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Following the recent advances in the Internet of Things (IoT), it is drawing lots of attention to design distributed algorithms for
various network optimization problems under the SINR (Signal-to-Interference-and-Noise-Ratio) interference model, such as
spanner construction. Since a spanner can maintain a linear number of links while still preserving efficient routes for any pair of
nodes in wireless networks, it is important to design distributed algorithms for spanners. Given a constant t > 1 as the required
stretch factor, the problem of our concern is to design an efficient distributed algorithm to construct a t-spanner of the
communication graph under SINR such that the delay for the task completion is minimized, where the delay is the time interval
between the time slot that the first node commences its operation to the time slot that all the nodes finish their task of
constructing the t-spanner. Our main contributions include four aspects. First, we propose a proximity range and proximity
independent set (PISet) to increase the number of nodes transmitting successfully at the same time in order to reduce the delay.
Second, we develop a distributed randomized algorithm SINR-Spanner to construct a required t-spanner with high probability.
Third, the approximation ratio of SINR-Spanner is proven to be a constant. Finally, extensive simulations are carried out to
verify the effectiveness and efficiency of our proposed algorithm.

1. Introduction

The Internet of Things (IoT) has attracted great attention in
recent years, owing to its potential military and civilian appli-
cations [1, 2]. Such a network generally consists of a large
number of autonomous network nodes, in which algorithms
are usually distributed since these algorithms have to work
without global information and coordinated central control.
Hence, there is an imperative need to design efficient distrib-
uted algorithms for various network optimization problems
in the IoT.

Constructing a t-spanner with a minimum number of
edges is one of the fundamental network optimization prob-
lems since the spanner property is a critical requirement of
topology control in the IoT [3]. The IoT is commonly mod-
eled as a graph GðV , EÞ, in which V is the set of wireless
nodes and E represents the set of communication links

(edges) connecting the nodes in V . A spanning subgraph H
of G is called a t-spanner, for t ≥ 1 if for all pairs of nodes u,
v ∈ V , the length of the shortest path fromu to v inH is atmost
t times of that inG. Here, t is called the stretch factor. A span-
ner can not only decrease the number of links and maintain
connectivity but also ensure that the length of a path between
any pair of communication nodes is within some constant fac-
tor from the shortest possible one. Therefore, constructing a
spanner of the communication graph is enormously helpful
for topology control, geographic routing, and compact rout-
ing in the IoT [3].

Spanners have been extensively studied in computational
geometry [4], in which GðV , EÞ is generally the complete
Euclidean graph of the node set V in the Euclidean plane.
However, even in the field of computational geometry, com-
puting a minimum stretch factor spanner using not more
than a given number of edges is NP-hard [5]. In the IoT,
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current spanner construction algorithms either do not con-
sider interference, such as [6], or only handle it under the
protocol interference model [7].

However, when multiple nodes send messages at the
same time, a node may be unable to receive the message from
its given sender owing to the interference caused by simulta-
neous transmissions. The protocol interference model and the
SINR (Signal-to-Interference-and-Noise-Ratio) interference
model are the commonly used interference models. SINR
can take into account cumulative interference of wireless
communications and is more realistic [8], thus has been
widely adopted now. However, designing and analyzing algo-
rithms are challenging under the SINR model since each
given receiver should compute accumulated interference
generated by all other senders at the same time.

1.1. Outline of the Problem. In this paper, we consider a
general case of constructing a t-spanner under SINR, namely
t-spanner-SINR. That is, given a constant t as the required
stretch factor, our objective is to design an efficient distrib-
uted algorithm for constructing a t-spanner of the com-
munication graph to minimize the delay of constructing
the t-spanner. The delay of constructing a t-spanner is
defined as the time interval from the start time-slot that
nodes start to work to the last time-slot that all the nodes
finish their task of constructing the t-spanner.

A large scale IoT discussed in this work consists of n
sensor nodes, with uniform transmission powers, deployed
randomly and uniformly in the two-dimensional Euclidean
space. Nodes act in synchronous rounds; in every communi-
cation round, a node can transmit a message and attempt to
receive a message. Each node initially knows only its own
unique ID and its own coordinates. Since we adopt the SINR
interference model when nodes communicate, the prede-
signed receivers can successfully decode the messages if and
only if SINR constraints are satisfied. Owing to the accumu-
lation and uncertainty of the SINR model, it is challenging to
design a t-spanner distributed algorithm based on SINR in
wireless networks. How to make more nodes transmit simul-
taneously and meanwhile make their given neighbor nodes
successfully decode the messages is crucial to the perfor-
mance of the algorithm under SINR.

The authors in [9] proposed a distributed algorithm
SINR-Undirected-YG under SINR and proved that the resul-
tant graph is a t-spanner. Zhang et al. [9] claim to be able to
construct a spanner at Oðlog nÞ time-slots, but the running
time of its algorithm is very large during the simulation. In
this paper, we study a general case of constructing a t-spa-
ner under SINR and try to reduce the delay.

