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A novel two-phase method for two-dimensional (2D) direction-of-arrival (DOA) estimation with L-shaped array based on
decoupled atomic norm minimization (DANM) is proposed in this paper. In the first phase, given the sample crosscorrelation
matrix, the gridless DANM technique considering the noise and finite snapshots effects is employed to exploit the structure and
sparse properties of the crosscorrelation matrix. The resulting DANM-based algorithm not only enables the crosscorrelation
matrix reconstruction (CCMR) but also reconstructs the covariance matrix of the L-shaped array. Hence, sequentially, in the
second phase, the conventional 2D DOA estimators for the L-shaped array can be adopted for the angle estimation. With
appropriate 2D DOA estimators, the resulting proposed algorithms can not only achieve better performance but also detect
more source number, compared with conventional crosscorrelation-based DOA estimators. Moreover, the proposed method,
termed CCMR-DANM, not only has blind characteristic that it does not require the prior information of source numbers but
also is more efficient than the existing CCMR-based counterparts. Numerical simulations demonstrate the effectiveness and
outperformance of the proposed method.

1. Introduction

The problem of two-dimensional (2D) direction-of-arrival
(DOA) estimation plays an important role in array signal
processing and has attracted much interest in the area of
wireless communications, radar and sonar [1–7]. For 2D
DOA estimation, many array structures, such as rectangu-
lar arrays, circular arrays, and L-shaped arrays, have been
developed. Among these arrays, since the L-shaped array
can achieve better estimation performance than others, it
has attracted a lot of attentions and many corresponding algo-
rithms for 2DDOA estimation have been proposed in last sev-
eral decades [8–15]. Moreover, these algorithms can be
divided into three categories. The first is to separately estimate
the angles corresponding to each uniform linear subarray

based on the covariance matrix of each subarray with conven-
tional 1D DOA estimators, such as MUSIC [16] and ESPRIT
[17]. However, an extra pairing operation is needed in these
algorithms [18]. The second is to jointly estimate the two
angles based on the covariance matrix of the L-shaped array.
They can detect more source numbers than the first ones
and do not need an extra pairing [8, 9]. The last is based
on the crosscorrelation of the L-shaped array, which is nat-
urally contaminated by less noise, compared with the covari-
ance matrix. As a result, the corresponding algorithms can
achieve a better performance in low signal-to-noise ratio
(SNR) [10–15]. It is worth noting that in practical applica-
tions, all these three kinds of methods need the prior infor-
mation of source numbers and are employed with sample
matrices (no matter the sample covariance matrices or the
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sample crosscorrelation matrices). Note that the sample
matrix is calculated from finite collected snapshots of the
observed signals which is contaminated with additive noise.
Hence, the sample matrix cannot equip the ideal structure
of the ideal matrix, which leads to performance degradation
especially in low SNR and small number of snapshots [19].

To overcome these disadvantages, the basic idea is to first
reconstruct the ideal matrix from the sample matrix before
employing DOA estimation methods. Inspired by this
thought, several crosscorrelation matrix reconstruction-
(CCMR-) based methods are proposed. Specifically, cross-
correlation atomic norm minimization (CC-ANM) utilising
the 2D ANM technique [20] for CCMR is proposed in [21].
And [22] grafts the covariance fitting criterion [23] for
CCMR and proposes a crosscorrelation gridless sparse
iterative covariance-based estimation (CC-GLS) method.
However, a high-dimensional two-level Toeplitz matrix is
needed to be constructed in both methods, which leads to
high computational complexity [18]. In contrast, we propose
an efficient decoupled ANM- (DANM-) based method for
CCMR in [24], while the method does not consider the finite
snapshot effect, which results in performance degradation in
practical applications.

In this paper, given the sample crosscorrelation matrix,
the DANM technique [18] considering the noise and finite
snapshots effects is employed to exploit the structure and
sparse properties of the crosscorrelation matrix. Moreover,
the resulting DANM-based algorithm not only enables the
crosscorrelation matrix reconstruction but also reconstructs
the covariance matrix of the L-shaped array. Hence, the
conventional 2D DOA estimators for the L-shaped array
can be sequentially adopted for the angle estimation. The
proposed two-phase method is more computationally effi-
cient than the aforementioned two CCMR-based methods
and can achieve better estimation performance compared
with traditional crosscorrelation-based methods. Numerical
simulations demonstrate the effectiveness and outperfor-
mance of the proposed method.

