
Research Article
Fusing Node Embeddings and Incomplete Attributes by
Complement-Based Concatenation

Zheng Wang,1,2 Yuexin Wu,3 Yang Bao,3 Jing Yu,3 and Xiaohui Wang 4

1Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, China
2Department of Computer and Information Science, University of Macau, Macao, China
3School of Software, Tsinghua University, Beijing, China
4School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China

Correspondence should be addressed to Xiaohui Wang; wangxh14@ustb.edu.cn

Received 27 December 2020; Revised 22 January 2021; Accepted 8 February 2021; Published 25 February 2021

Academic Editor: Wei Wang

Copyright © 2021 Zheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Network embedding that learns representations of network nodes plays a critical role in network analysis, since it enables many
downstream learning tasks. Although various network embedding methods have been proposed, they are mainly designed for a
single network scenario. This paper considers a “multiple network” scenario by studying the problem of fusing the node
embeddings and incomplete attributes from two different networks. To address this problem, we propose to complement the
incomplete attributes, so as to conduct data fusion via concatenation. Specifically, we first propose a simple inductive method, in
which attributes are defined as a parametric function of the given node embedding vectors. We then propose its transductive
variant by adaptively learning an adjacency graph to approximate the original network structure. Additionally, we also provide a
light version of this transductive variant. Experimental results on four datasets demonstrate the superiority of our methods.

1. Introduction

Social network sites (SNSs, also commonly referred as social
networking services) are online platforms which provide
users with various features to facilitate digital social interac-
tion and information sharing [1, 2]. Over three billion users
are currently active on various SNSs (like Facebook, Twitter,
and QQ), spending on average two hours daily. These wide
and active SNSs naturally form an important part of the dig-
ital economy, making social network analysis [3, 4] become a
hot research topic over the years.

Recently, network embedding [5], as a fundamental
problem in network analysis, has aroused considerable

research interest. Network embedding learns low-
dimensional vector representations for network nodes. The
learned vectorized representations, which preserve certain
structural and content information of networks, can be easily
combined with off-the-shelf learning algorithms for many
social network analysis tasks such as node classification [6],
link prediction [7], and diffusion prediction [8].

1.1. Problem. Although various network embedding methods
have been proposed, they mainly focus on a single network
scenario. In the era of big data, the related information from
different networks should be fused together to facilitate
applications. In this paper, we consider a “multiple network”

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 6654349, 10 pages
https://doi.org/10.1155/2021/6654349

https://orcid.org/0000-0003-4214-3854
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6654349

scenario by studying the problem of fusing the node embed-
dings and incompleted attributes provided by two different
networks.

As illustrated in Figure 1, this problem has practical
importance. Imagine that you use Yelp (see Figure 1(a)), a
popular review app, and try to get in your account there. Yelp
allows you to sign in using your Facebook account. In addi-
tion, as the node (user) embeddings not only preserve certain
characteristics of networks but also protect users’ privacy [9],
Facebook may provide these embeddings to Yelp to facilitate
its applications, e.g., cold-start recommendation. More
importantly, as some Yelp users begin to write reviews, a very
practical problem would arise: is it possible to fuse the origi-
nal node embeddings provided by Facebook and the reviews
provided by Yelp to get new user embeddings (illustrated in
Figure 1(b))?

1.2. Challenge and Solution. Certainly, one fundamental chal-
lenge is the incompleteness of attributes, i.e., only a small part
of nodes are further provided with attributes. This challenge
is very common. As reported [10], the distribution of user
activity tends to be long-tailed, suggesting most social media
contents (like the reviews on Yelp) are actually written by a
few active users. To address this, we propose to complement
the incomplete attributes by defining attributes as a paramet-
ric function of the given node embedding vectors. This com-
plement enables us to conduct data fusion via concatenation
(illustrated in the bottom right corner of Figure 1(b)).

To obtain high-quality fusion results, we further propose
a transductive method by adaptively learning an adjacency
graph to approximate the original network structure. In par-
ticular, the adjacency graph is learned by jointly considering
the given node embeddings and attribute knowledge. Addi-
tionally, we also provide a light version of the proposed trans-
ductive method. Specifically, for each node, this light version
reduces its neighbor candidate set for efficient adjacency

graph learning. We then conduct extensive experiments to
verify the effectiveness of our methods.