1.2. Summary of Contributions. The summary of contribu-
tions of this paper is as follows:

(1) We identify the general case of constructing a t
-spanner under SINR (t-spanner-SINR problem),
and we design an efficient distributed algorithm
SINR-Spanner to construct a required t-spanner
under SINR with high probability, i.e., with a proba-
bility of at least 1 − e−ðn/4Þ, where n is the total number

of nodes in the network. Moreover, the resultant
t-spanner has OðnÞ edges

(2) Our distributed algorithm SINR-Spanner is also a
local algorithm, in which the topology can be locally
and self-adaptively maintained based on the informa-
tion from the neighbor nodes without affecting the
whole network. We reasonably utilize one kind of
proximity graph—Yao graph (YG)—to construct
spanner under SINR. YGs divide the surrounding
area of each node into k sectors of equal angles and
add edges only to the nearest neighbor within each
sector [10]. If there are two or more nearest neigh-
bors in a sector, one can choose the first neighbor
receiving the message. In our design, each node is
capable of independently performing successful local
broadcasts to collect its neighborhood information
within a certain range, such that it can get the nearest
neighbor in each sector and the resultant t-spanner is
a special YG

(3) We introduce the definition of proximity range and
proximity-independent set (PISet) to increase the
number of nodes transmitting successfully at the same
time and to reduce the delay in the SINR-Spanner algo-
rithm. The approximation ratio of SINR-Spanner is
proven to be a constant

(4) Extensive simulations are carried out to verify the
effectiveness and efficiency of our proposed distrib-
uted and randomized algorithm

The rest of this paper is organized as follows. Section 2
reports the most related work. Section 3 precisely defines
the formulation of the problem and introduces relevant
models and notations. The spanner construction algorithm
SINR-Spanner is presented in Section 4. Section 5 gives a the-
oretical analysis of the algorithm. In Section 6, we evaluate
the performance of the algorithm via simulation. Section 7
concludes the paper with suggestions for future work.

2. Related Work

In this section, we first investigate the spanner algorithms in
computational geometry and in the IoT, then discuss the
method of applying randomized and distributed solutions
under SINR.

2.1. t-Spanner. The book [4] by Narasimhan and Smid is a
comprehensive overview of geometric spanners. For geomet-
ric spanners, several structures and methods have been
proposed, such as the Greedy method [11], Well-Separated
Pair Decomposition method, Delaunay triangulation, θ
-graphs, and YGs. Constructing YGs is one of the simplest
ways of constructing t-spanners. Yao [10] used YGs to sim-
plify the computation of the Euclidean minimum spanning
tree. Althöfer et al. [11] firstly proved that YGs are the
t-spanners for the corresponding complete graph. For the
corresponding complete graph, YGs are 1/ð1 − 2 sin ðπ/kÞÞ
-spanners with k > 6 [12].
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In wireless networks, the spanner property was first dis-
cussed by Li et al. in [6]. They modeled the network as a unit
disk graph (UDG) and analyzed the energy stretch factor of
several common subgraphs of a UDG: n − 1 for the relative
neighborhood graph (RNG), 1 for the Gabriel graph (GG),
and Oð1Þ for YG. And these proximity graphs have been
widely used in spanner construction as subgraphs of a
UDG. There also exist spanner construction mechanisms
for quasi-unit disk graphs, disk graphs, and unit ball graphs
[13]. In [14], Kothapalli et al. proposed a local-control proto-
col for establishing a constant density spanner among a set of
mobile stations. The LISE (low interference spanner estab-
lisher) algorithm was presented to establish a spanner in
[7], where the interference definition is based on how many
nodes are affected by the communication over a certain link.
However, since the above spanner algorithms for wireless
networks are all studied without considering interference or
handling interference under the protocol interference model,
they cannot deal with interference effectively under the SINR
interference model. Zhang et al. [9] first consider spanner
construction under SINR, and this work improves it.

Constructing spanners under a computational geometry
field greatly promotes the study under the wireless network
setting. Meanwhile, wireless network requirements, which
generally need to efficiently satisfy various topological char-
acteristics, encourage the development of geometric spanner
construction. Recent results on sparse geometric spanners
focused on satisfying one or multiple topological characteris-
tics such as lightness, small degree [15], fault tolerance, no
central agent [16], and multiple characteristics [17].

2.2. SINR Model. In wireless networks, the SINR model
received increasing attention [8]. Despite the vast amount
of researches in the design and analysis of centralized
algorithms under SINR [18], few results are known about dis-
tributed solutions in this model, especially for global commu-
nication tasks, owing to the accumulation and uncertainty of
interference.

There is a growing interest in developing randomized
distributed solutions to local broadcast [19], which is defined
as successfully transmitting a message to all neighbors in the
corresponding reachable proximity of a node. Randomized
distributed solutions to local broadcast are often used as a
building block for global communication tasks, such as
multiple-message broadcast [20], synchronization [21], and
multiple channels broadcast [22]. In [20], selected leader
nodes adopt local broadcast to collect the messages that
arrive at their dominated nonleader nodes and then dissem-
inate the received messages to the whole network. The
algorithm in [21] starts from very low probabilities and
increases them gradually until nodes can hear a reasonable
number of messages and implement all nodes’ clock synchro-
nization. In [22], the selected leader in different channel col-
lects locally the messages of its dominated nonleader nodes in
the same channel to speedup multiple channel broadcast.
Note that most of the existing distributed and randomized
works under SINR are still in the theoretical stage except
[19] and Fuchs’s coloring study, such as [23]. Using local
broadcasting as a basic unit, we propose an algorithm of

spanner construction in this paper and perform simulations
to verify the performance of the algorithm.

3. Model and Problem Formulations

Assume that a set V of n wireless network nodes, modeled as
a graph G, is deployed randomly and uniformly in a 2-
dimensional geographic plane. Nodes act in synchronous
rounds. Each node is conscious of its ID and coordinates
and has the same transmission power P (P > 0). Let the
Euclidean distance for the two endpoints u and v, denoted
by duv, be the length of an edge in G. And let duvðGÞ be the
length of the shortest path between u and v in G which is
defined as the sum of the lengths of its edges.

A commonly assumed model for the propagation effect
of wireless nodes is deterministic path loss, i.e., Pr = P/dαuv,
where u transmits a message to v, Pr is the received power
at a receiver v, and α is the path loss exponent (typically,
2 < α ≤ 6). A deterministic path loss model is applied to
the following interference model.