The rest of this paper is organized as follows. Section 2
presents the signal model and problem formulation for 2D
DOA estimation with L-shaped array. Section 3 proposes
an efficient DANM-based two-phase method for crosscorre-
lation and DOA estimation. Section 4 discusses the computa-
tional complexity and extends the proposed method to the
sparse L-shaped array cases. Section 5 presents simulation
results, followed by conclusions in Section 6.

Throughout this paper, a, a and A denote a scalar, a
vector, and a matrix, respectively. TrðAÞ denotes the trace
of A. TðaÞ denotes the Hermitian Toeplitz matrix with the
first column being a. diag ðAÞ is a column vector formed
from the elements of the main diagonal of A and diag ðaÞ
generates a diagonal matrix with the diagonal elements con-
structed from a. vecð·Þ stacks all the columns of a matrix into
a vector. Ia is an a-size identity matrix, and IΩ is a selection
matrix with index set Ω. 0a and 1a are the a × 1 zeros and
one vectors, respectively. ⊗ is the Kronecker product. Ef·g
denotes expectation, and Varð·Þ denotes variance. We use
ð·ÞT , ð·Þ∗, and ð·ÞH to denote the transpose, the conjugate,
and the conjugate transpose operation, respectively.

2. Problem Formulation

Consider K far-field narrowband source signals fsiðtÞgKi=1
impinging on an L-shaped array from distinct directions at
element angles fϕigKi=1 and azimuth angles fθigKi=1, as shown
in Figure 1. The L-shaped array consists of two ULAs of M
omnidirectional sensors which are uniformly spaced with a
spacing of d along the x axis and y axis, respectively. The
observed signals of the L-shaped array can be expressed
as [24]

x tð Þ =Axs tð Þ + nx tð Þ,
y tð Þ =Ays tð Þ + ny tð Þ, t = 1, 2,⋯, L,

ð1Þ

where t indexes the snapshot; L denotes the number of
collected snapshots; and sðtÞ, nxðtÞ, and nyðtÞ denote the
vector of source signals and the vector of additive noise
corresponding to the x subarray and y subarray at the
snapshot t, respectively. Ax = ½axðθ1, ϕ1Þ,⋯, axðθK , ϕKÞ�
and Ay = ½ayðθ1, ϕ1Þ,⋯, ayðθK , ϕKÞ� are the array manifold
matrices of the x subarray and the y subarray, whose ith
columns are the steering vectors of the ith source which
satisfy

ax θi, ϕið Þ = 1, e−j2π1/2 cos θið Þ sin ϕið Þ,⋯, e−j2π1/2 M−1ð Þ cos θið Þ sin ϕið Þ
h iT

,

ay θi, ϕið Þ = 1, e−j2π1/2 sin θið Þ sin ϕið Þ,⋯, e−j2π1/2 M−1ð Þ sin θið Þ sin ϕið Þ
h iT

:

ð2Þ

Herein, the spaced distance d is assumed to be equal to
half of the wavelength λ. Moreover, let f i,1 = ð1/2Þ cos ðθiÞ
sin ðϕiÞ, f i,2 = ð1/2Þ sin ðθiÞ sin ðϕiÞ and Ω = fð f1,1, f1,2Þ,
⋯, ð f K ,1, f K ,2Þg denote the frequencies that correspond to
the direction on x and y axes and the set of corresponding
frequencies, respectively. Note that f f i,1, f i,2g⟷ fθi, ϕig is
the one-to-one mapping. Once the estimation of f f i,1, f i,2g
is obtained, the corresponding fθi, ϕig can be retrieved as

bϕ i = arcsin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f∧i,1

2 + f∧i,2
2

q� �
,

bθ i = arccos
f̂ i,2
f̂ i,1

 !
:

ð3Þ

Hence, in the following paper, we consider estimation
of f f i,1, f i,2g instead of fθi, ϕig for notational simplicity.
Moreover, in this paper, the source signals sðtÞ are assumed
uncorrelated with each other and the noise nxðtÞ and nyðtÞ
are i.i.d. additive white Gaussian random processes satisfy-
ing N ð0, σ2IMÞ and are statistically independent of sðtÞ.
Therefore, under the above assumptions, we have the
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crosscorrelation matrix between xðtÞ and yðtÞ can be
expressed as