In summary, our main contributions are as follows:

(i) We study the problem of fusing node embeddings
and incomplete attributes from two different net-
works. To our best knowledge, little work has
addressed this problem

(ii) We propose a very simple and effective inductive
method based on the idea of attribute complement

(iii) We further propose a transductive method POINTS
and its light version POINTS∗, both of which could
obtain superior performance

(iv) The remainder of the paper is organized as follows.
We review related work in Sect. 2 and formalize
the problem in Sect. 3. We present our method in
Sect. 4 and then provide some discussion in Sect. 6.
We conduct experiments in Sect. 7. Finally, we end
with a conclusion in Sect. 8

2. Related Work

2.1. Network Embedding. Over the past few years, there has
been a lot of interest in learning useful node embeddings
(i.e., features) from large-scale networks automatically [5].
A representative work is DeepWalk [6] which performs ran-
dom walk on a network to generate node sequences and then
perform the skip-gram algorithm [11] on those sequences to
achieve the embedding. Another well-known work is LINE
which preserves both first-order proximity (i.e., the similarity
between linked nodes) and second-order proximity (i.e., the
similarity between the nodes with shared neighbors) of a net-
work. In addition, researchers have also proposed some deep
learning-based embedding models, such as SDNE [12] and

Facebook login on Yelp

(a)

Node embeddings Node attributes

Fusing node embeddings and incomplete attributes

Network embedding task

Data fusion task

Fusion results

How to fuse?

Data fusion

work embedding task

(b)

Figure 1: Illustration of the studied problem.

2 Wireless Communications and Mobile Computing

GraphGAN [13]. Recently, lots of studies consider the net-
work embedding with side information, such as node attri-
butes. For example, by proving DeepWalk is equivalent to
matrix factorization, the work in [14] presents text-
associated DeepWalk (TADW). GraphSAGE [15] employs
graph convolutional networks [16] to aggregate features
among node neighborhood for network embedding. RSDNE
[17] and RECT [18] further consider the problem of zero-
shot graph embedding, i.e., the completely imbalanced label
setting.

2.2. Data Fusion.Data fusion is the study of efficient methods
for automatically transforming information from different
sources and different points in time into a representation that
provides effective support for human or intelligent systems.
Data fusion has proved useful in many disciplines, as dis-
cussed in [19, 20]. For example, in bioinformatics, jointly
analyzing multiple datasets describing different organisms
improves the understanding of biological processes [21]. In
information retrieval, fusing the retrieval results from multi-
ple search engines would significantly improve the retrieval
performance [22]. In biometric recognition systems, feature
fusion could greatly improve the recognition performance
[23]. We refer to [24, 25] for a comprehensive survey.

However, little previous work considers the fusion of
incomplete data or network embedding data. Our work fills
this gap.

3. Problem Statement

The studied problem is defined as follows. We are given the
node embeddings of a network U ∈ℝn×d , where n is the node
number and the i-th row of U (denoted as ui) is a d-dimen-
sional embedding vector of node i. On the other hand,
another network further provides the attributes of l (l < n)
nodes: LA = fðu1, a1Þ,⋯, ðul, alÞg, where ai ∈ℝ1×m is the
attribute vector, and m is the attribute feature number. Our
goal is to fuse the given node embeddings and those incom-
plete attributes, so as to get the updated embeddings for all
nodes. Note that different from existing network embedding
methods, the original network structure is unknown in our
problem.

4. The Proposed Method

4.1. Fusion via Attribute Complement. Since only a small part
of nodes are further provided with attributes, we cannot
directly fuse node embeddings and attributes. To address this
problem, we adopt a very simple complement strategy: pre-
dicting the nonexist attributes. In particular, for each node i
which is further provided with attributes, we assume that
its node embedding ui should have the ability to generate
its attribute vector ai. The optimal generation function f
can be obtained by solving the following minimization prob-
lem:

minf 〠
i∈LA

ℓ f uið Þ, aið Þ, ð1Þ

where ℓ is a loss function that measures the reconstruction
error, such as squared loss or hinge loss.

By solving the problem in Eq. (1), we can obtain the gen-
eration function f . Then, for a node i with no attributes, we
can predict its attributes by applying f ðuiÞ. This complement
enables us to conduct data fusion via concatenation. More
details and discussion about the concatenation strategy can
be found in Sect. 6.2.

4.2. Transductive Attribute Prediction. The method formu-
lated in Eq. (1) is inductive. In this section, we present a
transductive method. Generally, transductive methods,
which leverage the test data for model training, perform bet-
ter than inductive methods [26]. For network embedding,
classical transductive methods exploit all network nodes by
preserving the inherent network structure in the embedding
space, i.e., connected nodes tend to have similar embeddings
[27, 28]. Although the original network structure is
unknown, one can simply build a sparse adjacency graph
(We use the term “graph” to describe the recovered network
structure, as to avoid ambiguity with the original network
structure.) S to approximate it, i.e., Sij = 1 when node j is
the k-nearest neighbors of node i in the given node embed-
ding space, otherwise Sij = 0. This approximation can capture
the intuition of transductive learning by the following cost
term:

minY 〠
i,j
SijDist yi, yj

� �
,

s:t:∀i ∈LA, yi = ai,
ð2Þ

where Distð⋅ , ⋅Þ is a distance function, and yi ∈ℝ1×m (the i-th
row of matrix Y ∈ℝn×m) is the predicted attribute vector of
node i. The imposed constraint ensures the predicted attri-
butes to be consistent with the known attributes.