3.1. SINR (Signal-to-Interference-and-Noise-Ratio) Interference
Model. In the SINRmodel, a transmission from node u to node
v is successful iff the SINR condition holds:

P/dαuv
N +∑w∈T\ uf g P/dαwvð Þ ≥ β, ð1Þ

where T ⊆V is the set of transmitting nodes, α ∈ ð2, 6� is the
path loss exponent depending on the network environment,
β > 1 is a hardware-defined threshold, and N is the environ-
mental noise.

The transmission range Rmax of a node u is the maximum
distance at which a node v can receive a clear transmission
from u while no other node is transmitting at the same time,
i.e.,∑w∈T\fugðP/dαwvÞ = 0. The SINR condition (1) tells us that

Rmax = P/Nβð Þ1/α, ð2Þ

for the given power level P. Note that Rmax is for only one
node u transmitting in the whole network at the time slot.

3.2. Local Broadcasting Range (Rb). We set the local broad-
casting range

Rb = 1 − εð ÞRmax, ð3Þ

where 0 ≤ ε < 1 is a fixed model parameter.
We say a node transmits Rb successfully in a time slot if it

transmits a message, and this message is received by all its
neighbors in a distance smaller or equal to Rb in the time slot.
In Section 4, we define the proximity range Rp such that the
nodes which are in a distance greater or equal to Rp can trans-
mit Rb successfully at the same time slot.

We denote the region within Rb of node u as a local
broadcasting region Bu and the number of nodes in it as
Δb
u. Furthermore, let Δb =maxu∈VfΔb

ug.
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3.3. Communication Graph. The communication graph
GRbðV , ERbÞ of a given network consists of all network nodes
and edges ðu, vÞ such that duv ≤ Rb. Since Rmax is for only one
transmission in the whole network at the same time, we
adopt a slightly smaller range Rb as [22] which suffice for
practical communication. In the communication graph
GRbðV , ERbÞ, which is simply denoted by GRbðVÞ, a node
v is a neighbor of node u if duv ≤ Rb.

3.4. Yao Graph (YG). The directed Yao graph YG
�!

kðVÞ with a
fixed integer parameter k > 0 is defined as follows. Any k
equally separated rays starting at the origin node define k sec-
tors. The orientation of the cut is identical for all nodes.
Translate the sectors to each node u ∈ V . In each sector with
a node u, pick the shortest directed edge hu, vi, if there is one,
to YG�!kðVÞ. Ties are broken arbitrarily.

This implies that YG�!kðVÞ preserves the shortest outcom-

ing edge in each sector. Accordingly, YG �kðVÞ preserves the
shortest incoming edge in each sector.

An undirected Yao graph, in which the edge directions
are ignored, is denoted by YGkðVÞ. YGRb

k ðVÞ is the Yao graph
in which only the edges whose lengths are no more than Rb
are preserved from YGkðVÞ. In other words, YGkðVÞ is the
spanning subgraph of a complete Euclidean graph KnðVÞ
on node set V and YGRb

k ðVÞ is the spanning subgraph of
GRbðVÞ.
3.5. t-Spanner. Let t > 1 be a real number. A spanning sub-
graph HðV , EHÞ of GðV , EÞ is said to be a t-spanner of G, if
for any two nodes u and v in V , the shortest path between
u and v inH, whose length is at most t times that of the short-
est path in G, i.e.,

duv Hð Þ ≤ t · duv Gð Þ: ð4Þ

The constant t is called the stretch factor of H (w.r.t. G).
Note that G can be KnðVÞ or a communication graph that
is a spanning subgraph of KnðVÞ.
3.6. Delay of Constructing a t-Spanner. The delay of con-
structing a t-spanner is defined as the time interval from
the start time slot that the first node starts to work to the last
time slot that all the nodes finish their task of constructing
the t-spanner.

Next, we present the definition of the problem, the
t-spanner under the SINR problem, which is our focus in
this paper.

3.7. t-Spanner under the SINR Problem (t-Spanner-SINR).
Assume that a set V of n wireless network nodes deployed
randomly and uniformly in a 2-dimensional geographic
plane, in which each node is aware of its ID and coordinates,
has the same transmission power P (P > 0) and a local broad-
casting range Rb; given a constant t > 1, the goal is to design a
distributed algorithm to find a t-spanner of the correspond-
ing communication graphGRbðV , ERbÞ under SINR, such that
the delay of constructing a t-spanner is minimized.

4. Algorithm

4.1. Algorithm Outline. The main idea of our algorithm is to
construct YGkðVÞ for the t-spanner-SINR problem. The rea-
son is that the YGkðVÞ graph is a t = 1/ð1 − 2 sin ðπ/kÞÞ
-spanner [9]. Consequently, given a constant t > 1, we com-
pute a k and construct YGkðVÞ under SINR in our distributed
algorithm to get the required t-spanner.

To construct YGkðVÞ, each node u needs the node v’s
information which is the closest to u in the sector v belongs.
Accordingly, each node should locally broadcast its ID and
coordinates to its neighbors. However, if all the nodes trans-
mit together under SINR, no node will receive any message
owing to the interference. To avoid collision, each node could
locally broadcast one by one. However, in a distributed algo-
rithm, there is not a centralized coordination for arranging
nodes to transmit in sequence. Accordingly, each node can
only transmit with the probability 1/n. Furthermore, in order
to reduce the delay, it has an obligation to have as many
nodes as possible to transmit simultaneously. Therefore, each
node will make a range as the radius of its neighborhood cir-
cle region and next take the inverse of the number of nodes in
its neighborhood circle region as the sending probability.

First, we will compute the range and give the node set in
which all nodes can transmit simultaneously.

