
Research Article
A Smart Semipartitioned Real-Time Scheduling Strategy for
Mixed-Criticality Systems in 6G-Based Edge Computing

Wenle Wang ,1 Chengying Mao ,2 Shuai Zhao,3 Yuanlong Cao,1 Yugen Yi,1

Shaolong Chen,1 and Qinghua Liu1

1School of Software, Jiangxi Normal University, Nanchang, 330022 Jiangxi, China
2School of Software and IoT Engineering, Jiangxi University of Finance and Economics, Nanchang, 330013 Jiangxi, China
3Department of Computer Science, University of York, YO10 5GH, UK

Correspondence should be addressed to Chengying Mao; maochy@yeah.net

Received 30 October 2020; Revised 24 February 2021; Accepted 6 March 2021; Published 23 March 2021

Academic Editor: Longzhe Han

Copyright © 2021 Wenle Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid growth of 6G communication and smart sensor technology, the Internet of Things (IoT) has attracted much
attention now. In the 6G-based IoT applications on the multiprocessor platform, the partitioned scheduling has been widely
applied. However, these partitioned scheduling approaches could cause system resource waste and uneven workload among
processors. In this paper, a smart semipartitioned scheduling strategy (SSPS) was proposed for mixed-criticality systems (MCS)
in 6G-based edge computing. Besides tasks’ acceptance rate and weighted schedulability, QoS is considered in SSPS to improve
the service quality of the system. The SSPS allocates tasks into each processor, and some tasks can migrate to other processors as
soon as possible. By comparing with the several existing algorithms, the experimental results show that the SSPS achieves the
best in the schedulability and QoS of the system.

1. Introduction

Nowadays, with the 6G wireless communication networks
and various smart sensors widely applied, the IoT applica-
tions grow rapidly in a wide range of areas, including
industrial robot, driverless car, and edge computing [1–5].
Especially, edge computing, a new application paradigm, is
growing popular with 6G technology’s development. For
these systems in 6G-based edge computing, various sensors
and mobile devices with different importance or criticality
levels are integrated into a single computation platform for
less space and energy. Criticality is designed for assurance
needed against system failure [6]. Generally, criticality can
be divided into several levels, such as low and high criticality.
For example, in automotive systems, the tasks brought by
steering and braking sensor are safety-related high, while
the tasks of multimedia players, used for infotainment, are
low-criticality (LO-criticality) tasks. These systems that have
components with more than one distinct criticality level are
mixed-criticality systems (MCS) [7], which are the special

kind of 6G-based application with multiple criticality. The
task scheduling is a fundamental issue in MCS, to reconcile
the conflicting requirements for resource usage. The proper
task is scheduled so that all high-criticality (HI-criticality)
tasks’ execution is guaranteed which is a major challenge of
MCS. Because the reliability verification and the mixed criti-
cality exist simultaneously in MCS, the traditional real-time
scheduling algorithms cannot be directly adopted [8, 9].

With the prompt of computing requirements, the
platforms of MCS are migrating from a single processor to
multiprocessor hardware. MCS scheduling on multiproces-
sors can be mainly divided into global scheduling [10–12]
and partitioned scheduling [13–17]. Fully global scheduling,
because of task migration globally, has an overhead of the
context switching and associated caches, while purely parti-
tioned scheduling, in which some processors are too busy
and others are too idle because of forbidden migration,
causes waste of system resources [18]. Following this, the
researchers mixed the above two scheduling methods and
proposed the semipartitioned scheduling strategy [19–21].

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 6663199, 11 pages
https://doi.org/10.1155/2021/6663199

https://orcid.org/0000-0002-4075-3512
https://orcid.org/0000-0001-8178-1205
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6663199


The semipartitioned algorithms apply two-phase allocations
for the different system criticality modes. During a phase of
criticality mode update, the executing low-criticality (LO-
criticality) tasks (jobs) will be aborted and new ones can be
executed on a different processor, and thus, these jobs’ dead-
lines are met to achieve better schedulability of system.