The adjacency graph plays a crucial role in this kind of
graph-based transductive learning methods [29, 30]. How-
ever, the matrix S in Eq. (2) might not be the optimal adja-
cency graph. On the one hand, the original network
information is only approximately described by the given
node embeddings (i.e., ui=1,⋯,n) which S is built from. On
the other hand, the construction of S ignores the attribute
information, i.e., similar (dissimilar) attributes indicate simi-
larity (dissimilarity) between different nodes. In this paper,
we solve this problem in an adaptive way. Specifically, we
propose to learn S by jointly considering the given node
embeddings and attribute knowledge. This yields the follow-
ing cost term:

minY ,S
α

2〠i,j
SijDist yi, yj

� �
+ β

2〠i,j
SijDist ui, uj

� �
,

s:t: ∀i ∈LA, yi = ai

∀i, si′
�� ��

0 = si′1 = k, Sii = 0
,

ð3Þ

where si ∈ℝn×1 is a vector with the j-th element as Sij (i.e., si′is
the row vector of matrix S), 1 denotes a column vector with

3Wireless Communications and Mobile Computing

all entries equal to one, and α and β are two adjustable
parameters. Intuitively, the first and second term of Eq. (3)
measure how well the adjacency graph fits the attributes
and the given node embeddings, respectively.

The unified model: POINTS with learning the attribute
generation function (Eq. (1)) and adjacency graph (Eq. (3)),
the proposed method is to solve the following optimization
problem:

minf ,Y ,S J = 〠
i∈LA

ℓ f uið Þ, yið Þ + α

2〠i,j
SijDist yi, yj

� �

+ β

2〠i,j
SijDist ui, uj

� �
,

s:t: ∀i ∈LA, yi = ai

∀i, si′
�� ��

0 = si′1 = k, Sii = 0
:

ð4Þ

Since the key idea of this method is to learn the adjacency
graph adaptively, we term our method as adaPtively netwOrk
embeddIng aNd aTtribute fuSion (POINTS).

A Light Version of POINTS: for each node i, to learn its
optimal neighbors, POINTS needs to consider all nodes. This
is very inefficient, as the network may be extremely large
(some theoretical analysis can be found in Sect. 6.3). There-
fore, we give a light version of POINTS (denoted as
POINTS∗). In particular, we propose to build a candidate
neighbor set (denoted as N k∗ðiÞ) for each node, where k∗

(k < k∗ ≪ n) is the candidate neighbor number. Based on this
idea, the light version POINTS∗ is to solve the following opti-
mization problem:

minf ,Y ,S J
∗ = 〠

i∈LA

ℓ f uið Þ, yið Þ + α

2〠i,j
SijDist yi, yj

� �

+ β

2〠i,j
SijDist ui, uj

� �
,

s:t: ∀i ∈LA, yi = ai

∀i, si′
�� ��

0 = si′1 = k, Sii = 0
∀i, if j ∉N k∗ ið Þ, Sij = 0

:

ð5Þ

5. Optimization

The objective functions of POINTS (i.e., Eq. (4)) and
POINTS∗ (i.e., Eq. (5)) both contain 0/1 constraints, which
might be difficult to solve by the conventional optimization
tools. In this section, we develop efficient solutions for these
two problems.

5.1. Optimization for POINTS. Before deriving the optimiza-
tion algorithm, we need to specify the choice of functions in
Eq. (4). For simplicity, we choose a linear model for f , i.e.,
f ðuiÞ = uiW, where W ∈ℝd×m is the model parameter
matrix. In addition, we adopt squared loss for ℓ and squared
Euclidean distance for Distð⋅ , ⋅Þ. As such, we can update the
variables in Eq. (4) iteratively, as follows.

Update rule ofW and Y : by fixing the other variables, the
partial derivative of J w.r.t. W is

∂J
∂W

= 2 U ′UW −U ′Y
� �

: ð6Þ

Therefore, we can update W as W ←W − ηð∂J /∂UÞ,
where η is the learning rate.

When the other variables are fixed, we can obtain the par-
tial derivative of J w.r.t. Y as

∂J
∂Y

= 2 −UW + Yð Þ + 2αΔY , ð7Þ

where Δ =D − ðS + S′Þ/2, and D is a diagonal matrix
whose i-th diagonal element is ∑jðSij + SjiÞ/2. Then, we can
update Y as Y ← Y − ηð∂J /∂YÞ. After that, for each node i
with given attributes ai, we adjust its predicted attributes as
yi = ai, so as to satisfy the constraint in Eq. (4).