4.2. Proximity Range and Proximity Independent Set (PISet).
How to make more nodes transmit simultaneously and
meanwhile make their neighbor nodes successfully decode
the messages is crucial for the performance of the algorithms
under SINR. Thus, we define the proximity range Rp such
that any nodes u and v can transmit simultaneously if
duv ≥ Rp. Intuitively, a tiny Rp implies a high degree of chan-
nel utilization. We examine how to set a proper Rp to guaran-
tee SINR threshold and meanwhile the highest channel
utilization degree. For clarity, we define the proximity range
and proximity independent set as follows.

4.2.1. Proximity Range Rp and the Corresponding Proximity
Independent Set PISetp. Proximity range Rp is a length, and
a PISetp is a subset of V that satisfies duv ≥ Rp for ∀u, v ∈
PISetpðu ≠ vÞ. A PISetp is maximal if and only if duw < Rp

for ∀u ∈ PISetp and ∀w ∉ PISetp. How to design Rp? The basic
idea underlying the design is to ensure the nodes in the same
PISetp transmit simultaneously and all their neighbors
receive the message successfully.

We refer to the region within Rp of node u as proximity
region Xu and the number of nodes in it as Δp

u. Besides, let
Δp =maxu∈VfΔp

ug.
Before designing Rp, we first give an example for Rp and

PISetp. Rp and PISetp are illustrated in Figure 1 where 19
nodes represented by solid circles are in the same PISetp.
Note that this PISetp is maximal. The distance between the
given receiver v with the sender u and the nearest of other
senders, which is w in Figure 1, is at least ðRp − RbÞ. In other
words, dwv ≥ ðRp − RbÞ in Figure 1.
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By observing the above example, we give the specific rela-
tionship between Rp and Rb in the following theorem.

Theorem 1. Suppose that Rp = ðc2 · β · ðc1/ðc1 − 1ÞÞÞ1/α · Rb +
Rb where c1 = ð1/ð1 − εÞαÞ > 1 and c2 = 6 + ðπ2 − 6Þð ffiffiffi3p /2Þ−α,
the nodes in the same PISetp can transmit Rb successfully at
the same time slot.

Proof. Let I = Rp − Rb. We begin by estimating the smallest
value of I when u transmits to v successfully and u transmits
simultaneously with other nodes in the same PISetp. Further,
we prove that the nodes in the same PISetp can transmit Rb

successfully at the same time slot with the above I. We say
a node transmits Rb successfully in a time slot if it transmits
a message and this message is received by all its neighbors
in a distance smaller or equal to Rb in the time slot.

In order for v to be able to receive the message from u, we
require SINRuv ≥ β.

Thus,

P/dαuv
N +∑w∈PISetp\ uf g P/dαwvð Þ ≥ β: ð5Þ

Since the equations (2) and (3), N = P/c1βRα
b where c1 =

1/ð1 − εÞα is a fixed parameter.
Now

P/dαuv
N +∑w∈PISetp\ uf g P/dαwvð Þ =

P/dαuv
P/c1βRα

bð Þ +∑w∈PISetp\ uf g P/dαwvð Þ

= d−αuv
R−α
b /c1βð Þ +∑w∈PISetp\ uf g d

−α
wv

:

ð6Þ

We derive the lower bound of the above formula. First,
d−αuv ≥ R−α

b since Rb is the maximum local broadcasting range
of a node. Furthermore, if a node w transmit together with u
as shown in Figure 1, w produces the largest interference
when w and the given receiver v have the closest distance I.
If we represent a link as a node as shown in Figure 2(a), for
the nodes in the PISetp, the densest packing of interfering
links is the hexagon packing [24] with edge length I as shown

in Figure 2(b). There are at most six nodes in the first layer,
and the distance is I with respect to the abstracting node uv
. Furthermore, the distance between uv and any node in the
lth ðl ≥ 2Þ layer is no less than ð ffiffiffi3p /2ÞlI with the lth layer hav-
ing at most 6l nodes.

〠
w∈PISetp\ uf g

d−αwv ≤ 6 · I−α +〠
l≥2

6l ·
ffiffiffi
3
p

2 lI

 !−α

= 6 · I−α + 6 ·
ffiffiffi
3
p

2 I

 !−α

·〠
l≥2

l−α+1:

ð7Þ

Since ∑l≥2 l
−α+1 = ζðα − 1Þ − 1, where ζð·Þ is the Riemann

zeta function, considering that α ≥ 3, then ζðα − 1Þ ≤ ζð2Þ =
π2/6. Thus, we have

〠
w∈PISetp\ uf g

d−αwv ≤ 6 · I−α + 6 ·
ffiffiffi
3
p

2 I

 !−α

· π2

6 − 1
� �

= 6 + π2 − 6
� � ffiffiffi

3
p

2

 !−α !
· I−α = c2 · I−α,

ð8Þ

where c2 = 6 + ðπ2 − 6Þð ffiffiffi3p /2Þ−α.
Therefore, to make ðd−αuv /ððR−α

b /c1βÞ +∑w∈PISetp\fug d
−α
wvÞÞ

≥ β valid, it is sufficient to have

R−α
b

R−α
b /c1βð Þ + c2I

−α ≥ β: ð9Þ

Therefore, I ≥ ðc2 · β · ðc1/ðc1 − 1ÞÞÞ1/α · Rb:

Hence, Rp = ðc2 · β · ðc1/ðc1 − 1ÞÞÞ1/α · Rb + Rb, where c1 =
1/ð1 − εÞα > 1 and c2 = 6 + ðπ2 − 6Þð ffiffiffi3p /2Þ−α:

Conversely, if Rp have the value as shown in the above,
the nodes in the same PISetp, which is maximal as shown in
Figure 1 or not maximal, can transmit Rb successfully at the
same time slot since the receiver power is no less than ðP · Þ
R−α
b in (9) and the cumulative interference is less than ðP · Þ

c2I
−α.
Figure 3 depicts visually the relation between proximity

range Rp and local broadcasting range Rb with different α, β,
and ε, which is helpful to pick these values during subsequent
algorithm simulation. These parameters are reasonably set as
follows: the path loss exponent α ∈ f3, 4, 5, 6g, the threshold
β ∈ ½1, 10�, and ε ∈ ½0:4,0:95�. From Figure 3, one can see that
Rp increases when α decreases, β increases, and ε decreases.
So we can get that Rp is as about 2.57 times at a minimum as
Rb when α = 6, β = 1, and ε = 0:95, while Rp is as about 6.34
times at a maximum as Rb when α = 3, β = 10, and ε = 0:4.

4.3. Algorithm. From the above Theorem 1, the nodes in the
same PISetp can transmit Rb successfully at the same time slot
while each node takes the value of Rp as Theorem 1, so the
sending probability for each node u is set to the inverse of
the number of nodes in its proximity region Δp

u. Thus, we

uvw

Rp

Figure 1: Proximity range Rp and a corresponding PISetp:
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guess all its neighbors can receive the message successfully
with high probability, and we will give the proof in the next
section. The pseudo-code for node u is given in Algorithm 1,
which implies that each node runs it independently.

Now, we describe the full operation of our distributed
algorithm SINR-Spanner. Each node u carries out the same
operations and has its local memory. The algorithm consists
of three parts. In part 1 (line 1-line 5), each node performs
initialization work. Each node u first computes the required

number of sectors depending on the given stretch factor t.
Then, each node u takes the inverse of Δp

u as the sending
probability. Thus how to obtain Δp

u a priori is critical to our
algorithm design. Some existing works, such as [19, 23],
assume the availability of Δp

u to facilitate the algorithm design
and analysis. Such requirements are common under SINR in
order to enable initial communication. Therefore, in our
algorithm, we also assume that Δp

u is available to simplify
the presentation. In part 2 (line 6-line 20), each node obtains

u v

Rb

uv

(a)

uv

I I

uv

I I

(b)

Figure 2: Link abstraction and the densest packing of interfering links.
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Figure 3: Rp vs. α, β, and ε.
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the incoming neighbor in each sector by receiving the neigh-
bors’ messages, and thus, a directed Yao graph forms.
Figure 4 shows an intermediate result after part 2 in which
there are 6 nodes; the edge length is at most Rb and k = 7. Here,

Ev1

�! = fhv3, v1i hv2, v1ig, Ev2

�! = fhv1, v2i hv3, v2i hv4, v2ig,
Ev3

�! = fhv2, v3ig, and so on. In part 3 (line 21-line 29), each
node sends an acknowledgement message back to its incoming
neighbor, and thus, an undirected Yao graph is constructed
which is a t-spanner we require. An example of YGRb

k ðVÞ is

presented in Figure 5, in which edge directions are ignored
from the graph shown in Figure 4. Here, Ev1

= fðv1, v2Þ, ðv1,
v3Þg, Ev2

= fðv2, v1Þ, ðv2, v3Þ, ðv2, v4Þg, Ev3
= fðv3, v1Þ, ðv3, v2

Þg, and so on. Ev1
has local data ðv1, v3Þ, and Ev3

has local data
ðv3, v1Þ; thus, the undirected edge ðv1, v3Þ is known by two
endpoints.

Our distributed and randomized algorithm SINR-Span-
ner, which is different from the algorithms in [9], can solve
the t-spanner-SINR problem. In part 1, the algorithm first
initializes the stretch factor t to attain a t-spanner. The
sending probability for each node u is set to the inverse of
Δp
u to reduce the delay; then, u repeats randomized transmis-

sion for 8Δp time slots, respectively, in part 2 and part 3.

5. Performance Analysis of Algorithm SINR-
Spanner

5.1. The Delay of SINR-Spanner. In order to obtain the main
result of this section in Theorem 8, we first prove that a graph
YGRb

k ðVÞ is constructed with high probability after the algo-
rithm SINR-Spanner terminates in 16Δp + c time slots in
Theorem 3; next, analyze why the resultant YGRb

k ðVÞ is the
required t-spanner of the communication graph GRbðVÞ in
Theorem 3.

1: Initialize the stretch factor t;
2: Initialize k = dπ/arcsin ððt − 1Þ/ð2tÞÞe;
3: Compute the number of nodes in its proximity region, i.e., Δp

u;
4: Initialize pu = 1/Δp

u;
5: Initialize Iu½i� = −1 for i = 1, 2,⋯, k;
6: for j = 1 to Δp time-slots do
7: Send a message containing its ID u and coordinates with probability pu, and remains listening with probability 1 − pu;
8: while receiving a message from some node v do
9: i = the index of the sector to which v belongs;
10: if Iu½i� == −1 or the distance dIu½i�u > dvu then
11: Iu½i� = v
12 end if
13: end while
14: end for
15: ←

Eu

=∅;

16: for i = 1 to k do
17: if Iu½i� ≠ −1 then
18: Eu

 =Eu
 ∪ hIu½i�, ui;

19: end if
20: end for

21: Eu = fðu, vÞ ∣ hv, ui ∈Eu
 g;

22: for i = 1 to Δp time-slots do
23: Broadcast the incoming neighbor set with probability pu;
24: while receiving a message from some node v do
25: if u is the incoming neighbor of v and ðu, vÞ ∉ Eu then
26: Eu = Eu ∪ ðu, vÞ;
27: end if
28: end while
29: end for

Algorithm 1: SINR-Spanner(u).

