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We use Machine Learning (ML) to study firms’ joint pricing and ordering decisions for perishables in a dynamic loop. The research
assumption is as follows: at the beginning of each period, the retailer prices both the new and old products and determines how
many new products to order, while at the end of each period, the retailer decides how much remaining inventory should be
carried over to the next period. The objective is to determine a joint pricing, ordering, and disposal strategy to maximize the
total expected discounted profit. We establish a decision model based on Markov processes and use the Q-learning algorithm to
obtain a near-optimal policy. From numerical analysis, we find that (i) the optimal number of old products carried over to the
next period depends on the upper quantitative bound for old inventory; (ii) the optimal prices for new products are positively
related to potential demand but negatively related to the decay rate, while the optimal prices for old products have a positive
relationship with both; and (iii) ordering decisions are unrelated to the quantity of old products. When the decay rate is low or
the variable ordering cost is high, the optimal orders exhibit a trapezoidal decline as the quantity of new products increases.

1. Introduction

Due to the scarcity of resources and the advance of technol-
ogy, both academia and practice have highlighted the signif-
icance of value deterioration, focusing on perishables as a
central issue. Many previous studies on perishable products
focused on food items (e.g., meat, poultry, produce, dairy,
and bakery products), pharmaceuticals (e.g., drugs and vita-
mins), and cut flowers; this paper studies perishables caused
by the replacement of high-tech products, such as laptop
computers and telephones, have an increasingly short life
cycle due to rapid advances in science and technology and
thus exhibit perishable characteristics. It is more convincing
to study the joint dynamic ordering and pricing of high-
tech products in multiperiods than traditional static pricing.
According to a survey conducted by China Youth Daily in
April 2018, 71.8% of respondents changed their mobile
phones at least once every two years and 42% said that their
still in use digital products should be updated in a higher
frequency.

Managing perishables remains a significant but open
issue for industry and academia. A key feature of perishable
inventory systems is that each product has its own finite
shelf-life; retailers may even have an inventory of a single
product with a wide variety of ages on the same shelf. There-
fore, the biggest challenge may stem from matching the
supply of variously aged perishable goods with the diversity
of customers’ demand. For instance, some customers like
high-quality products while others prefer low prices.
Retailers could thus do more to ensure that the quantity of
new products meet the demands of consumers with quality
sensitivity while discounting older products to attract con-
sumers with price sensitivity when considering the dynamic
demand competition between different ages’ products, with
the purpose of maximizing their profits. For example, when
Apple introduces new mobile phones, it will continue to sell
old phones at low prices; when the car launches a new model,
the old model will continue to sell at a reduced price. How
should these retailers dynamically develop joint ordering
and pricing strategies when considering the purchase
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behavior of heterogeneous consumers and dynamic demand
substitution between different ages’ products in a multiper-
iod? However, many studies have neglected the impact of
the number of old products carried into the next period on
joint strategy with assuming that all remaining valuable old
products are entered to the next period or all are discarded.
This paper will verify the optimal dynamic data of old prod-
ucts carried into next period as well as the optimal dynamic
ordering and pricing strategy in a multiperiod when different
ages’ products sale simultaneously. Further, this paper is
aimed at answering the complicated questions as follows.
How should retailers make a trade-off between decreasing
order quantity to reduce ordering costs and increasing quan-
tity to accrue a greater share of profit? How should retailers
make a trade-off between discarding valuable old products
and swallowing new products’ profits?

Specifically, we consider two different types of products,
new and old, each with its own set of qualities, being sold
simultaneously in a given period. The retailer must vary the
quantity and price of the two products to maximize long-
term revenue when considering dynamic demand competi-
tion, positive lead time, fixed ordering cost, and inventory
holding cost. In addition, we introduce a consumer utility
function to develop a demand model that considers customer
purchase behaviors and build our Markov decision model to
obtain an optimal strategy, including the decision actions
selected for each state that can maximize the total expected
discounted profit over an infinite horizon. Then, we origi-
nally develop a reinforcement learning algorithm, Q learning,
which can solve optimal strategies more effectively without
the state transition probability. Finally, we analyze changes
to the optimal strategy under different parameters and then
present management implications corresponding to our
numerical experiments. We find that by incorporating the
number of old products carried into the next period in the
decision-making, retailers have greater flexibility and more
decision options. Although each strategy presents complex
features, the Markov decision-making model has a more
comprehensive reference value.