Rxy = E x tð ÞyH tð Þ� �
=AxRsAy +N1 = Rc +N1

= 〠
K

i=1
riax f i,1
� �

aHy f i,2
� �

+N1,
ð4Þ

where N1 is the matrix with only the first element of main
diagonal being σ2 and zero otherwise. Rs = diag frg is
the source correlation matrix with r = ½r1,⋯, rK �T ≥ 0,
i.e., EðjsiðtÞj2Þ = ri. Rc =AxRsAy is the noise-free cross-
correlation matrix, while, in practical applications, Rxy

can only be estimated from the finite L snapshots by
R̂xy = 1/L∑L

t=1 xðtÞyHðtÞ, which not only is contaminated
by the noise but also contains errors caused by the finite
snapshot effect. The goal of this paper is to recover the
noise-free crosscorrelation matrix Rc and then the
unknown 2D DOAs fθi, ϕigi from the sample crosscor-
relation matrix R̂xy .

3. Proposed Method

In this section, we propose an efficient DANM-based cross-
correlation and DOA estimation method for L-shaped array.
To this end, the standard DANM technique is firstly pre-
sented. Then, the sparse representation of the noise-free
crosscorrelation matrix is presented, which enables the
DANM technique to exploit its sparse property. Further,
simultaneously considering the noise and finite snapshot
effects, and the structure property of the crosscorrelation
matrix, we propose the original DANM-based formulation
for CCMR which is intractable since the structure constraint.
To make the formulation tractable, an effective relaxation is
proposed. Moreover, an estimation error constraint leading
to easy setting of the user-specific parameter is also proposed.

3.1. Prior Art: DANM Technique. We now review the stan-
dard DANM technique for harmonic retrieval. Define a
matrix Z as

Z = 〠
K

k=1
αkax f k,1

� �
aHy f k,2
� �

, ð5Þ

where αk ∈ℂ. Then, based on (5), a matrix-form atom set of
infinite size is defined as [18, 15]

A = ax f1ð ÞaHy f2ð Þ ∣ f1, f2 ∈ −
1
2
,
1
2

	 �
 �
: ð6Þ

Accordingly, the atomic norm of Z over the atom setA is
defined as

∥Z∥A = inf 〠
k

αkj j ∣〠
k

αkax f k,1
� �

aHy f k,2
� �

, ax f k,1
� �

aHy

(

� f k,2
� �

∈A ; αk ∈ℂ
)
,

ð7Þ

which seeks the sparsest (under l1-norm measure) decompo-
sition of Z overA . Consider the matrix Z is contaminated by
the noise matrixN and the matrix at hand is Ẑ = Z +N. Then,
according to the DANM theory [18, 25], the atomic decom-
position yields the true structure in (5), through the following
DANM formulation:

~Z = arg min
Z

Zk kA s:t: Ẑ − Z
�� ��2

F
≤ η, ð8Þ

where η is a user-specified parameter for error tolerance.
Moreover, (8) is equivalent to the following semidefinite pos-
itive (SDP) formulation

~z1, ~z2, ~Z
n o

= arg min
z1,z2,Z

1
2M

Tr T z1ð Þð Þ + Tr T z2ð Þð Þð Þ

s:t: Ẑ − Z
�� ��2

F
≤ η

T z1ð Þ Z
ZH T z2ð Þ

" #
≽ 0:

ð9Þ

3.2. Standard DANM-Based Formulation for CCMR. Note
that Rc =∑K

i=1 riaxð f i,1ÞaHy ð f i,2Þ. Apparently, Rc has a sparse
linear atomic representation over the matrix-form atom set
in (6). And we introduce a new matrix-form atomic norm

Rck k+A = inf 〠
i

ri ∣〠
i

riax f i,1
� �

aHy f i,2
� �

, ax f i,1
� �

aHy

(

� f i,2
� �

∈A ; ri ≥ 0,∀i
)
:

ð10Þ

Note that this norm differs from the original atomic
norm of the standard DANM in (7), because of the extra con-
straint r ≥ 0.
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Figure 1: L-shaped array configuration.
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Given Rc, it is possible to retrieve the components fri,
f i,1, f i,2g of its sparest representation by calculating its atomic
norm. Considering the obtained at hand is the sample cross-
correlation containing the estimation error, it boils down to