However, in most existing MCS semipartitioned schedul-
ing algorithms, when the system criticality mode switches
into HI-criticality from LO-criticality, the LO-criticality tasks
are directly discarded to ensure HI-criticality tasks’ comple-
tion [22–24], which seem too negative. Firstly, LO-criticality
levels are not noncritical, and dropping the executing LO-
criticality tasks may damage the system’s acceptance rate.
During the scheduling process, the processors could be so
idle that they can be assigned to perform LO-criticality tasks
and thereby improving system utilization and task accep-
tance [25, 26].

Furthermore, acceptance rate and utilization rate are the
main schedulability concerning parameters in MCS, to ensure
the HI-criticality tasks’ completion. However, for tasks with
the identical criticality, they can have different influences to
MCS in actual applications, where some tasks are more signif-
icant or have higher quality of service (QoS) to a certain
extent. To describe the QoS property of task, a notion, for
example, value [27, 28], is usually used. The higher the value,
the better the quality brought by task. And calculative value
brought by finished tasks is recorded as TV to respect the
whole tasks’ QoS under scheduling algorithm [29, 30].

1.1. Organization. The paper’s structure is listed as follows: the
related work is described in Section 2. Section 3 describes the
paper’s overall framework. Section 4 defines the proposed
MCSmodel and notation in detail. We analyze the schedulabil-
ity of tasks in MCS in Section 5. Section 6 designs the task pri-
ority assignment. The detail of the proposed scheduling
algorithm SSPS is introduced in Section 7. The simulation
experiment setup and results are presented in Section 8. Finally,
in Section 9, we summarize the conclusion and future work.

2. Related Work

In recent years, with the 6G network’s development, related
IoT applications are widely applied and researched [1–3].
Especially, 6G-based edge computing is growing popular with
6G wireless communication developing rapidly [4, 5]. And the
scheduling issue of these applications on multiprocessors,
such as systems with multiple criticalities, has become promi-
nent [6–12]. We review the related work as follows.

The review of the literature [13–17] shows that the
partitioned scheduling approach can achieve better schedul-
ability than the global scheduling approach. By partitioned
scheduling method, the task sets are firstly allocated to each
processor, and then, they are executed according to the
single-processor scheduling algorithm. The optimal parti-
tioning of task sets on multiprocessors is a NP-hard problem,
and the researchers mainly use heuristic partitioned algo-
rithms to obtain suboptimal solutions. For the MCS on the
identical multiprocessor platform, a fixed partitioned sched-
uling algorithm was firstly proposed in [14], and the impact

of different task set sorting as well as a heuristic division on
the system performance has been investigated. It showed that
decreasing criticality (DC) can gain better schedulability than
decreasing utilization (DU). In implicit-deadline sporadic
MCS, a partitioned scheduling algorithm MC-PARTITION
based on DC was proposed, which can get a better speedup
bound. Since the task criticality level may change, the tasks
are fixed via the Best-Fit Decreasing (BFD) of continuous
criticality and utilization and improved resource utilization
[15]. However, the pure partitioned scheduling algorithm
may reduce the utilization of the entire system because of
the migration forbidden between processors [16, 17].

These above reasons lead to the emergence of a
semipartitioned scheduling strategy. In this scheduling, most
tasks are assigned to the fixed processor and some tasks can
be scheduled to different processors globally [18–20]. And
for the MCS, a series of semipartitioned scheduling algo-
rithms have been proposed. Santy et al. designed a heuristic
scheduling strategy, combining reserved, semipartitioned,
and periodic conversion, which reduces the migration over-
head and obtain better performance [21].