The remainder of the article is structured as follows. In
Section 2, we review the related literature. Section 3 describes
the cost and demand models (the latter based on the vertical
differentiation model in Moorthy, 1988) and develops the
final model based on Markov decision processes. In Section
4, we use the Q-learning algorithm to analyze the model’s
optimal strategy; the characteristics of which are illustrated
through numerical analyses. Finally, Section 5 presents man-
agerial implications and offers directions for future research.

2. Literature Review

The literature on ordering and pricing strategies for perish-
able inventories is substantial, while very few studies com-
bine ordering, pricing, and disposal policies in a single
model validating different ages’ products sold in the same
period. Hence, the literature streams most relevant to our
research concerns involve (i) inventory control for perish-
ables, (ii) dynamic pricing for perishable inventories, and

(iii) customer behavior modeling for ordering, pricing, and
other controls.

The research on inventory control for perishables
involves two types of perishability: random and fixed life-
time. Fixed lifetime models were pioneered by Nahmias
and Pierskalla, who considered inventory control for perish-
ables with a two-period lifetime and discussed the optimal
ordering strategy within a finite period without a detailed
solution [1]. When a product’s lifetime is longer than two
periods, ordering strategies involving old products have com-
plex, nonlinear structures. This approach was developed by
Fries and Nahmias, but both of these studies involve trade-
offs: lost sales in the former and delayed deliveries in the
latter [2, 3]. Researchers therefore sought more effective
heuristic strategies to solve these problems. Nandakumar
and Morton studied a heuristic ordering strategy for multili-
fetime perishables based on a discrete time-inventory model.
He proposed and verified a heuristic strategy for retailers to
determine the upper and lower bounds of order quantity
[4]. Li et al. studied joint replenishment and clearance sales
for perishables under a general finite lifetime and a last-in-
first-out (LIFO) issuing rule. They found that optimal
strategies can be characterized by two product-inventory
thresholds and proposed that products with different lifetime
remainders be sold at clearance sales [5]. When considering
fixed ordering costs and lead time constraints, inventory
strategies are likely to have to be adaptable, as retailers face
a trade-off between the frequency and quantity of orders
based on cost. Coelho and Laporte introduced the joint
replenishment and inventory control of perishable product,
while considering inventory holding costs, disposal costs,
they modeled the problem under general assumptions as a
MILP and solved it exactly by branch and cut [6]. Berk and
Gürler used the Markov decision process to develop their
model and evaluated it using the (Q, r) strategy. In this way,
they were able to study ordering strategies’ various parame-
ters for multilifetime perishable products with positive lead
time, allowing for lost sales [7]. Chao et al. developed an
approximation algorithm for perishable inventory systems
with positive lead times and finite ordering capacities, show-
ing that their model admits a theoretical worst-case perfor-
mance under positively correlated demand processes [8].
Our study builds on this work to focus on perishable inven-
tory systems with a fixed lifetime, positive lead time, and
fixed ordering costs. However, it is insufficient to study only
the inventory control problem for perishables. Ordering and
pricing strategies influence each other, and it is necessary to
incorporate both into the decision-making process to maxi-
mize the retailer’s revenue.

There is a rapidly growing stream of literature on
dynamic pricing and inventory control for perishables. Feng
studied an optimal replenishment model with dynamic
pricing and quality investment for perishable products, and
the dynamic optimization model is proposed to maximize
the total profit per unit time and solved on the basis of
Pontryagin’s maximum principle [9]. Kaya and Polat investi-
gated the problem of jointly determining the optimal pricing
and inventory replenishment strategy for a deterministic per-
ishable inventory system, in which demand is both time and
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price dependent. Their model also determined the optimal
point to adjust prices in relation to the optimal price and
the optimal order quantity [10]. Rabbani et al. discussed opti-
mal dynamic pricing and replenishment policies for items
that exhibit deterioration in both quality and physical quan-
tity, where the selling price was defined as a time-dependent
function of the initial price and discount rate [11]. When the
decision cycle involves more than two periods, the joint
pricing and inventory control solutions become extremely
difficult. Only a few studies limitedly address this issue. Li
et al. considered a dynamic joint pricing and inventory
control problem for a perishable product over an infinite
horizon, assuming a linear price-response demand model
with backlogging and zero lead time. They characterized
the optimal strategy’s structure as having a two-period
lifetime and developed a base-stock/list-price heuristic for
stationary systems with multiperiod lifetimes [12]. Li et al.
proposed a stationary structural policy consisting of an
inventory order-up-to level, state-dependent price, and
inventory-clearing decisions and developed a fractional pro-
gramming algorithm to compute the optimal policy in an
infinite-horizon lost-sales case, in which the retailer does
not sell new and old inventory at the same time [13]. Chen
et al. analyzed joint pricing and inventory control problem
for a perishable product with a fixed lifetime over a finite
period when different ages’ perishables sale simultaneously,
but they uniformly priced them [14]. All these papers still
have not developed model validation of consumer behaviors
and the competition between new and old products.