~Rc = arg min
Rc

Rck k+A
s:t: F R̂xy, Rc

 �
≤ β:

ð11Þ

where FfR̂xy, Rcg is the function quantifying the estimation
error and β indicates the error tolerance threshold. It is sim-
ilar to the DANM formulation introduced in (8), but defined
on the norm k·k+A instead of k·kA . To show the intricacy of
this difference, we rewrite (11) in the following equivalent
form:

~Rc,~r
 �

=min
Rc ,r

Rck kA = rk k1 ð12aÞ

s:t: F R̂xy, Rc

 �
≤ β ð12bÞ

Rc =Ax diag rð ÞAH
y ð12cÞ

r ≥ 0: ð12dÞ

Note that (12c) is implicit in the objective function (11)
but becomes an explicit constraint because of the new non-
negative constraint (12d). Without (12d), the SDP imple-
mentation of the DANM in (9) can be used to reformulate
(12) into a convex problem. However, because of the extra
constraint on r in (12d), this problem becomes intractable,
because r is intertwined with the other variableRc in the form
of (12c).

3.3. Effective Relaxation. To solve (12) in a tractable manner,
we seek to relax r ≥ 0 to an effective form with respect to Rc.
To this end, we note that

Rc : ,1ð Þ = 〠
K

i=1
riax f i,1
� �

,

Rc 1, :ð ÞH = 〠
K

i=1
riay f i,2
� �

,

ð13Þ

where Rcð: ,1Þ and Rcð1, :Þ denote the first column and the
first row ofRc, respectively. Moreover, according to the prop-
erty of Toeplitz matrices [26], if r ≥ 0, we have

T Rc : ,1ð Þð Þ ≽ 0,
T Rc 1, :ð ÞH� �

≽ 0:
ð14Þ

Adopting (14) to replace (12d) and reformulating
(12a)–(12c) into the original decoupled SDP form in (9),
we reach the following effective SDP relaxation for (11):

~u1, ~u2, ~Rc

 �
= arg min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: F R̂xy, Rc

 �
≤β

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0:

ð15Þ

With an appropriate definition ofFfR̂xy, Rcg and β, (18)
can be solved successfully via off-the-shelf convex solvers,
such as CVX [27].

3.4. Estimation Error Constraint. To define a niceFfR̂xy, Rcg
which leads to easy setting of β, we denote the estimation
error matrix as

E = R̂xy − Rc: ð16Þ

Denote by εp,q the ðp, qÞth element of the estimation error
matrix E; then, one has the following proposition:

Proposition 1. For adequately large L, and ∀p + q − 2 > 0, εp,q
is approximately circular complex Gaussian distributed with
zero mean, and the variance is

Var εp,q
� �

=
1
L

〠
K

i=1
ri + σ2

 !2

− 〠
K

i=1
r2i

( )
:

p + q − 2 > 0, 1 ≤ p, q ≤M:

ð17Þ

Proof. Note that R̂xy is estimated from the L collected

snapshots. Denote R̂p,q as the ðp, qÞth element of R̂xy . xpðtÞ,
yqðtÞ, siðtÞ, nxðpÞðtÞ, and nyðqÞðtÞ are similarly defined. We
have ∀p + q − 2 > 0,

R̂p,q =
1
L
〠
L

t=1
xp tð Þy∗q tð Þ = 1

L
〠
L

t=1
〠
K

i=1
si tð Þe−j2π p−1ð Þf i,1 + nx pð Þ tð Þ

 !

� 〠
K

j=1
s∗j tð Þej2π q−1ð Þf j,2 + n∗y qð Þ tð Þ

 !