Update rule of S: when the other variables are fixed, the
original optimization problem reduces to

minSα〠
i,j
Sij yi − yj
��� ���2

2
+ β〠

i,j
Sij ui − uj

�� ��2
2

s:t:∀i, si′
�� ��

0 = si′1 = k, Sii = 0:
ð8Þ

As problem (8) is independent between different i, we can
instead to solve n decoupled subproblems:

minsi ,∀i 〠
n

j=1
α yi − yj
��� ���2

F
Sij + β ui − uj

�� ��2
F
Sij

s:t:∀i, si′
�� ��

0 = si′1 = k, Sii = 0:
ð9Þ

The optimal solution of problem (9) is (proved in Sect.
6.1)

Sij =
1, if j ∈N UA

k ið Þ ;
0, otherwise:

(
ð10Þ

where setN UA
k ðiÞ contains the top-k nearest nodes to i in the

network “embedding-attribute” space, where the distance
between node i and j is defined as αkyi − yjk22 + βkui − ujk22:.

We can iteratively update these three variables until con-
vergence to obtain the final solution. After that, as discussed
in Sect. 6.2, we can get the final fusion results by concatena-
tion. For clarity, we summarize the complete fusion proce-
dure in Alg. 1.

5.2. Optimization for POINTS∗. The optimization approach
of POINTS∗ is very similar to that of POINTS in Sect. 5.1.
The only difference is that when updating S as other variables
are fixed, we only need to sort the nodes in (its neighbor can-
didate set) N k∗ðiÞ to get the top-k nearest neighbors in the

4 Wireless Communications and Mobile Computing

network embedding attribute space, so as to get the optimal
solution of S.

6. Algorithm Analysis

6.1. Optimization Algorithm Solving Problem (9)

Theorem 1. The optimal solution of problem (9) is Eq. (10).

Proof. By contradiction, suppose node i has gotten its optimal
neighbor set N UA

k which contains a node p not in i’s top-k
nearest nodes in the “node-attribute” space. For convenience,
we useΨði, jÞ to denote the distance between nodes i and j in
this space, i.e., Ψði, jÞ = αkyi − yjk22 + βkui − ujk22. As such,

there must exist a node q ∉N UA
k which is one of i’s top-k

nearest nodes in this space. Then, we get Ψði, pÞ >Ψði, qÞ.
Considering our minimization problem (i.e., Eq. (9)), this
inequation leads

〠
j∈N k

Ψ i, jð Þ > 〠
j∈ N k+qf g\p

Ψ i, jð Þ: ð11Þ

This indicates that fN UA
k + qg \ p is a better optimal

solution than N UA
k , a contradiction.

Actually, we can generalize the above proof to a more
general case.

Theorem 2. Suppose node i is close to j than node p. If the cho-
sen distance function Distð⋅ , ⋅Þ satisfies Distði, jÞ <Distði, pÞ,
the optimal solution of problem (9) is Eq. (10) (which adopts
the distance function Distð⋅ , ⋅Þ).

Proof. This conclusion can be proved by replacing the
squared Euclid distance function in the proof of Theorem 1
by Distð⋅ , ⋅Þ.
6.2. Fusion Strategy. In this part, we will discuss how to con-
duct data fusion, based on the proposed attribute comple-
ment methods. The inductive method (described in Sect.
4.1) would learn a generation function f . Then, for each node
i, we can predict its attribute vector as yi = f ðuiÞ. For those
two transductive methods (described in Sect. 4.2), we will
directly obtain the predicted attribute vectors yi=1,⋯,n. As

such, the attributes are completed for fusion. Specifically,
we adopt a “trick” concatenation strategy: (1) if node i has
no attributes, we obtain its final fusion vector by concatenat-
ing ui and the predicted attribute vector yi; (2) if node i has
attributes, we obtain its final fusion vector by concatenating
ui and ai. The principle of this trick is that the given attributes
are always more stable and accurate than the predicted attri-
butes for node description.

6.3. Time Complexity. The time complexity of Alg. 1 is as
below. The complexity for updating W is Oðd2n + d2m + d
mnÞ. The complexity for updating Y is OðnnzðΔÞm + dmnÞ,
where nnzð⋅Þ is the number of nonzeros of a matrix. The
complexity for updating S is Oðn2 log nÞ, because for each
node, we have to calculate its top-k nearest neighbors. As d
,m≪ n is linear with n and nnzðΔÞ is linear with n, the over-
all complexity of POINTS is Oðτðn2 log nÞÞ, where τ is the
number of iterations to converge.