In the original Vestal model, LO-criticality jobs some-
times are treated the same as noncritical jobs that will be
not guaranteed in HI-criticality system mode, which ensures
the completion requirements of HI-criticality tasks. Never-
theless, from the engineering perspective, LO-criticality task
is not an NO-criticality task; it cannot be dropped easily
[22–26]. Su and Zhu firstly focus on the LO-criticality tasks
dropped in mixed critical scheduling and discuss the feasibil-
ity of restarting LO-criticality tasks from a multimodal
perspective [22]. Burns and Baruah constructed an elastic
mixed critical task model, which enables more frequent exe-
cution of LO-criticality tasks set through elastic processing
[23]. And Baruah et al. [24] introduced an additional less
pessimistic WCET for LO-criticality jobs to guarantee service
regardless of the executions of HI-criticality jobs. The works
in [25] follow the MC-Fluid framework to address the corre-
sponding scheduler to handle LO-criticality service, having a
good speedup factor.

Some researchers agree that real-time task has impor-
tance or quality, which should be treated as a factor to
improve the quality of service (QoS) of system or application
[27, 28]. In these papers above, a notion, namely, value, is
given to respect the quality of a task, as a basis of the sched-
uling algorithm. Moreover, the value density (value of a time
unit) and urgency of a task are considered comprehensively
into dynamic scheduling algorithm and improved the real-
time application performance [29, 30].

3. Overall Framework

We consider the scheduling on mixed-criticality systems
(MCS) under a multiprocessor platform, in 6G-based edge
computing environment. Firstly, the schedulability analysis
based on response time is used to obtain schedulable tasks.
Then, these tasks are sorted by priority assigned by criticality,
value, and deadline. The tasks are divided to processor by
first fit (FF) in the priority of descending order. The smart
semipartitioned scheduling strategy (SSPS) is proposed, in

2 Wireless Communications and Mobile Computing



which some tasks can be migrated to other processors as
needed. During the scheduling, the slack time collection is
working to execute more task’s job. The overall framework
of the SSPS is shown in Figure 1.

3.1. Our Contributions. For the mixed-criticality systems
(MCS) in 6G-based edge computing of homogeneous multi-
processors, the timing and service quality of the system tasks
are taken into consideration, and a smart semipartitioned
scheduling strategy (SSPS) is proposed in the paper. Besides,
when the system mode switches from LO-criticality to HI-
criticality, a mechanism that facilitates LO-criticality tasks
(jobs) is designed in SSPS, to improve both the schedulability
and the QoS.

4. System Model and Notation

4.1. System Model and Notation.Here, a mixed-criticality sys-
tem (MCS) S = ðT , PÞ is defined as below, a task set T com-
prised of n independent and periodic tasks τ1, τ2,⋯, τn and
n processor set P with m identical processors p1, p2,⋯, pm.

Meanwhile, the dual MCS model is adopted in this paper,
which runs in either a HI-criticality mode or a LO-criticality
mode.

Definition 1. MCS tasks. The task of MC model can be char-
acterized by a 5-tuple of parameters: τi = ðζi, Ci,Di, Ti, ViÞ,
where

(1) ζi ∈ fLO,HIg denotes the criticality of task τi, where
LO <HI. A task with HI-criticality is subject to be
certified, whereas a LO-criticality task does not need
to be certified

(2) CiðlÞ denotes the task τi’s worst-case execution time
(WCET) in criticality mode l, where l ∈ fLO,HIg.
CiðHIÞ and CiðLOÞ denote the WCET of task τi at
HI-criticality mode and LO-criticality mode, respec-
tively. It meets the constraint CiðLOÞ < CiðHIÞ

(3) Di ∈ R+ is the relative deadline of task τi

(4) Ti ∈ R+ is the period of task τi

(5) ViðlÞ specifies the value of task τi in criticality mode l,
where l ∈ fLO,HIg. ViðLOÞ and ViðHIÞ respect the
value of task τi at LO-criticalitymode andHI-critical-
itymode, respectively, and it meets ViðLOÞ <ViðHIÞ

Each task τi in MCS can give rise to potentially infinite
sequence of jobs.