= 〠
K

k=1

1
L
〠
L

t=1
sk tð Þj j2

 !
e−j2π p−1ð Þf k,1ej2π q−1ð Þf k,2

+
1
L
〠
L

t=1
〠
K

i=1
〠
K

j=1
j≠i

si tð Þs∗j tð Þe−j2π p−1ð Þf i,1ej2π q−1ð Þf j,2

+
1
L

〠
L

t=1
〠
K

i=1
si tð Þn∗y qð Þ tð Þe−j2π p−1ð Þf i,1 + 〠

K

j=1
s∗j tð Þnx pð Þ tð Þej2π q−1ð Þf j,2

 !" #

+
1
L
〠
L

t=1
nx pð Þ tð Þn∗y qð Þ tð Þ = R̂0

p,q + R̂1
p,q + R̂2

p,q + R̂3
p,q,

ð18Þ
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where R̂0
p,q, R̂

1
p,q, R̂

2
p,q, and R̂

3
p,q denote the first, the second, the

third, and the fourth summand. Note that EðR̂0
p,qÞ =∑K

i=1 ri
e−j2πðp−1Þf i,1ej2πðq−1Þf i,2 = Rcðp, qÞ, where Rcðp, qÞ is the ðp, qÞ
th element of Rc. Hence, the ðp, qÞth estimation error εp,q
can be appropriately estimated as εp,q = R̂1

p,q + R̂2
p,q + R̂3

p,q.
Since L is sufficiently large, εp,q is approximately circular
complex Gaussian distributed according to the central limit
theorem [28]. Moreover, as the incident signals and the addi-
tive noise are mutually independent, we can easily obtain that
the expectation of εp,q is

E εp,q
� �

= E R̂1
p,q

� �
+ E R̂2

p,q

� �
+ E R̂3

p,q

� �
= 0, ð19Þ

and the variance of εp,q is

Var εp,q
� �

= E R∧1
p,q

��� ���2� �
+ E R∧2

p,q

��� ���2� �
+ E R∧3

p,q

��� ���2� �
,

ð20Þ

where

E R∧1
p,q

��� ���2� �
=
1
L
〠
K

i=1
〠
K

j=1
j≠i

rir j =
1
L

〠
K

i=1
ri

 !2

− 〠
K

i=1
r2i

 !
,

E R∧2
p,q

��� ���2� �
=
1
L

〠
K

i=1
riσ

2 + 〠
K

j=1
rjσ

2

 !
=
2
L
〠
K

i=1
riσ

2,

E R∧3
p,q

��� ���2� �
=
1
L
σ4:

ð21Þ

Substituting (21) into (20), we can directly have (17).
Denote vecðEÞ as the vectorized estimation error matrix,

and note that the distribution property of ε1,1 is not defined
in Proposition 1; then, one has

E Jvec Eð Þk k22
� �

= 〠
M

p=1
〠
M

q=1,p+q−2>0
E εp,q
�� ��2� �

= M2 − 1
� �

Var ε2,1ð Þ,

ð22Þ

where Varðε2,1Þ is obtained by (20) and J = ½0M2 , IM2−1� is the
selection matrix by which Eðjε1,1j2Þ is dropped from E.
Hence, according to Proposition 1 and (22), we can define
the function FfR̂xy, Rcg as

F R̂xy ,Rc

 �
= Jvec R̂xy − Rc

� ��� ��2
2, ð23Þ

and then, β can be easily set as

β = μ M2 − 1
� �

Var ε2,1ð Þ �
, ð24Þ

where μ is a user-specific weighting factor permitting (24)
to be held in a high probability. It is worth noting that the
threshold β is influenced by various factors, such as the
variances of signals and noise, limited snapshots, and array
geometry. In contrast, μ just introduces a scale to the
threshold. Thus, μ has much smaller dynamic than β
and is easier to choose, which is verified in the Numerical
Results. In the following, an approximation of Varðε2,1Þ is
given.

Firstly,∑K
i=1 ri + σ2 can be well estimated by averaging the

diagonal elements of the observed covariance matrix along
the x and y axes. It is worth noting that since the first diago-
nal element is common among the covariance matrices, it
should be calculated only once. Hence, ∑K

i=1 ri + σ2 can be
estimated by

1
2M − 1ð Þ diag R∧xð Þ + diag R∧y

� �� �T1M − R̂y 1, 1ð Þ
n o

,

ð25Þ

where R̂x and R̂y denote the sample covariance matrix along
the x and y axes estimated from the L collected snapshots,
respectively. In practical implementation, the diagonal ele-
ments of R̂x can be calculated as diag ðR̂xÞ = diag ð1/L∑L

t=1
diag ðxðtÞÞdiag∗ðxðtÞÞÞ, as well as diag ðR̂yÞ. R̂yð1, 1Þ is the
ð1, 1Þth element of R̂y. Next, according to (4), the ðp, qÞth
(p + q − 2 > 0) element of Rxy as Rp,q can be expressed as