Finally, our study relates to research that models cus-
tomer behaviors in the context of ordering, pricing, and other
controls. The consumer utility function in Smith et al.
provides a reference for dealing with vertical differentiation
between different ages’ perishables [15]. Ferguson and
Koenigsberg studied a two-period joint pricing and inventory
control problem, addressing the impact of competition
between new and old inventory in a secondary period [16].
Akçay et al. considered a dynamic pricing problem over a
finite selling horizon, in which the firm has an initial inven-
tory of multiple substitutable and perishable products. They
modeled the multiproduct dynamic pricing problem as a sto-
chastic dynamic program, analyzing its optimal prices with
an integrative model of consumer choice that was based on
linear random consumer utilities [17]. Sainathan cited
consumer utility functions to describe the utility evalua-
tions among different ages’ products. He determined the
retailer’s optimal procurement and pricing strategies for
different ages’ perishable products over an infinite horizon
using a Markov decision problem [18]. Chew et al. deter-
mined order quantities and prices for a perishable with a
multiple period lifetime, allowing substitution between dif-
ferent ages’ products. Specifically, they modeled demand
for different ages’ products as dependent on both their
own prices and the prices of substitutable products, i.e.,
products of “neighboring ages.” They used a stochastic
dynamic programming model to obtain the optimal joint
policy for a two-period lifetime; however, they failed to
provide a specific method for products that have lifetimes
longer than two periods [19].

In summary, although there are many studies on perish-
able inventories, there is a research gap that addresses both
dynamic demand substitution and joint ordering, pricing,
and disposal strategy for different ages’ products in a multi-
period, also lacking of precise algorithms to gain the optimal
strategy. On this basis, our contribution to bridge the existing
research gap involves the following: (i) we incorporate the
number of old products carried to the next period into the
joint strategy to better cope with consumer preferences and
dynamic demand substitution, with the purpose of maximiz-
ing the retailers’ profits when considering fixed order cost
and inventory holding cost, which is not included in
Sainathan [18]; (ii) we develop the Q-learning algorithm
rather than dynamic programming or value iteration to solve
the Markov model and gain the multiperiod optimal strategy.
This algorithm can obtain a stable optimal policy effectively,
including the actions of all states, after being trained without
the state-transition probability and current expected return.
Some results from multiple numerical experiments can pro-
vide theoretical guidance to retailers’ daily decisions.

3. Model

We consider a retailer who sells a perishable product with a
two-period lifetime over an infinite horizon. The retailer
has a chance to order in each period, and the lead time is
one period. At the beginning of each period, the retailer
observes the initial inventory, which includes both old prod-
ucts from the previous period and new products, and decides
how many new products to order for the next period. The
total number of old and new products on the shelves at any
given time cannot exceed the retailer’s capacity. The retailer
then decides the prices for the new and old products. There
are N customers in each period, whose arrival follows a
Poisson distribution. Each customer purchases up to one
product to maximize utility based on price and quality sensi-
tivity, which follows 0-1 uniform distribution. Because the
two products are vertically differentiated, the retailer loses
more from trying to sell old products due to their lower price.
Hence, the retailer faces a trade-off between product spoilage
and demand substitution and thus must take into account the
optimal number of old products carried into the next period.
The objective of the retailer is to maximize the total expected
discounted profit over an infinite horizon. The notations and
decisions defining the model are provided in the next
sections.

3.1. Notations. λ: average number of arrivals,
N : total number of arrivals in each period following a

Poisson distribution,
I: the capacity on shelf,
cf : fixed ordering cost,
cv : ordering cost per unit,
cI : inventory holding cost per unit,
τn: the new product quality,
τo: the old product quality,
θ: customer’s quality sensitivity following 0-1 uniform

distribution,

3Wireless Communications and Mobile Computing



otr : the number of old products remaining at the begin-
ning of period t,

nt : the number of new products available at the beginning
of period t,

gt : gt ∈ f0, 1g, gt = 1 if the retailer ordered in period t,
otherwise gt = 0,

Ut
mn: them customer’s utility for new products in period t,

Ut
mo: them customer’s utility for old products in period t,

xtmn: them customer’s purchase of new product in period t,
xtmo: them customer’s purchase of old product in period t,
dtn: the demand of new product in period t,
dto: the demand of old product in period t,
Ct : total cost in period t,
Rt : net profits in period t.