<v2, v1>
v1

v4
v2

v3
v6

v5

<v2, v4>
<v5, v4>

<v2, v3>

<v1, v2>
<v3, v2>
<v4, v2>

<v4, v6>

<v4, v5>
<v6, v5>

<v5, v6>

<v3, v1>

Rb :

Figure 4: YG �Rb

k ðVÞ after part 2, where k = 7.
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Now, we give a form of Chernoff bounds which can be
found in [22] and some advanced textbooks, such as [25],
for the proof of Theorem 3.

Lemma 2 [22, 25] (Chernoff bounds). Let 0 < δ ≤ 1 and X1,
X2,⋯, Xn be independent Bernoulli random variables, and
let X ≔ Σn

i=1Xi and μ = E½X�. Then, for any δ > 0, it holds that

Prob X < 1 − δð Þμð Þ < e−δ

1 + δð Þ 1+δð Þ

 !μ

< e−δ
2μ/2: ð10Þ

And for δ = 1/2,

Prob X < 1
2
μ

� �
< e−μ/8: ð11Þ

Theorem 3. A graph YGRb
k ðVÞ is constructed with high

probability after the algorithm SINR-Spanner terminates in
16Δp + c time-slots, where Δp is the maximum of the node
number in one proximity region and c is a constant for the
number of time slots for the initialization work.

Proof. Since Rp is as about 2.57 times to 6.34 times as Rb from
Theorem 1 and the resultant graph is connected, Δp

u > 2 for
any node u. The probability that u transmits as the only
transmitting node in its proximity region is

C1
Δp
u
· 1
Δp
u
· 1 − 1

Δp
u

� �Δ
p
u−1

= 1 − 1
Δp
u

� �Δ
p
u−1

> 1 − 1
Δp
u

� �Δ
p
u

> 1
4 :

ð12Þ

The last inequality holds, since ð1 − ð1/Δp
uÞÞΔ

p
u increases

when Δp
u increases, and it obtains the minimum value 1/4

when Δp
u is 2.

Since the nodes can transmit Rb successfully if they
belong to the same PISetp owing to Theorem 1, there are at
least n/Δp nodes transmitting together in one time slot. Con-
sequently, there are at least ðn/ΔpÞ · ð1/4Þ nodes transmitting
Rb successfully together in one time slot.

Therefore, after 8Δp time slots, there are at least 2n nodes
transmitting Rb successfully in expectation. By Chernoff
bound (Lemma 2), after 8Δp time slots, the probability

Prob X < nð Þ = Prob X < 1 − 1
2

� �
· 2n

� �
< e−n/4: ð13Þ

Therefore, the probability for all n nodes transmitting Rb
successfully is

Prob X = nð Þ = 1 − Prob X < nð Þ ≥ 1 − e−n/4: ð14Þ

Thus, after 8Δp time slots in part 2 of the algorithm SINR-
Spanner, all the node transmit its ID and coordinates Rb suc-
cessfully with high probability, i.e., each node obtains the
“nearest” incoming neighbor in its proper sectors. Then, after
a further 8Δp time slots in part 3, all the node transmit
acknowledgement messages Rb successfully with high proba-
bility. As a result, a graph YGRb

k ðVÞ is constructed with high
probability.

In addition, the number of time slots for the initialization
work in part 1 is a constant, which is denoted by c. So the
algorithm SINR-Spanner terminates in 16Δp + c time slots.

Obviously, the number of nodes in the proximity region
is upper bound by n. If Δp = n, a graph YGRb

k ðVÞ is con-
structed with high probability in 16n + c time slots.

Next, in order to prove that the resultant YGRb
k ðVÞ of the

algorithm is a t-spanner of the communication graph
GRbðVÞ, we apply some conclusions about YGkðVÞ where
YGkðVÞ is constructed from KnðVÞ.

Lemma 4 ([11]). If V is a set of n points in the plane, and the
integer k ≥ 2, then the graph YGkðVÞ contains at most
kn =OðnÞ edges.

Lemma 5 ([12]). Let t = 1/ð1 − 2 sin ðπ/kÞÞ for the integer
k > 6, YGkðVÞ is a t-spanner of KnðVÞ, where n is the num-
ber of nodes in V .

In the next, we show that YGRb
k ðVÞ is the required t

-spanner of the communication graph GRbðVÞ if GRbðVÞ is
connected in the following lemma of our previous work [9].
Zhang et al. [9] first give the condition that GRbðVÞ is con-
nected if and only if the longest edge in Euclidean minimum
spanning tree of the node set V is at most Rb. Note that if
the nearest neighbor of each node in every sector is within
the local broadcast region, the graph YGRb

k ðVÞ is a YGkðVÞ
and it is also a 1/ð1 − 2 sin ðπ/kÞÞ-spanner of KnðVÞ.

Lemma 6 ([9]). Let t = 1/ð1 − 2 sin ðπ/kÞÞ. If GRbðVÞ is
connected and the integer k > 6, YGRb

k ðVÞ is a t-spanner of
GRbðVÞ.

Now, we show that the resultant YGRb
k ðVÞ of the algorithm

is a t-spanner of the communication graph GRbðVÞ.

Theorem 7. Given a constant t > 1, setting k = dπ/ðarcsin
ððt − 1Þ/ð2tÞÞÞe, the resultant graph YGRb

k ðVÞ is the required

(v1, v2)

(v4, v2)
(v4, v5)
(v4, v6)

(v1, v3)

(v2, v1)
(v2, v3)
(v2, v4)

(v6, v4)

(v5, v4)
(v5, v6)

(v3, v1)
(v3, v2)

(v6, v5)

v1

v2

v4

v6

v5

v3

Rb :

Figure 5: YGRb
k ðVÞ after part 3, where k = 7.
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t-spanner with at most kn edges after the algorithm SINR-
Spanner terminates.