Rp,q =∑K
i=1 rie

j2πðp−1Þf i,1e−j2πðq−1Þf i,2 . Thus, the expectation of
the squared modulus of Rp,q is

E Rp,q
�� ��2n o

= 〠
K

i=1
r2i + 〠

K

i=1
〠
K

i′=1
i′≠i

riri′ × cos 2π p − 1ð Þ f i,1 − f i′1
� ��

+ 2π q − 1ð Þ f i′ ,2 − f i,2
� �Þ: ð26Þ

The term cos ð2πðp − 1Þð f i,1 − f i′1Þ + 2πðq − 1Þð f i′ ,2 −
f i,2ÞÞ varies for different p, q, i, i′. Moreover, the phase mod
ð2πðp − 1Þð f i,1 − f i′1Þ + 2πðq − 1Þð f i′ ,2 − f i,2Þ, 2πÞ is uni-
formly distributed in ½−π, πÞ with respect to uniform distri-
butions of f i,1 and f i,2 within ½−0:5,0:5Þ. Thus, the cosine
term has a mean of zero. Further, if we take the average of
the module of R̂p,q, ðp + q − 2 > 0Þ, the cosine term will be
eliminated and only the first term is retained. Hence, we
can approximate ∑K

i=1 r
2
i with the average of the module of

R̂p,q, ðp + q − 2 > 0Þ as

〠
K

i=1
r2i ≈

Jvec R̂xy

� ��� ��2
2

M2 − 1
� � : ð27Þ

Finally, substituting (25) and (27) into (17), the
approximation of Varðε2,1Þ is obtained, and then, β can
be determined via (24). With the obtained β and the func-
tion FfR̂xy, Rcg in (26), we have the proposed CCMR-
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based DANM (CCMR-DANM) method for L-shaped array
as follows:

~u1, ~u2, ~Rc

 �
= arg min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: Jvec R̂xy − Rc

� ��� ��2
2≤β

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0:

ð28Þ

Compared with the SDP formulation of standard
DANM in (9), beside the error tolerance constraint, an
extra constraint in (14) is included in the proposed SDP
formulation. It is an effectiveness relaxation of the positive
constraint r ≥ 0, which is introduced by the prior informa-
tion of the crosscorrelation matrix. Moreover, the impor-
tance of this extra constraint is verified in simulations.

3.5. DOA Retrieval. By solving (28), we note that besides the
estimation of Rc, the estimation of Tðu1Þ and Tðu1Þ also are
obtained, which can be expressed in the form of an aug-
mented matrix as

RA =
T u1ð Þ Rc

RH
c T u2ð Þ

" #
: ð29Þ

Next, we develop three kinds of angle estimation
methods based on Tðu1Þ and Tðu2Þ, Rc, and RA, respectively.

First, since Tðu1Þ and Tðu2Þ contain the unknown angle
information, the Vandermonde decomposition-based
methods such as MUSIC and ESPRIT [17, 29, 30] can be
employed for angle estimation in each dimension. Of course,
a pairing operation needs to be done to finally obtain the
angle pairs [18].

Second, considering Rc as the noise-free crosscorrelation
matrix, conventional 2D DOA estimation algorithms based
on crosscorrelation [18–15] can be grafted with the proposed
CCMR-DANM method for angle estimation. In this paper,
we adopt the JSVD algorithm [10] as a representation for
comparison in simulations.

Last, according to the decoupled atomic norm theory [18,
25], we have

RA =
T u1ð Þ Rc

RH
c T u2ð Þ

" #
=

Ax

Ay

" #
1ffiffiffiffiffi
M

p Rs

Ax

Ay

" #H
=HRs′HH ,

ð30Þ

where H = ½AT
x ,AT

y �T and Rs′= ð1/ ffiffiffiffiffi
M

p ÞRs. Hence, the con-
ventional covariance-based 2D DOA estimation algorithms,
such as [8, 9], can be incorporated into the proposed
CCMR-DANM method.

Remark 2. Note that all the matrices we obtained through
(28) are low rank and their rank values are equal to the source
numbers. In the three kinds of proposed angle estimation
methods, either eigenvalue decomposition (EVD) or singular
value decomposition (SVD) is taken on these low-rank
matrices. Hence, we can determine the source numbers by
counting the number of eigenvalues or singular values, which
is larger than a predefined threshold, e.g., 0:05λmax , where
λmax is the maximum value of the eigenvalues. In this sense,
the proposed methods can be done in a blind mode without
knowing the source numbers a priori.