3.2. Decisions. qt : the order quantity in period t,
ots: the number of products unsold in period t and carried

over to period t + 1,
ptn: the price of new product in period t,
pto: the price of old product in period t.

3.3. Demand Model. Any customer who visits the retailer has
three choices—buy one old product, buy one new product, or
buy nothing. All customers make their decisions based on
utility and preference. Similar to Sainathan utility function
[18], let Ut

mn = θtm τn − ptn be the utility of a new product for
customer m, and Ut

mo = θtm τo − pto be the utility of the old
product.

If it meets two conditions, customer m will choose
product i:

Ut
mi =max

j=n,o
Ut

mj,

Ut
mi > 0:

8<
: ð1Þ

According to the above two conditions and granted that
the old product will be priced lower than the new product,
we can obtain the upper and lower bounds for each product’s
price:

0 < pto <min τo, ptn
� �

, 0 < ptn < τn: ð2Þ

There are six situations, and we discuss them
independently.

(1) When Ut
mn > 0 ≥Ut

mo orUt
mo > 0 ≥Ut

mn, customer m
will only purchase new products (or old products)
and buy nothing if they are out of stock

(2) When Ut
mn ≥Ut

mo > 0, customers prefer to purchase
new products and buy old products if the new
products are out of stock; otherwise, they buy
nothing. When Ut

mo >Ut
mn > 0, customers prefer

to buy old products and purchase new products
when old products are out of stock; otherwise, they
buy nothing

(3) When 0 ≥Ut
mn ≥Ut

mo or 0 ≥Ut
mo >Ut

mn, customers
buy nothing

Then, after customer m makes a choice, there are three
cases:

(1) A new product was purchased (xtmn = 1, xtmo = 0)
(2) An old product was purchased (xtmn = 0, xtmo = 1)
(3) Nothing was purchased (xtmn = 0, xtmo = 0)

After all of the customers have made their decisions, the

demand for each product in the current period is Dtðdtn, dtoÞ
ðdtn =∑Nt

i=1x
t
in, dto =∑Nt

i=1x
t
ioÞ.

3.4. Cost Model. At the beginning of period t, the retailer
decides how many new products to order, qt . If the quantity
is 0, thengt = 0; otherwise, gt = 1. The product has a two-
period shelf-life, and its salvage value is zero at the end of sec-
ond period. The procurement lead time is assumed to be one,
such that units ordered in period t will be available for sale as
a “new” product in period t + 1. The retailer will also have to
decide the number of old products to be carried into the next
period, ots, and these products will generate inventory holding
costs cth = otscI . The total cost of the period is

Ct = gtcf + qtcv + cth: ð3Þ

The current net profit for the period is

Rt = dtnp
t
n + dtop

t
o − Ct: ð4Þ

3.5. Decision Model. Based on the previous two sections, we
used the Markov decision process to model the sales process
over an infinite horizon. At the beginning of period t, the
retailer’s states are Stðotr , ntÞ and actions are atðqt ; ots ; ptn, ptoÞ
ðots ≤min ðI − nt , otrÞ, qt ≤ IÞ. After all consumers make their
purchase decisions in that period, the remaining old products
are discarded directly because they have reached their
lifetime threshold and the remaining new products
become old products in the next period. The number of
old products remaining at the beginning of period t + 1
is therefore ot+1r = nt − dtn, and the number of new prod-
ucts in period t + 1 is the same as the previous order

Table 1: Parameter setting.

Parameter Value

Average number of arrivals λ = 12
Capacity on the shelf I = 15
Fixed ordering cost cf = 3
Ordering cost per unit cv = 3
Inventory holding cost per unit cI = 1
Discount factor γ = 0:9
New product quality τ1 = 20
Old product quality τ2 = 12
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quantity qt . Therefore, the retailer’s state in period t + 1
will be St+1ðot+1r = nt − dtn, nt+1 = qtÞ.

