EV and collaborative optimization of distributed energy in
the MG group of power distribution IoT still need to be fur-
ther studied.

Therefore, under the framework of cloud edge collabora-
tive in power distribution IoT, a MG regulation method
based on deep learning is proposed. Based on the established
MG system model, as well as the system optimization objec-
tives and constraints, the edge side training learning of the
deep learning algorithm is used to regulate and control the
MG group.

2. MG System Model in Power Distribution IoT

Combining edge computing with cloud computing, the cloud
edge collaborative computing framework is constructed, and
the power distribution IoT architecture based on cloud edge
collaboration is established, as shown in Figure 1. Taking the
edge computing group as the basic unit, according to the
logic structure of cooperative autonomy between groups
and cloud edge collaborative control, the mathematical
model and training learning model of MG group computing
are established; finally, the control optimization calculation
of the MG group is carried out on the power distribution
cloud platform.

Among them, the end device mainly collects the data of
each MG for modeling; the edge node has the edge comput-
ing ability, collects the data of the end device and determines
the optimization objectives and constraints, and trains and
learns the data model based on the deep learning algorithm;
the power distribution cloud platform uses the data informa-
tion of each edge node and considers the target optimization
model to achieve a larger scale. The optimal energy distribu-
tion of the MG group is proposed.

The topology structure of MG is shown in Figure 2,
which mainly consists of wind turbine (WT), photovoltaic
(PV) energy, BESS, gas generator, EV, fuel cell, energy con-
version device, and users.

In the MG system, MG is connected with the main net-
work, and vehicle to grid is introduced. The role of vehicle
to grid is to stimulate the charging of the vacant EV, so that
it does not need to be charged during the peak load, which
reduces the power supply pressure of the main network,
and the electric energy stored in the EV can be sent to the
main network, increasing the power supply in the system.
As the power supply of MG, DG will change under the influ-
ence of weather and other factors, and the system will be
adjusted accordingly. The power in the system eventually
flows to the user.

2.1. Generating Unit Side. Renewable energy such as WT
power generation and PV power generation is increasingly
widely used in MG. At the same time, BESS can effectively
solve the problem of intermittent output of distributed
energy [11]. Therefore, the MG group adopts the WT/opti-
cal/storage/grid collaborative power generation mode.

The output of WT is closely related to environmental
wind speed, wind cut-in and cut-out speed, and rated wind
speed. PV output power PPV is determined by the output

power of PV modules, solar irradiance, and ambient temper-
ature under standard conditions. The battery next state of
charge ðSOCði + 1ÞÞ is related to the current state of battery
(SOCðiÞ).
2.2. End Side EV Model. The randomness of EV is mainly
reflected in the uncertainty of the time to access/leave the
MG and the randomness of the initial SOC due to the driving
distance. The end time and mileage of EV generally follow
normal distribution [12]. Therefore, based on the Monte
Carlo algorithm, the probability model of end time and mile-
age of EV is established, which is expressed as follows:
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where t is the end time of driving, σt = 3:41, μt = 17:47, d is
the mileage, σd = 3:24, and μd = 8:92.

EV in MG can be divided into dispatchable vehicles and
schedulable vehicles according to whether the owners agree
to participate in centralized control. Among them, disorderly
charging is adopted for nonschedulable vehicles; that is, the
owners charge by returning time and driving demand of
EV in the next period; and orderly charging is adopted for
schedulable vehicles; that is, under the time of use price
mechanism, the owners can charge uniformly within the
specified time [13, 14].

2.3. End User Load Unit. Based on the comparative analysis
of users’ usage habits and load types, user loads can be
divided into base load, reducible load, translatable load, and
interruptible load [15, 16]. Among them, the base load is a
necessary load and does not have the ability to adjust. The
latter three are adjustable loads, which can be adjusted
according to electricity price or other incentive policies. Elec-
tric water heater (EWH) and air conditioning (AC) are
widely used and have BESS characteristics. Optimization
strategies can be adopted to control their output power in
peak power consumption as a representative of translatable
load; its working range can be adjusted to the low power con-
sumption period [17]. The user side of the MG system can
adjust the load utilization through the electricity price
mechanism.