Remark 3. It is worth noting that the three kinds of proposed
angle estimation methods have different behaviors in terms
of estimation accuracy and computational complexity. The
first Vandermonde decomposition-based method is compu-
tationally efficient but requires an extra pairing operation.
The third RA-based method is relatively computational
expensive than the other two. The second crosscorrelation-
based method is not only computationally efficient but also
can achieve automatic pairing. Moreover, note that although
the proposed method works on sample crosscorrelation
matrix, the proposed method grafting with the RA-based
method can detect 2M − 1 sources, which is larger than that
of the conventional crosscorrelation-based DOA estimation
methods.

In summary, the proposed CCMR-DANM method is
widely applicable in practical implementations.

4. Discussions

Two related issues regarding the proposed solution in Section
3 are discussed in this section. First, the computational com-
plexity of the proposed method is analyzed and compared
with that of existing CCMR-based methods. Second, we
extend the proposed method to the sparse L-shaped array
cases.

4.1. Computational Complexity.Note that the CC-ANM, CC-
GLS, and the proposed method are all two-phase CCMR-
based methods. They have common operations in sample
crosscorrelation matrix construction and DOA estimation.
The only difference is the technique used for CCMR. Hence,
we only compare the computational complexities of the
CCMR operation in these three methods. According to Van-
denberghe and Boyd [31], the computational complexity for
solving the SDP formulation of (28) is OfðM2 + 2MÞ2
ð4MÞ2:5g. Moreover, the computational complexities of
CCMR in the proposed CCMR-DANM, CC-ANM, and
CC-GLS are listed in Table 1.

Further, Figure 2 presents the computational complexi-
ties of CCMR in different algorithms versus the number of
antennas at each subarray. Obviously, the proposed CCMR-
DANM has the least computational cost compared with
CC-ANM and CC-GLS when M > 4. Further, the computa-
tional gaps between the proposed and the other two algo-
rithms become large with the growth of the number of
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antennas. Hence, the proposed method offers us a more effi-
cient choice for CCMR, especially with large M.

4.2. Extension to Sparse L-Shaped Array Cases. In the sparse L-
shaped array case, we consider there are two sparse linear
array (SLA) arranged along the x and y axes. Moreover, each
SLA is a subarray of a virtual ULA. In other words, the mani-
folds of the SLAs termed Ax′ and Ay′ can be expressed as [22]

Ax ′ = IΩx
Ax,

Ay ′ = IΩy
Ay ,

ð31Þ

where IΩx
is the selection matrix for the SLA in the axis with

Ωx being the index set indicating the index of remaining
antennas and IΩy

is similarly defined. Hence, we have

Rx ′y ′ = IΩx
Rc +N1ð ÞIHΩy

, ð32Þ

and sequentially, the error estimation matrix can be defined as

E′ = R̂x ′y ′ − IΩx
RcIΩy

: ð33Þ

Moreover, in this paper, we consider that the two SLAs are
two redundancy linear arrays [22], which means the virtual
crosscorrelation as Rxy can be fully determined by Rx ′y ′ . Fur-

ther, each element in E′ has similar distribution as that in E. In
other words, we can similarly defined the function FfR̂x ′y ′ ,
IΩx

RcIΩy
g and the tolerant bound β′ as those in (23) and

(24), respectively. Then, we have the proposed CCMR-
DANM for sparse L-shaped array as

~u1, ~u2, ~Rc

 �
= min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: J′ vec R̂x ′y ′
� �

− IΩy
⊗ IΩx

� �
vec Rcð Þ

� ���� ���2
2
≤β′

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0,

ð34Þ

where J′ is similarly defined as J.