Definition 2. MCS jobs. Each job J ji released by task τi can be

described by a 4-tuple of parameters: J ji = ðaji , eji , dj
i , f

j
iÞ, where

(1) aji ∈ R
+ is the release time of job J ji

(2) eji ∈ R
+ is the estimated execution time of J ji , with the

constraint eji ≤ Ci

(3) dj
i ∈ R

+ denotes the absolute deadline of J ji , satisfying
dj
i = aji +Di

(4) f ji ∈ R
+ denotes the finish time of job J ji . If J

j
i succeed,

it should be the constraint f ji ≤ dj
i

The system starts in the LO-criticalitymode and remains
in this mode as long as all jobs finished their execution.

If any job does not complete its execution within its LO-
criticality execution time CiðLOÞ, the system criticality mode
will arise and HI-criticality tasks are executed with CiðHIÞ.

4.2. Assumptions of the Model. In the MCS model, the LO-
criticality does not mean noncriticality, and these tasks
should be executed to the extent possible.

Assumption 3. If MCS switches into HI-criticalitymode from
LO-criticality mode, some of the LO-criticality tasks (and
jobs) will be not dropped directly and allowed to be sched-
uled later.

Assumption 4. Tasks are independent of each other; they only
share a processor, but not any other resource, such as band-
width or memory.

5. Schedulability Analysis

In this section, we will investigate the schedulability by
analyzing the response time of the job.

For job J ji , released by task τi, its response time Rj
i is

denoted by Rj
i = f ji − aji . Task τi’s response time is denoted

as Ri, which equals to the value of the maximum response
time of all jobs released by τi.

We test the schedulability of the job J ji by comparing the

response time Rj
i with the task τi’s deadline Di. If R

j
i ≤Di, J

j
i

can be scheduled; otherwise, it cannot be scheduled.
The job J ji ’s response time includes two parts: its esti-

mated execution time eji and interference time Ii caused by
higher priority tasks.

Priority assignment
Assign tasks priority and sort

Processor allocation

...

...

priority desc

Allocate tasks to processor

...

...

Schedulability analysis
Get he schedulable task set

MASPS strategy

Task execution

Slack time collection

Figure 1: The overall framework of SSPS.

3Wireless Communications and Mobile Computing



When a task τi is allocated to a processor, assuming a job
J ji , released by τi at a

j
i , J

j
i waits other higher priority jobs’

completion until bji , its finish time is f ji , and its deadline is

dj
i . The execution constraint is illustrated by Figure 2.
Suppose traise is the time when the system mode is raised

from LO-criticality to HI-criticality. When traise ∈ ½aji , f jiÞ,
discussion about Rj

i is as follows:

(1) If traise ∈ ½aji , bjiÞ, it means that the system has been

raised to HI-criticality mode before the job J ji starts

(a) The system initials at LO-criticality mode during
the interval ½aji , traiseÞ. And the job J ji executes in
LO-criticality mode; the interference time can
be calculated as

Ii1 = 〠
τi∈hp ið Þ

traise
T j

& ’
× Cj LOð Þ, ð1Þ

where hpðiÞ indicates the tasks with higher prior-
ity than task τi.

(b) In the interval ½traise, bji �, the system is raised to

HI-criticality mode. Then, the job J ji executes at
HI-criticality mode; the interference time is
defined as

Ii2 = 〠
τi∈ hp ið Þ∪hc ið Þð Þ

f ji − traise
T j

& ’
× Cj HIð Þ, ð2Þ

where hcðiÞ indicates the tasks with higher criti-
cality than task τi.

(2) When traise ∈ ½bji , f jiÞ, it means that the system critical

mode is improved during the execution of the job J ji

(a) In the interval ½bji , traiseÞ, the job J ji executes in
LO-criticality mode; the interference time equals
to Ii1 of Equation (1)

(b) In the interval ½traise, bjiÞ, the job J ji executes inHI-
criticality mode; the interference time equals to
Ii2 of Equation (2)

In summary, the response time of J ji can be expressed as

Rj
i = eji + Ii1 + Ii2: ð3Þ

Based on Equation (3), the task τi
’s response time Ri,

which can be determined by the jobs released by τi,
selects the maximum response time of its job and satisfies
Ri =max

J ji

Rj
i .