Let π be a strategy that involves the actions taken in each
state and Π the set of all strategies, i.e., π ∈Π. Let V be the
total discounted expected return when a certain strategy πj

is taken from a certain state St . Therefrom, we developed
the following result:

V St , πj

� �
= E Rt� �

+ γE Rt+1� �
+ γ2E Rt+2� �

+⋯ = 〠
∞

i=t
γi−tE Ri� �

: ð5Þ
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Figure 1: Basic model: optimal pricing.
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Equation (5) also has an equivalent expression, namely,
the Bellman equation:

V St , πj

� �
= E Rt� �

+ γ∙ 〠
St+1∈Φ

PSt→St+1,π j
∙V St+1, πj

� �h i
: ð6Þ

The optimal strategy π∗
St maximizes the value of state St ,

which is

V St , π∗
St

� �
=max

π∈Π
V St , π
� �

: ð7Þ

If the policy π ∗ holds for all states S ∈Φ, then π ∗ is the
optimal strategy for this model.

3.6. Solution Approach: Q-Learning Algorithm. In this paper,
the new product orders, the number of old products carried
into the next period, and pricing decisions are considered
an infinite discount Markov decision model consisting of
four main components: state set, action set, current expected
return, and state transition probability. The states and

actions of this model are Stðotr , ntÞ and atðqt ; ots ; ptn, ptoÞ,
respectively. The states and actions for qtand ots are discrete
and finite due to shelf-life constraints; furthermore, actions
related to pricing can also be regarded as discrete with a price
step. According to Puterman, when the state set and the
action set are finite and discrete and the discount factor sat-
isfies 0 < γ < 1, the infinite discount model has an optimal
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stationary strategy [20]; in other words, the optimal strategy
is only related to the states.

DP provides a number of methods for determining the
optimal strategy by calculating V ∗ and one π ∗, assuming
that Rt and PSt→St+1,π j

are known. One example is the value-

iterative solution that Sainathan uses [18]. Although this
method is intuitive, when the state action set is particularly
large (for example, there are a total of 256 states in the basic
model of this paper, and the largest number of possible
actions exceeds 400,000), this method is very complex and
unstable. Watkins and Dayan first proposed a Q-learning
algorithm, which does not require knowledge of the current
return and state transition probability and can determine
the optimal strategy more quickly when the states and action
spaces are large [21]. More recently, scholars have further
optimized the Q-learning algorithm to provide precise solu-
tions to more complex problems. Liang et al. used the deep
Q-learning (DQN) algorithm to generate the watermarked
positions adaptively and make some inspiration on the copy-
right protection issue of intellectual property (IP) circuit
resources of the electronic devices in IoT environment [22].
Zhou et al. proposed an improved anisotropic Q-learning
routing algorithm which can provide stable and dynamic
solutions for AGV routing [23]. In recent years, Q-learning
algorithm also has a good application in the field of opera-
tions management. Dittrich and Fohlmeister based on deep
Q learning developed a self-optimizing inventory control,
in which input is modeled as a state vector that describes
the current stocks and orders within the process chain, and
the output represents a control vector that controls orders
for each individual station [24]. In this study, we will develop

the Q-learning algorithm to find a joint optimal strategy for
perishable products.

Reinforcement learning methods evolved from animal
learning and parameter perturbation adaptive control theory.
The fundamental premise is that if an agent’s actions lead to a
positive environmental reward (enhanced signal), then the
agent will be more likely to take this action again in the
future. Q learning is an important algorithm in reinforce-
ment learning. It combines dynamic programming with
learning psychology to make the sequential optimization
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decision with delayed returns. The purpose of the rein-
forcement learning system is to obtain a strategy π, such
that the total discount returns ∑∞

i=0γ
irt+i will be maximized

(0 < γ < 1 is a discount factor, γ indicates the degree of hyper-
opia of the system; if the value is small, then the system pays
more attention to the recent actions; otherwise, it prioritizes
future actions). When the state transition probability and
current expected return function are unknown, the learning
system can gain the optimal strategy by only using informa-
tion contained in the training data for the immediate reward
Rt . The learning system usually does not estimate the envi-
ronment model; rather, it directly optimizes an iteratively
calculated Q function. Given a strategy π, Watkins and
Dayan defined the Q function as the mathematical expecta-
tion of the total discount reward when the state is st , the
action is at , and the subsequent strategy is π [21].

Qπ st , atð Þ = R st , atð Þ + γ〠
st′∈S

Pstst′ π stð Þ½ �Vπ st′
� �

: ð8Þ

The Q value is the expected discounted reward for exe-
cuting action at at state st and following policy π thereafter.
The object in Q learning is to estimate the Q values for an
optimal policy. It is straightforward to show that V∗ðsÞ =
max
a∈A

Q∗ðs, aÞ and that if a ∗ is an action at which the maxi-

mum is attained, then an optimal policy can be defined as
π∗ðsÞ = a∗. In Q learning, the agent’s experience consists of
a sequence of distinct stages or episodes. In the tth episode,
the agent observes its current state st , selects and performs
an action at , observes the subsequent state st′, receives an
immediate reward rt , and adjusts its Qt−1 values using a
learning factor βt according to the following.