For the light version, i.e., POINTS∗, the complexity of
updating S becomes Oðnk∗ log k∗Þ, and all others remain
the same. Hence, since k∗ ≪ n, the overall complexity
becomes Oðτðd2n + dmn + nk∗ log k∗ÞÞ. As our method usu-
ally converges fast (τ ≤ 20 in our experiments) and d,m≪ n,
the complexity of POINTS∗ is linear to the number of nodes.

7. Experiments

Datasets: we conduct our experiments on four widely used
citation network datasets: Citeseer [31], Cora [31], Wiki
[32], and Pubmed [32]. In these networks, nodes are docu-
ments, and edges denote the citation relationship between
them. Node attributes (i.e., features) are the bag-of-word rep-
resentations of documents. The statistic of these networks is
shown in Table 1.

Input: The given node embeddings U , the attribute information, learning rate η, and parameters α and β;
Output: The final fusion results;
1: Initialize W, Y and S;
2: repeat
3: Update W as W ←W − ηð∂J /∂UÞ.
4: Update Y as Y ← Y − ηð∂J /∂YÞ;
5: Set yi = ai ; ∀i ∈LA;
6: Update S by solving problem (8);
7: until Convergence or a certain iteration;
8: Obtain the final fusion results via concatenation, as discussed in sect. 6.2
9: return The final fusion results.

Algorithm 1. POINTS.

Table 1: The statistics of datasets.

Name Citeseer Cora Wiki Pubmed

#nodes 3,312 2708 2,405 19,717

#edges 4,732 5429 17,981 44,338

#classes 6 7 17 3

#attributes 3,703 1433 4,973 500

5Wireless Communications and Mobile Computing

Experimental setting: as illustrated in Figure 1, for each
dataset, we first obtain the original node embeddings and
then provide some nodes with attributes for data fusion,
so as to simulate fusing data from two different networks.
Specifically, we first obtain the original node embeddings
by the famous network embedding method LINE. We
adopt its first-order proximity version LINE (1st). Besides,
we also try other network embedding methods in Sect. 7.3.
After obtaining the original node embeddings, we ran-
domly select some nodes and provide them with attributes.
At last, we employ different fusion methods to obtain the
final fusion results.

Baseline methods: since this incomplete data fusion
problem has not been previously studied, there is no nat-
ural baseline to compare with. We thus compare our
methods with those methods which directly fuse the orig-
inal given node embeddings and attributes. We list them
as follows:

(1) LINE(1st). We adopt LINE(1st) to obtain the original
node embeddings. This method neglects the incom-
plete node attributes. Note: in Sect. 7.3, we also try
more network embedding methods

(2) Attributes. We use the zero-padded attributes as
fusion results. This method neglects the given node
embeddings

(3) NaiveCombine. We simply concatenate the vectors
from the given node embeddings and the zero-
padded attributes

For our method, we test its three different versions:
POINTSind (the inductive version formulated in Eq. (1)),
POINTS (the full transductive version formulated in Eq.
(4)), and POINTS∗ (the light version formulated in Eq. (5)).

Parameters: we follow the suggestion of LINE to set the
embedding dimension to 128. In addition, following [14],

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

0.2

0.3

0.4

0.5

0.6

0.7

M
ic

ro
-F

1

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(a) Citeseer

0.3

0.4

0.5

0.6

0.7

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

M
ic

ro
-F

1

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(b) Cora

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ic

ro
-F

1

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(c) Wiki

0.4

0.5

0.6

0.7

0.8

M
ic

ro
-F

1

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(d) Pubmed

Figure 2: Node classification results (Micro-F1).

6 Wireless Communications and Mobile Computing

we reduce the dimension of attributes by applying SVD
decomposition on the original text features. For simplicity,
we also reduce this dimension to 128. In the proposed
methods POINTS and POINTS∗, we fix parameters α = 1
and β = 1 throughout our experiments, although adjusting
them would yield better results. Besides, we simply set the
neighbor number k = 5 like most graph-based transductive
methods [33] and set the candidate number m = 20k for
POINTS∗.

7.1. Node Classification. Following [6], we train one-vs-rest
logistic regression classifiers to evaluated the fusion (i.e., the
updated embeddings) quality. Specifically, for Citeseer, Cora,
and Wiki, we fix the label rate in the classifiers to 10%. Since
Pubmed is a much larger dataset with fewer classes, we follow
[34] to set the percentage of labeled data to 1%. In addition,
we increase the rate of nodes with attributes from 10% to
90% on all datasets. Following [28], before evaluation, we

normalize all representation vectors to unit length for a fair
comparison. Figures 2 and 3 show the classification perfor-
mance measured by micro-F1 and macro-F1 [35], respec-
tively. We can draw the following three conclusions from
these results.