According to the discussion above, the pseudocode of
the schedulability analysis algorithm can be described as
Algorithm 1. In this algorithm, the inputs include two pieces
of information: the undivided task set T and unallocated
processors P. The output is the partitioned task queue of
the processors. At first, each processor is not allocated any
task (lines 1–3). Then, sort the tasks T according to its prior-
ity in order (line 4). After this, the algorithm allocates the
tasks to processors (lines 5-15). At last, return the parti-
tioned result (line 16). For each task τi in the queue (line
5, the outer for), starting from the first, the algorithm tries
to allocate τi to a processor pj to execute (line 6, the inner

for). If τi can finish, insert it to the processor pj
’s ready

queue and allocate it to the next task (lines 7-10).
In Algorithm 1, it contains two-layer loops, where the

outer-layer loop (lines 1, 5) can be evaluated in constant time
OðnÞ and the inner-layer loop (line 7)’s complexity is also
constant level OðmÞ. The step of calculate Ri in line 6,
between the outer-layer loop (line 5) and the inner-layer loop
(line7), in which complexity is OðnÞ. Consequently, Algo-
rithm 1’s run time complexity is Oðn ∗mÞ.

6. Priority Assignment of Task

In general, the priority of a task is the basis of schedule. This
section mainly considers the criticality level and the value of
task and proposes the priority assignment strategy.

6.1. Criticality and Value. According to Definition 1, HI-
criticality task τi’s value Vi is related to the criticality ζi,
satisfying ViðHIÞ > ViðLOÞ.

In the existing strategies, the LO-criticality level tasks will
be dropped out when the system criticality mode upgrades.
Total value (TV) of the system can be expressed as TV =
∑τi∈T ViðLOÞ +∑τi∈THI

ViðHIÞ, where THI ⊂ T is the HI-
criticality task set, ∑τi∈T ViðLOÞ is the system total value
in LO-criticality system mode, and ∑τi∈THI

ViðHIÞ is the
system total value in HI-criticality mode.

To compare the two values in HI-criticality mode and
LO-criticality separately, ViðHIÞ and ViðLOÞ, let ViðHIÞ =
CF ×ViðLOÞ, where CF is criticality factor of task, which
satisfies CF > 1. ΔTV indicates the total value difference
between in HI-criticality mode and in LO-criticality mode.

ΔTV = 〠
τi∈THI

Vi HIð Þ − 〠
τi∈T

Vi LOð Þ

= 〠
τi∈THI

CF ×Vi LOð Þ − 〠
τi∈T

Vi LOð Þ

= 〠
τi∈THI

CF − 1ð Þ × Vi LOð Þ − 〠
τi∈TLO

Vi LOð Þ:

ð4Þ

t

Ji
j

ai
j bi

j fi
j di

j

Figure 2: Execution diagram of J ji .

4 Wireless Communications and Mobile Computing



In Equation (4), ∑τi∈THI
ðCF − 1Þ × ViðLOÞ indicates the

value difference of HI-criticality tasks in HI-criticality mode
and in LO-criticality mode, and ∑τi∈TLO

ViðLOÞ represents
the values obtained by the LO-criticality tasks.

If ΔTV > 0, it means that the TV increases as system
criticality mode upgrades. In other words, the value differ-
ence of HI-criticality tasks in different criticality modes is
larger than the LO-criticality tasks’ values at this time.

If ΔTV ≤ 0, it means the TV does not rise when the
system criticality mode switches from LO-criticality to HI-
criticality.

6.2. Assignment of Task’s Priority. In MCS, the task’s priority
should reflect its attributes, including criticality level, value,
and deadline. When constructing the priority assignment
function Pri, we consider the importance of these factors.

(1) All HI-criticality tasks should be executed firstly

(2) Next, tasks with high value are prioritized in the same
criticality level

In different system criticality modes, for a task τi, its
priority is recorded as Prli:

Prli = e
Ci lð Þ
di × ln Vi lð Þ½ �, ð5Þ

where CiðlÞ and ViðlÞ vary as the system critical mode l
changes. And l satisfies l ∈ fLO,HIg.