Qt s, að Þ

=
1 − βtð ÞQt−1 s, að Þ + βt rt + γVt−1 st′

� �h i
if s = st and a = at ,

Qt−1 s, að Þ, otherwise,

8<
:

ð9Þ

where

Vt−1 s′
� �

=max
b

Qt−1 s′, b
� �n o

ð10Þ

is the best the agent thinks it can do from state s′. The initial
Q values, Q0ðs, aÞ, for all states and actions are assumed to be
given. In Equation (9), βt is the learning factor, which
controls the speed of learning. Larger βt indicate faster con-
vergence. However, excessively large βt may lead to noncon-
vergence. Watkins and Dayan showed that if a pair ðs, aÞ can
perform infinite iterations using Equation (9) under certain
conditions, then when t→∞, Qtðs, aÞ has probability 1 of
convergence toQ∗ðs, aÞ [21].

4. Numerical Studies and Observations

In this section, we provide an initial set of basic parameters
for the simulation and then adjust parameters to analyze
select features of the optimal policy. Through many numeri-
cal experiments, it is found that there are some regular
patterns that can reflect the intrinsic mechanism of the
model. Due to the limited space, only a set of representative
parameters are selected for specific analysis and discussion.
It is worth noting that the parameter settings in different
situations are determined by combining the actual and the
previous analysis principles to ensure the scientific results.
The simulation calculation is based on the VC program and
runs on the Windows platform.

4.1. Experiment Design. Table 1 shows the basic parameters
used in the simulation. To ensure the accuracy of our results,
we set the price step to 0.25. Finally, the average number ofQ
function iterations per model reached 1.5 billion and was
eventually stabilized.

Through the computer simulation calculation, the opti-
mal pricing strategy, the optimal number of old products car-
ried into the next period, and the optimal ordering strategy of
the basic model are given as Figures 1 and 2.
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Both figures’ characteristics suggest that there is an asso-
ciation between the optimal pricing and the number of old
products carried into the next period.

As shown in Figure 3, in the region where fnew + old ≤
ðLmax t = 8Þg (new represents the number of new arrivals
and old represents the number of remaining products), the
number of old products carried into the next period is not
affected by the number of new products; as such, the
remaining old products all carry into the next period. In the
area where fnew + old > ðLmax t = 8Þ, new ≤ ðLmax n = 7Þg,

the number of old products carried into the next period
increases as the number of new products decreases until the
number of new products exceeds eight, after which no old
products are sold. Therefore, the more intuitive conclusion
is that there is a product bound ðLmax tÞ. The retailer can yield
greater profit by adding the remaining old products to the
shelf when the number of new products does not exceed
Lmax t . The findings also show that new products will be sold
preferentially before old products when the potential
demand is limited. Moreover, the sizes of Lmax t and Lmax n
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affect performance across contexts (system parameters), as
we explain in greater detail in the following sections.

Based on our analysis of correlations between the optimal
pricing and the optimal number of old products carried into
the next period, we were able to draw some initial conclusions
about the optimal pricing of both new and old products.

(1) For new products, there are four conditions affecting
optimization:

First, when fnew + old ≤ ðLmax t = 8Þg, the relationship
between the new product’s optimal price and the number of
new and old products is negative.

Second, when fnew + old > ðLmax t = 8Þg, the new prod-
uct’s optimal price only decreases slightly as new arrivals
increase, but there is no relationship to the number of old
products remaining. In this region, the number of old prod-
ucts that get carried into the next period remains the same,
even as the number of old products changes. In general, a
reduction in substitute products will cause the product’s
price to rise, but we find that the product’s price declines as
the number of substitute products decreases; this indicates
that increases to the number of new products have a greater
impact on the price than the number of old products carried
into the next period.
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Figure 10: The optimal pricing and old product sales volume with an average arrival rate of 10.
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Third, when ðnew > 8Þ, only new products are sold.
Therefore, the new product price will decrease as the number
of new products increases.

Finally, when ðnew > 12Þ, the optimal price of new prod-
ucts remains basically unchanged. When the sales volume
approaches or exceeds the potential average number of
arrivals, no more benefits can be accrued. As such, we can
discern that discounts are not always beneficial.