Firstly, all our methods (including POINTSind, POINTS,
and POINTS∗) outperform baseline methods significantly.
For example, on Citeseer with 50% attributes, POINTSind,
which performs worst in the proposed three methods, still
outperforms LINE(1st) by 13%, attributes by 8%, and Naive-
Combine by 3%. Additionally, the improvements of our two
transductive methods POINTS and POINTS∗ are more
remarkable. These results clearly demonstrate the effective-
ness of our complement strategy.

Secondly, the proposed two transductive methods (i.e.,
POINTS and POINTS∗) consistently outperform our induc-
tive method POINTSind. Especially on Citeseer, Cora, and
Pubmed, these two transductive methods generally

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ac

ro
-F

1

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(a) Citeseer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ac

ro
-F

1

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(b) Cora

0

0.1

0.2

0.3

0.4

0.5

M
ac

ro
-F

1

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.5

(c) Wiki

0.1 0.4 0.6 0.7 0.8 0.90.30.2
Attribute rate

LINE(1st)
Attributes
NaiveCombine

Pointsind
Points
Points⁎

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

ac
ro

-F
1

0.5

(d) Pubmed

Figure 3: Node classification results (Macro-F1).

7Wireless Communications and Mobile Computing

outperform POINTSind by 5-12%. On the other hand, we also
find that the improvement becomes less significant on Wiki.
We conjecture that it may be hard to recover its original net-
work structure from the given node embeddings and attri-
butes. More specifically, this might be because Wiki (whose
edge num is eight times greater than node number) is much
denser than the other three datasets.

Thirdly, the light version POINTS∗ is comparable to
POINTS on all datasets. This indicates that we can reduce the
neighbor candidate set size for efficient transductive learning.

7.2. Visualization. Following [28], we use t-SNE package [36]
to visualize the final node representations obtained by differ-
ent fusion methods. Without loss of generality, we choose the
first dataset Citeseer and test the case with 50% attributes.
Similar to [28], for a clear comparison, we visualize the nodes

from three different research fields: IR, DB, and HCI. Figure 4
shows the visualization results.

As shown in Figures 4(a)–4(c), the visualization results of
the compared three baselines are not very meaningful, in
which the points belonging to different categories are heavily
mixed with each other. This is due to the fact that all these
baselines cannot sufficiently utilize the incomplete attributes.
In contrast, as shown in Figures 4(d)–4(f), the results of our
three methods are much better (nodes with same colors are
distributed closer). In addition, compared to our inductive
method POINTSind, our two transductive methods POINTS
and POINTS∗ show more meaningful layout. Specifically,
the blue points in POINTSind are partly separated by the red
points, while these two types of points in POINTS and
POINTS∗ are less mixed with each other. To clarify the reason,
we further visualize the predicted attributes of POINTSind and

(a) LINE(1st) (b) Attributes (c) NaiveCombine

(d) POINTSind (e) POINTS (f) POINTS∗

(g) “Attributes” of POINTSind (h) “Attributes” of POINTS

Figure 4: Visualization on Citeseer with 50% attributes. Each point stands for one document. Color of a point indicates the document
category. The red indicates the topic of IR, the blue indicates the topic of DB, and the green indicates the topic of HCI. Note: the
“Attributes” in (g) and (h) stands for the predicted attributes.

8 Wireless Communications and Mobile Computing

POINTS in Figures 4(g) and 4(h), respectively. We can clearly
find that POINTS could obtain high-quality attributes, which
explains the superiority of our transductive methods. [21].

7.3. More Network Embedding Baselines. We evaluate the
performance of our methods based on more network embed-
ding methods. In particular, we further test another five net-
work embedding methods as follows:

Without loss of generality, we fix the label rate to 10%
and choose 50% nodes with attributes. For convenience, we
use “OrigEmb” to denote the original node embeddings
obtained by various network embedding methods.

Figure 5 shows the performance on Citeseer. We can
clearly find that our methods (including POINTSind,
POINTS, and POINTS∗) consistently outperform baselines
by a large margin. On the other hand, the light version
POINTS∗ could always achieve similar accuracy as its full
version POINTS. Taken together, all these observations
clearly indicate the effectiveness of our methods.

8. Conclusion

This paper investigates the problem of fusing node embeddings
and incompleted attributes provided by two different networks.
We develop both inductive and transductive variants of our
method. Additionally, we also provide an efficient light version
of our transductive variant. Extensive experiments have dem-
onstrated the effectiveness of our methods. In the further, we
would extend our method to fuse more types of related infor-
mation from more different networks and resources.