Theorem 5. For the task τi, it satisfies Pr
HI
i > PrLOi .

Proof. In dual MCS with HI-criticality and LO-criticality,
there areCiðHIÞ > CiðLOÞ and ViðHIÞ > ViðLOÞ. Therefore,
PrHI

i > PrLOi .

Lemma 6. When the system is in HI-criticality mode, for
each HI-criticality taskτi and LO-criticality taskτj, it satisfies

PrHI
i > PrLOi .

7. Scheduling Algorithm

For the MCS under a homogeneous multiprocessor platform,
we propose a smart semipartitioned scheduling strategy
(SSPS).

7.1. Smart Semipartitioned Scheduling Strategy (SSPS). SSPS
includes both the processes of partitioned scheduling and
global scheduling; the details are as follows:

(1) Task order. All the tasks of T are sorted in a descend-
ing order according to their priorities calculated by
Equation (5)

(2) Processors allocation. Each sorted task is allocated to
processors by First-Fit Decreasing (FFD) method

(3) Schedulability test. The task subset’s schedulability is
tested by Algorithm 1

(4) Task execution. This process includes executing jobs
released by the task and collecting the processors’ idle
time for LO-criticality tasks’ execution

(a) Tasks allocated in each processor execute by
priority, and these tasks do not migrate. During
this process, the slack times of each processor
are collected and stored in the queue Que¯Slack

(b) When the system criticality mode upgrades, all
unfinished LO-criticality jobs are sorted and
managed globally and then assign their execution
times in Que¯Slack. At the high mode, we allow
the execution of LO-criticality tasks but do not
allow them to preempt HI-criticality tasks; i.e.,
theHI-criticality tasks will not incur any interfer-
ence from the ones with a LO-criticality level

Here, the queue Que¯Slack is used to store feasible slack
fragment sf . Each sf is represented in the form of ðq, dÞ,
where q is the length of time and d is the end time of sf .
The algorithm of slack time collection is shown as
Algorithm 2.

In Algorithm 2, the inputs include two pieces of informa-
tion, including the given executing job J jexe and slack frag-
ment sf i of processor pi. The output of the algorithm is the
idle time queue Que¯Slack. At first, the condition of collect
processor slack time is that the job J jexe can finish until its
deadline dj

exe (line 1). And if the input sf i is null, insert into
queue Que¯Slack (lines 2-6). Otherwise, discuss the values
of J jexe executing time ejexe = q and the sf i’s length q, the
former should be not larger than the latter to ensure J jexe’s
execution. If the two are equal, then remove the sf i from Q

ue¯Slack (lines 9-10), and if ejexe is less than q, q’s remaining
time after completing J jexe is update to Que¯Slack (lines 11-
14). At last, return Que¯Slack (line 17).

Inputs:
Task set to be partitioned T = τ1,...,τn;
Processors set to be allocated P = p1,⋯, pm.

Outputs:
PT = Que_Ready_p1,...,Que_Ready_pm.
/∗where Que_Ready_pi is the tasks ready queue on pi.∗/

1: for each pj in P do

2: Set Que_Ready_pj = {};
3: end for
4: Sorted T according to priority in descending
5: for each τi in Tdo
6: Calculate Ri by Eq. (3);
7: for each pj in P by descending order do
8: if Ri ≤ Di then
9: Add τi into Que_Ready_pj;
10: break;
11: end if
12: end for
13: end for
14: return PT;

Algorithm 1: Schedulablity analysis.

5Wireless Communications and Mobile Computing



Example 1. A task set including 5 tasks is shown in Table 1
and is divided into two homogeneous processors.