3. Optimization Model and Control Strategy of
MG Group in Power Distribution IoT

Under the time-of-use price mechanism, the overall load
demand of users in the MG group of the power distribution
IoT will inevitably change [18, 19]. Therefore, under the
cloud-side collaborative architecture, deep learning is used
to control the MG group, rationally regulate the coordinated
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output of multiple energy sources, adjust the load status, and
realize the economic operation of the power grid.

3.1. The Optimization Goal of Cloud-Side Collaboration

3.1.1. Daily Operating Cost. The operating cost of a MG
group in a cycle is an important factor to improve the eco-
nomic benefits of users, including its initial investment cost,
daily operation and maintenance costs, and load transfer
compensation after users participate in the time-of-use elec-
tricity price mechanism [20, 21]. The optimization objective
function is

min Clower = Δi〠
24

i=1
CWT + CPV + CBESS + CG½ �, ð2Þ

where CWT, CPV, and CBESS are the total operating costs of
WT, PV array, and BESS, respectively, and CG is the interac-
tive power cost of MG and large grid.

3.1.2. Heterogeneous Energy Synergy and Charging Power
Optimization. In the low-voltage distribution network, the
sources of charging energy usually include BESS, WT, and

PV. However, since PV and WT are greatly affected by envi-
ronmental factors, if the BESS can be used to balance the
impact of environmental factors, the fluctuation of charging
power in the MG can be reduced [22, 23]. The calculation
formula of charging power is as follows:

min Pt
chargep

t
e + ptWT + ptPV

� �

Pt
charge = Pt

BESS + Pt
WT + Pt

PV,
ð3Þ

where t is the time, Pt
BESS is the charging power of BESS, P

t
WT

is the charging power of WT, Pt
PV is the charging power of

PV, Pt
charge is the total charging power of MG with upper

and lower limits. pte is the cost price, and ptWT and ptPV are
the cost of WT power generation and PV power generation,
respectively.

3.2. Constraint Condition

3.2.1. EV Constraints. The constraints of EV should not only
consider the characteristics of EV but also meet the normal
needs of car owners. The state of charge constraints of EV
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and the charging and discharging power constraints of EV
are as follows:

SOCEV,min ≤ SOCEV ið Þ ≤ SOCEV,max,

PEV,dis ≤ Pc ið Þ ≤ PEV,cha,
ð4Þ

where SOCEV,max is 0.95, SOCEV,min is 0.2, PEV,dis is the max-
imum discharge power of EV, and PEV,cha is the maximum
charging power.

3.2.2. Supply and Demand Balance Constraints of MG. In
order to ensure the normal life of users, the power provided
by MG should be balanced with the power required by users:

Pload ið Þ − PWT ið Þ − PPV ið Þ − PBESS ið Þ − PG ið Þ = 0, ð5Þ

where PloadðiÞ is the load demand at i time after MG partici-
pates in the control strategy.

3.3. Edge-Side Training Learning Based on Deep Learning
Algorithm. By combining the edge computing capabilities of
edge nodes with the super perception of deep learning and
the decision-making of reinforcement learning, the deep
reinforcement algorithm can perform output control based
on the analysis of input data, making it closer to the way peo-
ple think [24, 25]. Reinforcement learning is based on the
Markov decision process (MDP), which makes the transition
of the system at the next moment independent of the previ-
ous moment [26, 27]. The deep learning algorithm uses the
following function value update method to approximate the
Q function:

φt+1 = φt + α rt+1 + γ max
a

Q st+1, a, φð ÞQ st , at , φð Þ
� �

− ∇φQ st , at , φð Þ,
ð6Þ

where α is the learning rate, φ is the neural network weight, γ
is the discount factor, s is the system state, and a is the action
strategy, by which α = 1, γ = 0:85. When training a neural
network, use the mean square error to define the error func-
tion:

L φð Þ = E rt+1 + γ max
a

Q st+1, at+1, φð Þ −Q st , at , φð Þ
� �2

� �
:

ð7Þ

Obtain the gradient of the error function in the φ direc-
tion, update the parameters by means of stochastic gradient
descent, and obtain the optimal strategy on the basis of
obtaining the optimal Q value. In the deep learning training
process, if the selection action and the evaluation action
come from the same Q value of the same network, the final
result may have a large error due to overestimation. The dual
deep learning calculates the maximum Q value in the main
network for selection actions, and the target Q value calcula-
tion is performed in the target network, as shown in the fol-

lowing formula:

QDoubleQ
t = rt+1 + γQ st+1, arg max

a
Q st+1, a ; φtð Þ ; φ−

t

� �
: ð8Þ

In order to alleviate the problem of model overestima-
tion, the model usually needs to control a small difference
range between the target Q value and the actual Q value dif-
ference, and this helps to improve the algorithm convergence
speed.

3.4. Control Strategy of MG Group Based on Power
Distribution Cloud Platform. The MG group control strategy
takes BESS, EV, gas storage, and time as system states, discre-
tizes the original continuous MG operation process, and sep-
arates charging and discharging and other forms of electrical
energy [28, 29]. As the action strategy, assume that the cur-
rent state is st , the next state is st+1, the allowed action strategy
is a, and the action process includes changes in equivalent
parameters.

3.4.1. MDP Tuple Description. The state space s consists of
three parts: controllable battery sb, uncontrollable PV and
load sPV,l, and time series sm:

s = sb × sPV,l × sm: ð9Þ

The reward function is a real-time reward function,
which is aimed at evaluating a point in time information,
and cannot explain the quality of the overall strategy. There-
fore, it is necessary to define the state action value function to
represent the long-term effect of the strategy on the state:

Qh s, að Þ = Eh 〠
T−1

t=0
γtr st = s, at = aj

" #
: ð10Þ

3.4.2. Control Strategy of MG Cluster. In the power distribu-
tion cloud platform system, the state input includes BESS
battery storage capacity E, natural gas storage capacity G,
EV storage capacity V , and time t. The discrete-time state
quantity is 48. Different state variables have different ways
to determine the action strategy a in MG. After the input
state and action strategy are determined, the online learning
can be synchronized [30]. The multiple iterations of the Q
algorithm can make the Q value table tend to converge, so
as to determine the optimal scheduling route. The overall
flow of the algorithm is shown in Figure 3.

The calculation of each state conversion income usually
includes variable information such as selection environment,
current time price, and natural gas price and then fills in the
R matrix of the corresponding action under the state [30]. If
there is no action corresponding to the state in R, the R value
table is generated. In state st , according to the BESS, natural
gas storage, automobile power storage, and current time con-
tained in the current MG group, determine the action At that
should be taken; then, the system will enter the next state.
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4. Simulation Results and Analysis

In order to verify the effectiveness of the proposed MG group
control method, a group model containing 4 autonomous
MGwas built in the real-time simulation platformMATLAB,
and its topology is shown in Figure 4.

The rated voltage/frequency of the MG group is
380V/50Hz. The MG group includes PV module unit, WT
power generation unit, and BESS, and the specific capacity
is 400 kW, 600 kW, and 400 kW, respectively. According to
the actual load demand of a city in China, the time-of-the-
art price mechanism is adopted for electricity sales and pur-
chase in MG. According to the actual load demand of a city
in China, the valley load period is from 22:00 to 5:00 the next
day; 6:00 to 7:00, 11:00 to 12:00, and 17:00 to 18:00 are load
sharing periods; the rest are peak load periods. The electricity
purchase prices of peak, flat valley, and valley are 0.83
yuan/kWh, 0.49 yuan/kWh, and 0.17 yuan/kWh, respec-
tively, and the electricity selling prices are 0.65 yuan/kWh,
0.38 yuan/kWh, and 0.13 yuan/kWh, respectively.

4.1. Regulation Results of Single MG. The time-of-use electric-
ity price mechanism is used to guide users to adjust the usage
habits of adjustable loads in order to achieve the purpose of

“peak cutting and valley filling.” The overall load curve before
and after optimization of the MG is shown in Figure 5.