5. Numerical Results

In this section, we present numerical examples to verify the
effectiveness of the proposed method and evaluate the per-
formance of the proposed method for L-shaped array DOA
estimation. Unless specifically stated, in simulations, we con-
sider three source signals, i.e., K = 3, with DOAs (15°, 10°),
(25°, 20°), and (35°, 30°), impinge onto the L-shaped array
withM = 8. The number of collected snapshots L and Monte
Carlo trials N is set to 200 and 500, respectively. We use root
mean square error (RMSE) to evaluate DOA estimation pre-
cision of the proposed method with comparison to the
MUSIC algorithm for L-shaped array (replaced with MUSIC
hereafter), the JSVD [10], the CESA [12], the CC-GLS [22],
and the CRB [9]. We omit the CC-ANM for comparison
since it has similar estimation performance as CC-GLS and
it is more computationally expensive [22]. The RMSE of
the azimuth and elevation angle estimations is defined as

RMSE =
1
K
〠
K

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

n=1
ϕ∧i,n − ϕi
� �2 + θ∧i,n − θið Þ2
h is

,

ð35Þ

where bϕ i,n and
bθ i,n denote estimates of ϕi and θi from the nth

trial, respectively.
First, to guarantee the proposed CCMR-DANM method

works in a best status, it is important to choose an appropri-
ate user-specific weighting factor μ. The RMSEs of the pro-
posed method with different μ versus SNR are presented in
Figure 3. The curves in Figure 3 indicate that with different
μ, the resulting proposed methods have different estimation
performance. Moreover, the proposed method equipped with
μ = 1 has the best performance. Hence, in following simula-
tions, we set μ = 1 to implement the proposed CCMR-
DANM method.

Next, let us evaluate the estimation performance of the
proposed CCMR-DANM method compared with the
aforementioned methods. Moreover, the proposed method
without the constraint (14), termed proposed w/o 2, is also
simulated for comparison. Figure 4 shows the RMSEs of
these methods versus SNR. As shown in Figure 4, the pro-
posed method is effective and outperforms both the conven-
tional L-shaped DOA estimation methods and the existing
gridless CCMR-based methods. Moreover, there is a nonne-
gligible gap between the proposed method and the proposed
w/o 2 method. It indicates that the performance of the pro-
posed method degrades greatly when the constraint in (14)
is dropped, which means the constraint in (14) is indispens-
able for the proposed method.

To further examine the performance, we present the
RMSEs of aforementioned methods versus the number of
snapshots with SNR = 0dB in Figure 5. The result likewise
indicates that the proposed method has better estimation
accuracy than the conventional methods. Combining the
estimation performance comparisons with the analysis in
Remark 2, we can conclude that the proposed method not
only has the better estimation performance compared with

Table 1: The computational complexities of CCMR in different
algorithms.

Algorithm Computational complexity

CC-ANM O 3M2 − 2M
� �2

M4:5
n o

CC-GLS O 2M2 − 2M
� �2

M4:5
n o

Proposed O M2 + 2M
� �2 4Mð Þ2:5
n o
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the conventional L-shaped DOA estimation methods but
also can be implemented without knowing the source num-
bers. Moreover, combining the estimation performance com-
parisons with the analysis of computational complexity in
Section 4.1, we can conclude that the proposed method not

only is more efficient but also has better estimation perfor-
mance, compared with the existing gridless CCMR-based
methods, such as CC-GLS and CC-ANM.

Last, let us consider the sparse L-shaped array cases.
Assume both of the SLAs are sampled from the 8 element
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Figure 2: The computational complexities of CCMR in different algorithms versus M.
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Figure 3: RMSE of the proposed method with different μ versus SNR.
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ULA with the selection matrix IΩ, where Ω = f1, 2, 4, 7, 8g.
And the same three source signals with DOAs (15°, 10°),
(25°, 20°), and (35°, 30°) impinge onto the sparse L-shaped

array. As shown in Figure 6, the 2D DOAs can be clearly
observed via the proposed method. In other words, the pro-
posed method is applicable to the sparse L-shaped array cases.
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Figure 4: RMSE versus SNR with L = 300.
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Figure 5: RMSE versus the number of snapshots with SNR = 0 dB.

9Wireless Communications and Mobile Computing



6. Conclusion

In this paper, a new CCMR-based two-phase method for
2D DOA estimation with L-shaped array via DANM is
proposed. In the first phase, the DANM technique simul-
taneously considering the noise and finite snapshot effects
and structure property is employed to reconstruct the
noise-free crosscorrelation matrix from the sample counter-
part. Then, in the second phase, conventional 2D DOA esti-
mation methods for L-shaped array can be adopted for 2D-
DOA estimation. Numerical simulations demonstrate the
effectiveness and outperformance of the proposed method.
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