The system is in LO-criticality mode at the initial time,
and if the task set is presorted using the DU method, the
sequence of system tasks is τ1, τ3, τ4, τ2, and τ5. In accor-
dance with the FFD strategy, tasks τ1 and τ3 are divided into
processor p1, while tasks τ2, τ4, and τ5 are divided into pro-
cessor p2. In this case, two processors meet the conditions.
In LO-criticality system mode, the resource utilization of p1
is 83.3%, and the corresponding resource utilization of p2 is
78.3%. When the system mode upgrades to a HI-criticality
mode, all LO-criticality tasks τ3, τ4, and τ5 are discarded. In
this case, processor p1 obtains a resource utilization of
62.5% and the resource utilization of processor p2 is 50%.

The existing scheduling algorithms, such as MC-PARTI-
TION, drop out all LO-criticality tasks directly in HI-critical-
ity system mode, even if there is some idle time on the
processor at some moment. In order to improve the accep-
tance rate of the task and the utilization of the processor,
the cutoff period and value attribute of the task can be
considered comprehensively, and the LO-criticality task is
dispatched globally by using the idle time of the processor
when the system mode switches from LO-criticality into
HI-criticality. A hyperperiod execution (here, 24 time units)
for the task set of Example 1 is shown in Figure 3, in which
the task set is presorted according to the priority function
of Equation (5), with the same result as the DU method.

After the system critical mode upgrades, we perform
global scheduling for LO-criticality tasks τ3, τ4, and τ5 on
the premise of ensuring HI-criticality tasks τ1 and τ2 and
allocate idle time on processors p1 and p2 dynamically. This

method can achieve high acceptance ratio and improve the
utilizations of both processors to 91.7% (11/12).

7.2. Analysis of SSPS. In the smart semipartitioned scheduling
strategy (SSPS), the task’s schedulability is analyzed by Algo-
rithm 1; tasks allocated by first fit (FF) are assigned priority
by Equation (4). The queue Que¯Slack is used to collect slack
time by Algorithm 2, and the LO-criticality jobs are collected
to the queue Que¯Low. The system selects the segment in Q
ue¯Slack to execute the job in Que¯Low. Meanwhile, the
queue Que¯Ready is used to store prepared tasks. And the
pseudocode of SSPS is shown in Algorithm 3 as follows.

In Algorithm 3 mentioned above, the inputs include
seven parameters: the task set T , the processor set P, the
queue for LO-criticality jobs, the queue storing processor’s
idle time, the queue for ready tasks, the initial system mode
(Sys¯Mode = LO), the total successful jobs’ number NST and
the total job number NT . The output of Algorithm 3 is the
acceptance ratio which equals NST /NT . At first, analyze all
tasks of T and allocate to a ready queue Que¯Ready¯pm of
each processor pm (line 1). Then, for the queue Que¯Ready¯
pm, get the task Jmexe and compare its response time Rm

exe to
CexeðLOÞ (lines 2-4). If Jmexe cannot finish its completion
(Rm

exe > CexeðLOÞ), then discuss if Jmexe is a HI-criticality job
and Sys¯Mode = LO; the system mode switches to HO-
criticality from LO-criticality according the MCS definition;
abort LO-criticality tasks in ready queue of each process,
insert LO-criticality jobs into the queue Que¯Low, and exe-
cute the Jmexe (lines 5–10); if J

m
exe is a LO-criticality job, then

abort it and continue (lines 11-14). Otherwise, Jmexe can fin-
ish, execute it, and collect the slack time of its completion
(lines 15-19).

During the scheduling in HO-criticality system mode,
the processor of executing LO-criticality uses idle time of
each processor (lines 20-30). For each slack fragment sf s
in queue Que¯Slack, the top job Jmexe of Que¯Low is chosen
to execute. It is necessary to compare emexe to qs, the length
of sf s. If the former is not less than the letter, then com-
plete Jmexe and collect the slack time of its completion (lines
22-25).

Algorithm 3 calls Algorithm 1 (line 1) that contains a
two-layer loop. And its another two-layer loop in algorithm,
where the outer-layer loop is in lines 3-31 of OðmÞ, and the
inner-layer loop (lines 21-29) can be evaluated in constant
time of OðnÞ. Therefore, the time complexity of the Algo-
rithm 3 is in the pseudopolynomial order.