Data Availability

The datasets used in this paper can be found at https://linqs
.soe.ucsc.edu/data.

Conflicts of Interest

The author(s) declare(s) that they have no conflicts of
interest.

Acknowledgments

This work is supported in part by the National Natural Sci-
ence Foundation of China (No. 61902020) and Macao Youth
Scholars Program (AM201912).

References

[1] X. Kong, S. Tong, H. Gao et al., “Mobile edge cooperation opti-
mization for wearable internet of things: a network
representation-based framework,” IEEE Transactions on
Industrial Informatics, p. 1, 2020.

[2] W.Wang, F. Xia, H. Nie et al., “Vehicle trajectory clustering based
on dynamic representation learning of internet of vehicles,” in
IEEE Transactions on Intelligent Transportation Systems, 2020.

[3] C. Wang, C. Wang, Z. Wang, X. Ye, J. X. Yu, and B. Wang,
“Deepdirect: learning directions of social ties with edge-based
network embedding,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 12, pp. 2277–2291, 2018.

[4] W. Wang, X. Zhao, Z. Gong, Z. Chen, N. Zhang, and W. Wei,
“An attention-based deep learning framework for trip destina-
tion prediction of sharing bike,” IEEE Transactions on Intelli-
gent Transportation Systems, pp. 1–10, 2020.

[5] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 31, no. 5, pp. 833–852, 2018.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learn-
ing of social representations,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp. 701–710, New York, New York, USA, 2014.

[7] A. Grover and J. Leskovec, “node2vec: scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD

 0.3

 0.4

 0.5

 0.6

 0.7

LINE(2nd) DeepWalk GraRep Node2Vec GraphGANd GraphGANg

M
ic

ro
-F

1

OrigEmb
Attributes
NaiveCombine

Pointsind
Points
Points⁎

Figure 5: Average node classification performance (micro-F1) of more network embedding methods on Citeseer. LINE(2nd) [28] preserves
the second-order proximity of a network to learn node embeddings. DeepWalk [6] learns node embeddings by simulating uniform random
walks on networks. GraRep [37] generates node embeddings by computing high-order proximity and uses the SVD to reduce their
dimensionality. Node2Vec [7] adopts a biased random walk strategy based on DeepWalk to efficiently explore neighborhood architecture.
GraphGAN [13] is a newly proposed deep method which employs adversarial training in a minimax game to learn node embeddings. In
this method, its discriminator function (denoted as GraphGANd) and generator function (denoted as GraphGANg) could separately
obtain network embedding results.

9Wireless Communications and Mobile Computing

https://linqs.soe.ucsc.edu/data
https://linqs.soe.ucsc.edu/data

international conference on Knowledge discovery and data
mining, pp. 855–864, San Francisco California USA, 2016.

[8] S. Bourigault, S. Lamprier, and P. Gallinari, “Representation
learning for information diffusion through social networks:
an embedded cascade model,” in Proceedings of the Ninth
ACM International Conference on Web Search and Data Min-
ing, pp. 573–582, San Francisco California USA, 2016.

[9] A. Shakimov, H. Lim, R. Cáceres et al., “Visa-vis: privacy-
preserving online social networking via virtual individual
servers,” in Proceedings of the 3rd International Conference
on Communication Systems and Networks, pp. 1–10, NW
Washington DC, United States, 2011.

[10] X. Cheng, H. Li, and J. Liu, “Video sharing propagation in social
networks:measurement, modeling, and analysis,” in INFOCOM,
2013 Proceedings IEEE, pp. 45–49, Turin, Italy, 2013.

[11] Q. Le and T. Mikolov, “Distributed representations of sen-
tences and documents,” in International Conference on
Machine Learning, pp. 1188–1196, Beijing, China, 2014.

[12] D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in Proceedings of the 22nd ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,
pp. 1225–1234, San Francisco California USA, 2016.

[13] H. Wang, J. Wang, J. Wang et al., “GraphGAN: graph repre-
sentation learning with generative adversarial nets,” in In
Thirty-Second AAAI Conference on Artifificial Intelligence,
pp. 2508–2515, New Orleans, Louisiana, USA, 2018.

[14] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Pro-
ceedings of the 24th International Joint Conference on Artificial
Intelligence, pp. 2111–2117, Buenos Aires, Argentina, 2015.

[15] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive represen-
tation learning on large graphs,” in Advances in Neural
Information Processing Systems, pp. 1024–1034, Curran
Associates Inc., 57 Morehouse Lane, Red Hook, NY, United
States, 2017.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on
Learning Representations (ICLR), Toulon, France, 2017.

[17] Z. Wang, X. Ye, C. Wang, Y. Wu, C. Wang, and K. Liang,
“RSDNE: Exploring relaxed similarity and dissimilarity from
completely-imbalanced labels for network embedding,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, New Orleans, Louisiana, USA, 2018.