It can be seen from Figure 5 that before optimization, the
overall load curve of consumers fluctuates greatly, and the
peak value of electricity consumption is concentrated in the
period of high electricity price. After the user load partici-
pates in the control strategy, the overall load curve changes,
showing that the daytime demand power decreases, while
the night time demand power increases, and the load
decreases during the peak period, thus reducing the peak val-
ley difference and smoothing the load curve. It can be seen
that after the energy regulation of MG, the total load energy
consumption is reduced and the economy of the system is
improved.

4.2. Optimization Results of MGGroup. By adjusting the opti-
mal coordination mode of distributed energy, BESS, and
load, the capacity utilization rate of the MG group can be
improved, and the economic benefit can be improved. The
results of heterogeneous energy optimization control are
shown in Figure 6.

It can be seen from Figure 6 that during the period from
22:00 to 06:00 the next day, the WT of distributed energy has
a large output. Under the condition of ensuring the normal
load demand, the BESS charges. Since the power generated
by distributed energy is greater than the load demand, the
MG sells electricity to other loads in the MG group, so as to
increase the economic benefits of users. However, during
11:00-16:00, during the peak period of MG power consump-
tion, the output of WT is reduced, and the output of PV
power generation is large. At the same time, due to the peak
electricity price period, the BESS starts to cooperate with the
WT and PV array to output at the same time, so as to reduce
the consumers’ purchase of electricity from the large grid; at
the same time, the BESS stores the energy during the low
electricity price period and when the distributed energy out-
put has surplus. In the high electricity price period, it not
only ensures the stability of MG power supply but also
improves the consumption capacity of distributed energy,
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Figure 3: Control strategy of double level optimization model.
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thus smoothing the overall load curve and achieving the pur-
pose of peak load shifting and valley filling.

4.3. Comparative Analysis of Different Methods. In order to
demonstrate the economic and environmental protection of
the proposed method, it is compared with the methods in
Refs. [6, 8, 9]. Among them, the economy and environmental
protection are calculated quantitatively from the electricity
purchase cost and carbon emission of MG, respectively.
The product of the two is used as the evaluation index. The
smaller the value is, the stronger the regulation ability is.
The experimental results of the growth trend of economic

and environmental protection of the MG group are shown
in Figure 7.

As can be seen from Figure 7, at the beginning of the iter-
ation, the performance of each algorithm is low, but with the
increase of the number of iterations, the optimal solution is
constantly approaching and finally tends to converge; the
economic and environmental performance is optimal, which
is about 24000 yuan ∗ t, exceeding the benefit of the empiri-
cal learning algorithm. The algorithm used in Refs. [6, 8]
has a relatively small amount of calculation, so it can con-
verge quickly, but the cost of purchasing electricity is very
high, about 26500 yuan, and the overall regulation perfor-
mance is poor. Ref. [9] grows rapidly in the initial iteration
stage, but due to the lack of prediction for future strategies,
it grows slowly in the later stage and has poor performance.
It can be demonstrated that the proposed method has a good
ability of energy coordination and optimization. Through the
improved deep reinforcement learning algorithm control
strategy, the economic and environmental protection of the
system has been greatly improved.

5. Conclusions

With the promotion of distributed energy, the number of
MG has increased dramatically, forming MG groups. In
order to improve the coordination and optimization of MG
group energy, a control strategy based on deep reinforcement
learning is proposed. Based on the cloud-side collaborative
power distribution IoT architecture, the system model of
the MG is proposed and interconnected to construct the sys-
tem architecture of the MG group. In addition, the edge-side
training and learning of the deep reinforcement learning
algorithm are used to control the MG group, rationally regu-
late the coordinated optimization of multiple energy sources,
and realize the economic and environmental protection
operation of the MG group. A MG group model was built
on the MATLAB platform to conduct simulation
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experiments. The results show that the proposed method
introduces the time-of-use electricity price mechanism to
regulate load operation and achieve the purpose of peak
shaving and valley filling, and the overall energy consump-
tion is small, and the economic performance is better. Com-
pared with other methods, the system has the smallest carbon
emissions, maximizes the consumption of renewable energy,
and realizes economical and environmentally friendly system
operation.
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