Proof. As k > 6, the sector angle is not larger than π/6. Hence,
sin ðπ/kÞ is a monotone decreasing function of k, and its
value is less than 1/2. As a result, tð= 1/ð1 − 2 sin ðπ/kÞÞÞ
increases as k increases when k > 6 and approaches 1 as k
⟶∞, i.e., t is an injective and increasing function of k.
Hence, its inverse function k = π/ðarcsin ððt − 1Þ/ð2tÞÞ is a
decreasing function of t. Therefore, given a constant t > 1,
we will find a k such that the Yao graph with the number of
sectors of no less than k is the required t-spanner.

Since the number of sectors is an integer, and the number
of edges becomes larger as the number of sectors increases
from Lemma 4, k is assigned to ½π/arcsin ððt − 1Þ/ð2tÞÞ�.
Therefore, the resultant graph YGRb

k ðVÞ is the required t
-spanner. Furthermore, YGRb

k ðVÞ have kn edges by Lemma 4.

Based on Theorems 3 and 7, we can state the main con-
clusion of this section in Theorem 8.

Theorem 8. The distributed algorithm SINR-Spanner con-
structs the required t-spanner with high probability, and the
delay is 16Δp + c time slots, where Δp is the maximum of the
node number in one proximity region and c is a constant for
the number of time slots for the initialization work.

Lastly, Table 1 illustrates the relation between the stretch
factor t and the number of sectors k in theory. In SINR-Span-
ner, k is the value in the second row given the corresponding
t in the first row. Note that t = 1/ð1 − 2 sin ðπ/kÞÞ is the upper
theory bound of the stretch factor for YGRb

k ðVÞ with respect
to GRbðVÞ so far, maybe a smaller k is sufficient in practical.

5.2. The Approximation Ratio of SINR-Spanner Algorithm.
The goal of t-spanner-SINR problem is to find a suitable t
-spanner under SINR and to minimize the delay in the con-
struction. Now, we try to give the approximation ratio of
the SINR-Spanner algorithm. The basic idea of our algorithm
is that each node should locally broadcast its ID and coordi-
nates to its neighbors Rb successfully under SINR. In order to
reduce the delay, there should be as many nodes as possible
to transmit simultaneously. As we see, in the SINR-Spanner
algorithm, the nodes in different proximity region can
transmit simultaneously. Now, we consider whether the
nodes in a different local broadcasting region can transmit
simultaneously, then discuss the approximation ratio of
SINR-Spanner.

Theorem 9. The approximation ratio of the algorithm SINR-
Spanner is bounded by ðe/2Þ · ðR2

p/R2
bÞ.

Proof. The probability that any node u transmits as the only
transmitting node in its local broad region is

C1
Δb
u
· 1
Δb
u

· 1 − 1
Δb
u

 !Δb
u−1

= 1 − 1
Δb
u

 !Δb
u−1

: ð15Þ

Let S be the total area of wireless nodes distribution.
Assume that a node as the only transmitting node in its local
broadcasting region can transmit Rb successfully, the number
of nodes transmitting Rb successfully in one time slot is

S

πR2
b

· 1 − 1
Δb
u

 !Δb
u−1

: ð16Þ

In fact, the assumption cannot be guaranteed by theory
and the following simulation, i.e., even though a node is the
only transmitting node in its local broadcasting region, the
node may not transmit Rb successfully owing to cumulative
interference producing by other simultaneously transmitting
nodes. So the solution adopted the above assumption is the
low bound for t-spanner-SINR problem.

From the analysis of SINR-Spanner algorithm, the delay
of constructing a t-spanner under SINR is mainly and
inversely proportional to the number of nodes transmitting
Rb successfully in one time slot. Hence, the approximation
ratio of the algorithm SINR-Spanner is

S

πR2
b

· 1 − 1
Δb
u

 !Δb
u−1

/ S

πR2
p

· 1 − 1
Δp
u

� �Δ
p
u−1

( )

=
R2
p

R2
b

1 − 1
Δb
u

 !Δb
u−1

/ 1 − 1
Δp
u

� �Δ
p
u−1

8<
:

9=
;

≤
R2
p

R2
b

· 12 /
1
e
= e
2 ·

R2
p

R2
b

:

ð17Þ

The inequality holds owing to the following: Δp
u > Δb

u ≥ 2
for connectivity and ð1 − ð1/xÞÞx−1 decreases with x increases
when x ≥ 2. When x is large enough, replacing x − 1 by x does
not cause much error and ð1 − ð1/xÞÞx ≅ 1/e.

Since Rp is at about 2.57 to 6.34 times as Rb from
Theorem 1 and Figure 3, the approximation ratio of SINR-
Spanner is a constant.

6. Simulation

In the previous section, we theoretically prove that the algo-
rithm SINR-Spanner performs well in the worst cases and
the resultant graph is the required spanner. In this section,
we conduct simulations to investigate the average perfor-
mance of our algorithm.