(2) For old products, when fnew + old ≤ ðLmax t = 8Þg,
there is a negative relationship between the optimal
price, the number of products carried over into the
next period, and new product arrivals. But outside
of this region, there are no obvious relationships:
the old product pricing curve is generally smooth.
As with new products, the pricing of old products will
be affected both by the quantity of old products and
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by the number of substitute products. As such, the
result for this parametric setting suggests that the
impacts of quantity and pricing are the same. We

can therefore infer that new product quantity has a
greater effect on the price of new products than on
the price of old products, as shown in Figure 4
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Figure 5 shows the optimal order quantity and reveals
that new product order quantity has no relationship to the
quantity of remaining products. In the ðnew ≤ 7Þ area, the
optimal order quantity is 6, and in the ðnew > 8Þ region, the
optimal order quantity is 5, indicating that the expected
number of old products carried into the next period will
increase when there are too many new products.

Combined with the optimal number of old products
carried into the next period, the retailer faces a trade-off
between decreasing order quantity to reduce ordering costs
and increasing quantity to accrue a greater share of profit.

Through derivation, we find that within a certain range, the
probability distribution for different combinations of prod-
ucts can vary significantly, while the long-term expected
return for different combinations may also differ. If the total
number of products remains the same, the retailer can deter-
mine an appropriate ordering strategy by comparing the
marginal long-term expected return between old and new
product sales. However, it should be noted that long-term
expected return must be considered because product combi-
nations affect the state of the later period, which affects the
long-term discounted total value of the current period.
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Figure 16: The optimal pricing and old product sales volume with an 80% decay.
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Similarly, there is a relationship between order quantity,
new product quantity, and remaining product quantity:

qt = nt+1 ≥ ot+2r : ð11Þ

We conducted further analysis based on this relation-
ship. As shown in Figures 4–6, assuming that the state
is St ðnew = 13, old = 9Þ, the possible locations of the next
state are shown as solid circles according to the relation-

ship (11). After a finite number of periods, the system
state is only transferred within the dashed box in the
figure; further, we find that any initial state has this
property.

To better understand the characteristics of optimal strat-
egy, we simulated an optimal strategy for each period under
various parameters.

As Figure 7 shows, we found the order quantity to be
stable at six, but the price of new products changes within
a relatively limited range, and the old product’s price is
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Figure 18: The optimal pricing and old product sales volume with a 40% decay.
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also limited when sold. This suggests that (i) changes to
the states and strategies are limited, which provides a basis
for the retailer to enact some heuristic strategies (or fixed

strategies), and (ii) even if the scope of the state transition
is small, the retailer’s joint strategy still presents complex
features.
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Figure 20: The optimal order quantity with 80%, 60%, and 40% decay.
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4.2. Expected Customer Arrivals. This section discusses the
different characteristics of the optimal strategy for different
expected customer arrival rates.

As shown in Figures 8–11, the price of new or old prod-
ucts declines as the number of customer arrivals decreases.

Likewise, the optimal order quantity decreases with the
expected number of customers, as shown in Figures 12–15.

In summary, there is a positive correlation between the
optimal price of both new and old products and the expected
rate of customer arrivals, in addition to the optimal order
quantity. For the number of old products carried into the
next period, Lmax t and Lmax n decrease with the expected cus-
tomer rate, indicating that the retailer should give the old
product more shelf capacity to avoid losses when demand is
adequate but prioritize new product sales if the demand is
insufficient.

4.3. Product Quality Decay. Let β be the rate of perishable
decay when the period is over:

β = τn − τo
τn

: ð12Þ

We can draw the following conclusion from Figures 16–19.
First, given the optimal number of old products carried

into the next period in the above four figures, Lmax t and
Lmax n increase as the decay rate decreases. A decrease in
the decay rate correlates with a relative increase in the value
of old products’ quality such that old products have more
opportunities to be sold.

Second, the optimal pricing strategy exhibits the same
trend with the decay rate such that the area of the optimal
price (new + old ≤ Lmax t) and (new ≤ Lmax n) expands. In this
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area, the optimal prices (for both new and old products)
decrease as the number of products increases. Outside of this
region, product pricing will only be affected by the number of
new products because the number of old products carried
into the next period decreases when the decay rate is high.
In addition, the lower value of the old product has a negative
effect on its own price, namely, the lower the value, the lower
the price.

Figure 20 shows the optimal ordering strategy when the
decay rates are 80%, 60%, and 40%, respectively. When the
decay rate is either 80% or 60%, the optimal ordering strategy
remains at six. However, when we decrease the rate to 40%,
the characteristics are different (a detailed description
accompanies Figure 5).