[18] Z. Wang, X. Ye, C. Wang, J. Cui, and P. Yu, “Network embed-
ding with completely imbalanced labels,” IEEE Transactions
on Knowledge and Data Engineering, p. 1, 2020.

[19] A. Zhang, S. Song, and J. Wang, “Sequential data cleaning: a
statistical approach,” in Proceedings of the 2016 International
Conference on Management of Data, pp. 909–924, San Fran-
cisco, California, USA, 2016.

[20] A. Zhang, S. Song, J. Wang, and P. S. Yu, “Time series data
cleaning,” Proceedings of the VLDB Endowment, vol. 10,
no. 10, pp. 1046–1057, 2017.

[21] O. Alter, P. O. Brown, and D. Botstein, “Generalized singular
value decomposition for comparative analysis of genome-
scale expression data sets of two different organisms,” Proceed-
ings of the National Academy of Sciences, vol. 100, no. 6,
pp. 3351–3356, 2003.

[22] D. F. Hsu and I. Taksa, “Comparing rank and score combina-
tion methods for data fusion in information retrieval,” Infor-
mation Retrieval, vol. 8, no. 3, pp. 449–480, 2005.

[23] Y. Chen, J. Yang, C. Wang, and N. Liu, “Multimodal biomet-
rics recognition based on local fusion visual features and vari-
ational bayesian extreme learning machine,” Expert Systems
with Applications, vol. 64, pp. 93–103, 2016.

[24] J. Bleiholder and F. Naumann, “Data fusion,” ACMComputing
Surveys, vol. 41, no. 1, pp. 1–41, 2009.

[25] J. J. Clark and A. L. Yuille, Data fusion for sensory information
processing systems, vol. 105, Springer Science & Business
Media, 2013.

[26] T. Joachims, “Transductive inference for text classification using
support vector machines,” in International Conference on
Machine Learning, vol. 99, pp. 200–209, Bled, Slovenia, 1999.

[27] Y. Jacob, L. Denoyer, and P. Gallinari, “Learning latent repre-
sentations of nodes for classifying in heterogeneous social net-
works,” in Proceedings of the 7th ACM international conference
on Web search and data mining, pp. 373–382, New York, New
York, USA, 2014.

[28] J. Tang, M. Qu, M.Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings
of the 24th International Conference on World Wide Web,
pp. 1067–1077, Florence, Italy, 2015.

[29] F. Wang and C. Zhang, “Label propagation through linear
neighborhoods,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 1, pp. 55–67, 2008.

[30] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Advances in
neural information processing systems, pp. 321–328, Vancou-
ver, British Columbia, Canada, 2004.

[31] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Auto-
mating the construction of internet portals with machine learn-
ing,” Information Retrieval, vol. 3, no. 2, pp. 127–163, 2000.

[32] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and
T. Eliassi-Rad, “Collective classification in network data,” AI
Magazine, vol. 29, no. 3, p. 93, 2008.

[33] X. Zhu, Semi-supervised learning literature survey, vol. 2, no. 3,
2006Computer Science, University of Wisconsin-Madison, 2006.

[34] Q. Li, Z. Han, and X. M. Wu, “Deeper insights into graph con-
volutional networks for semi-supervised learning,” 2018,
https://arxiv.org/abs/1801.07606.

[35] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine
learning: an artificial intelligence approach, Springer Science
& Business Media, 2013.

[36] L. Van der Maaten and G. Hinton, “Visualizing data using t-
SNE,” Journal of Machine Learning Research, vol. 9,
pp. 2579–2605, 2008.

[37] S. Cao, W. Lu, and Q. Xu, “Grarep: learning graph representa-
tions with global structural information,” in Proceedings of the
24th ACM International on Conference on Information and
Knowledge Management, pp. 891–900, Melbourne, Australia,
2015.

10 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1801.07606

	Fusing Node Embeddings and Incomplete Attributes by Complement-Based Concatenation
	1. Introduction
	1.1. Problem
	1.2. Challenge and Solution

	2. Related Work
	2.1. Network Embedding
	2.2. Data Fusion

	3. Problem Statement
	4. The Proposed Method
	4.1. Fusion via Attribute Complement
	4.2. Transductive Attribute Prediction

	5. Optimization
	5.1. Optimization for POINTS
	5.2. Optimization for POINTS*

	6. Algorithm Analysis
	6.1. Optimization Algorithm Solving Problem (9)
	6.2. Fusion Strategy
	6.3. Time Complexity

	7. Experiments
	7.1. Node Classification
	7.2. Visualization
	7.3. More Network Embedding Baselines

	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