Our simulations are coded in the Sinalgo simulation
framework [26], which is for testing and validating network
algorithms and abstracts from the underlying layers. We con-
sider a square area of 1000 by 1000 and deploy n nodes
within this network region randomly and uniformly, where
n ∈ f3000, 3500, 4000, 4500, 5000g. The local broadcasting
range Rb varies in f10, 12, 14, 16, 18g. The ambient noise
N = 5 × 10−8mW. Figure 3 has given the ranges of the path
loss exponent α, the threshold β, and ε, and the relation
between them and the proximity range Rp. Rp mainly affects
the sending probability, which affects the delay of our
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algorithm. After testing various values, no matter what values
α, β, and ε have in the ranges, the variety of the performance
and the delay in our algorithm is similar. Therefore, we
adopted α = 5, β = 4, and ε = 0:8 in our following reported
result. Accordingly, the transmission power P =Nβ ·
ðRb/ð1 − εÞÞα owing to the equation (2) and (3). The setting
of simulation parameters refers to [9, 19]. With the proof of
Theorem 8, we know that each node runs 16Δp + c rounds
and the algorithm could get the required spanner with high
probability. However, the way we adopted was that the algo-
rithm terminates when the resultant graph does not change
in 50 continuous timeslots in the simulation, i.e., in 50 con-
tinuous time slots no node can find a nearer neighbor within
each sector. Over 100 runs of the simulations have been made
for each reported average result.

Now, we first explore the stretch factor of the resultant
graph (real stretch factor) in Figure 6. In (a), we analyze the
influence of the number of nodes. The local broadcasting
range was set to Rb = 12, and the number of sectors was set
to k = 8. The maximum and average real stretch factor
slightly reduced with the number of nodes increasing. In

(b), we investigate the impact of Rb with the number of nodes
n = 3500 and the number of sectors k = 8. The real stretch
hardly changes with Rb. In (c), we analyze the influence of
the number of sectors k with n = 3500 and Rb = 12. The max-
imum and average real stretch factor decrease with k
increases. When k→∞, the stretch factor approaches one.
From all figures in Figure 6, it can be seen that both the max-
imum and average real stretch factor is much smaller than
the theory value in Table 1 with the same k. Hence, given
the required t, we can choose a smaller k according to practi-
cal experience. In summary, the stretch performance of the
algorithm SINR-Spanner is better than expected.

Due to randomization of SINR-Spanner, the constructed

graphs may not be perfect YGRb
k ; for example, the connection

link to the nearest neighbor in a sector might be missing. But
the algorithm performance is guaranteed with high probabil-
ity, i.e., the probability for all n nodes transmitting Rb success-

fully and all edges in YGRb
k being reserved is bounded by

1 − e−n/4. To verify this, we evaluate the number of missing
edges in the resultant graph from the corresponding perfect

Table 1: The stretch factor t and the number of sectors k in theory.

t 7.6 4.3 3.2 2.7 2.3 2.1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

k 7 8 9 10 11 12 13 14 15 16 17 19 22 28 38 70
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Figure 6: Influences of n, Rb, and k on the number of missing edges.
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YGRb
k in Figure 7. With a different number of nodes, different

values of Rb, and different number of sectors, we compare the
number of missing edges in three sending probability cases

including 1/n, 1/Δp
u (SINR-Spanner), and 1/ΔI

u (the algorithm
SINR-Undirected-YG in previous work [9]). When the send-
ing probability is 1/Δp

u, the number of missing edges is a little
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Figure 8: Influences of n, Rb, and k on the delay.
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Figure 7: Influences of n, Rb, and k on the number of missing edges.
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bit more than the other two cases; the reason is that the nodes
transmitting at the same time are more and mutual interfer-
ence is a little bigger. However, the number of missing edges
in all three cases is no more than three in total 100 runs,
though each run has no less than 3000 nodes andOðknÞ edges.
Simulations indicate that the similarity between the resultant
graph and the corresponding YGRb

k with no-missing edges is
close to 100% in all three cases.

We then consider the average delay needed by SINR-
Spanner in Figure 8 from the influences of n in (a), Rb in (b),
and k in (c), respectively.We still compare the results with three
sending probability cases including 1/n, 1/Δp

u (SINR-Spanner),
and 1/ΔI

u (the algorithmSINR-Undirected-YG in previouswork
[9]).Whether the sending probability is 1/n, 1/Δp

u, or 1/ΔI
u in (a),

the delay grows with the number of nodes increasing. In (b), the
delay increases with Rb increasing when the sending probability
is 1/Δp

u and 1/ΔI
u. However, when the sending probability is 1/n,

the delay does not change in (b) since it is only related to the
number of nodes. In (c), the delay does not vary with k increas-
ing. In summary, from Figure 8, the delay mainly changes with
the change of the sending probability, while the sending proba-
bility of 1/Δp

u or 1/ΔI
u mainly varies with n and Rb. Moreover,

the average delay needed by the algorithm in [9] is close to the
case where each node transmits with the probability 1/n, and
the average delay needed by SINR-Spanner ismuch smaller than
that of previous work [9]. Finally, in theory, 16Δp + c is the delay
upper bound of the algorithm SINR-Spanner from Theorem 8
andΔp is theupperboundbyn,while in the simulation, thedelay
ismuch smaller than 16n + c and the algorithm can achieve reli-
able performance when the algorithm terminates when the
resultant graph does not change in 50 continuous time slots.

7. Summary

In this paper, we present a randomized and distributed algo-
rithm SINR-Spanner to solve the t-spanner-SINR problem
using small delay in the IoT, which has the following charac-
teristics: (1) being a distributed algorithm, (2) considering
the SINR interference model, (3) applying the YG idea, and
(4) theory and simulation guaranteed. In future research,
the delay performance of the spanner construction algorithm
under SINR may be able to be improved by adopting a
smaller proximity region. Other methods for spanner con-
struction except YG are also worthy of investigating.

Data Availability

Our simulations are coded in the Sinalgo simulation frame-
work [26], which is for testing and validating network algo-
rithms and abstracts from the underlying layers. We
consider a square area of 1000 by 1000 and deploy n nodes
within this network region randomly and uniformly, where
n f3000, 3500, 4000, 4500, 5000g.
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