When we reduced the decay rate to 20%, as shown in
Figure 21, the optimal ordering quantities in the ðnew ≥ 6Þ

region decrease as the number of newly arrived products
increases. This suggests that retailers will reduce current
ordering when the number of new products in the current
period is high and the decay rate is low.

4.4. Variable Ordering Cost per Unit. Variable ordering costs
include the purchase price of the new products, the shipping
costs, and other costs that are linearly related to the number
of new products. This section focuses on the relationship
between ordering strategies and adjustable ordering costs.

Figures 22–25 show the optimal ordering strategies when
the variable costs are 3, 5, 7, and 9, respectively. First, we
found the optimal ordering quantity to be unrelated to the
quantity of remaining products. Second, the optimal order-
ing quantity decreases, exhibiting a trapezoidal decline as
the variable unit cost increases. However, when the unit
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order cost is too high, the possible waste due to product per-
ishability also increases. In Figures 24 and 25, we found a case
in which the ordering is 0; this indicates that when the unit
order cost is too high, the retailer will try to sell the remaining
old products to avoid new orders.

5. Conclusion and Future Research

Given that few works researched on pricing and inventory
optimization for perishables considering multiperiod joint
strategies and consumer choice behaviors, this paper con-
ducts a simulation study centered on optimal joint strategy
especially when different ages’ products are sold simulta-
neously. In essence, this paper addresses such a problem
when retailers sale a single perishable with a two-period life-
time, they should dynamically determine the joint ordering,
pricing, and disposal strategy considering dynamic demand
substitution, in which customers substitute between the two
products when either new or old products are out of stock.
In particular, the retailer sets the prices for both the new
and old products and determines how many new products
to order and how many remaining products to carry into
the next period given demand uncertainty and diverse quality
preferences among customers in each period.

We used the Markov decision process to construct the
model, and the approach to seek the optimal strategy used
an up-to-date version of the Q-learning algorithm. The main
contribution of this paper is to utilize an accurate algorithm,
Q learning, to help the retailers make their joint ordering,
pricing, and disposal strategy in a time horizon allowing the-
oretically infinite periods. We initially apply a reinforcement
learning algorithm to the inventory field, and our results also
prove the efficiency of the Q learning through a large number
of numerical experiments.

We further summarize the key results and insights based
on our analysis as follows.

(1) We found that joint strategies of competing perish-
ables based on dynamic ordering and pricing can
yield more precise and targeted guidance for retailers.
Although each strategy presents complex features,
the decision-making model based on Markov deci-
sion processes has a general reference value. At the
same time, determining the number of old products
carried into the next period provides retailers more
decision options comparing to they only decide dis-
posal strategy, whether discard all valuable old prod-
ucts or enter all into the next period

(2) The optimal number of old products carried into the
next period is affected by Lmax t , the total quantity of
old products on shelves. All old products should be
carried into the next period until the total amount
of products reaches Lmax t . We found these determi-
nations to be positively related to the potential
demand and negatively related to the decay rate

(3) The pricing strategy involves several considerations:
(i) optimal pricing for both new and old products is
negatively related to the quantity of new and old

products given that the total quantity does not exceed
Lmax t ; otherwise, the optimal price is only negatively
related to the number of new products; (ii) the opti-
mal pricing of both new and old products is positively
correlated with the expected demand; and (iii) the
optimal pricing of new products is positively related
to the decay rate, but the optimal price of old prod-
ucts is negatively related to the decay rate

(4) Ordering decisions have complex characteristics:
(i) the order size is unrelated to the quantity of
remaining products but does have a positive cor-
relation with the number of potential consumers;
(ii) order quantities are not related to the number
of new products when the decay rate is high or
the variable ordering cost is low; however, the
optimal ordering quantities exhibit a trapezoidal
decline as the number of new products increases
and the decay rate is low or the variable ordering
cost is high

(5) In essence, our contribution to bridge the existing
research gap involved both dynamic demand substi-
tution and joint ordering, pricing, and disposal strat-
egy for different ages’ products within a multiperiod.
We analyzed the optimal strategy under different
parameters, by developing the Q-learning algorithm
rather than dynamic programming or value iteration
to solve the Markov model and gain the multiperiod
optimal strategy. This provides a basis for exploring
heuristic strategies and practical guidance for both
academia and practice

Possible extensions of this research involve relaxing some
of our assumptions, for example, by considering multiple
replenishments and price changes within a period or a
shelf-life of more than two periods. However, optimal solu-
tion still might be distorted due to any slight changes; as such,
a more balanced measure will be expected when weighing
between the model’s practicality and tractability.
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