Inputs:
Executing job J jexe;
Slack fragment sf i.

Output:
The queue for collect idle time Que_Slack.

1: if J jexe finish at t0(t0<d
j
exe) then

2: if sf i = null then

3: q = (Cexe - e
j
exe);

4: d = dj
exe;

5: sf i ⇐ ðq, dÞ ;
6: Insert sf i into Que_Slack;
7: else
8: Get q,d from sfi;
9: if ejexe = q then
10: Remove sf i from Que_Slack;

11: else if ejexe < q then
12: Set q = q − ejexe;
13: Update sf i to Que_Slack;
14: end if
15: end if
16: end if
17: return Que_Slack;

Algorithm 2: Slack time collection.

Table 1: A task set of 5 tasks.

Ci LOð Þ Ci HIð Þ ζi Di Vi LOð Þ Vi HIð Þ
τ1 4 5 HI 8 20 50

τ2 2 4 HI 8 20 40

τ3 2 2 LO 6 35 35

τ4 4 5 LO 3 20 20

τ5 4 5 LO 5 10 10

6 Wireless Communications and Mobile Computing



For the SSPS algorithm, it is necessary to discuss the
system value Vi.

(1) In LO-criticality system mode, the system total value
of the T is ∑τi∈T ViðLOÞ.

(2) In HI-criticality system mode, the total value
contains two parts: the value obtained by the
HI-criticality task ∑τi∈THI

ViðHIÞ, where THI ⊂ T ,
and the value obtained by the finished LO-criticality
task set, named as TLO ′, ∑τi∈TLO

′ViðLOÞ.

The total value TVSSPS can be described as

TVSSPS = 〠
τi∈T

Vi LOð Þ + 〠
τi∈THI

Vi HIð Þ + 〠
τi∈TLO′

Vi LOð Þ: ð6Þ

According to Equation (6) about the TV of the classic
strategies, TVSSPS ≥ TV obviously.

To discuss the TVSSPS changed with system criticality
mode, let ΔTVVSSPS indicate the total value difference
between in HI-criticality mode and in LO-criticality mode.
If ΔTVSSPS > 0, it indicates that the TVSSPS in HI-criticality
mode is bigger; conversely, it means that the TVSSPS in HI-
criticality mode is smaller.

ΔTVSSPS = 〠
τi∈THI

Vi HIð Þ + 〠
τi∈TLO′

Vi LOð Þ − 〠
τi∈T

Vi LOð Þ

= 〠
τi∈THI

CF ×Vi LOð Þ + 〠
τi∈TLO′

Vi LOð Þ − 〠
τi∈T

Vi LOð Þ

= 〠
τi∈THI

CF − 1ð Þ ×Vi LOð Þ − 〠
τi∈ T−THI−TLO

′ð Þ
Vi LOð Þ,

ð7Þ

where CF =ViðHIÞ/ViðLOÞ is the criticality factor of task,
and CF > 1.

In Equation (7),∑τi∈THI
ðCF − 1Þ ×ViðLOÞ is the obtained

value of HI-criticality task difference in HI-criticality mode

and in LO-criticality mode. ∑τi∈ðT−THI−TLO
′ÞViðLOÞ is the

value obtained by the dropped LO-criticality tasks.

8. Simulations and Analysis

8.1. Simulation Experiments. The simulation experiments
are performed to test the scheduling algorithm SSPS. All

0 5 1613 2421

0

0 8 164 12 20

6 12 18 232 8 15 21

0 3 7 9 12 15 18 21
×

5
×

0

1

×
74 8 9

×
12 14 17

×
20 22

Lost

24
0

24

24
0

12
1

8
1

24
0

The executing time of processor
The idle time of processor

× Time of abort job
Time of abort job

The areas above the task executing line running in P1

The areas below the task executing line running in P2

P1

𝜏1

𝜏3

𝜏4

𝜏5

𝜏2

P2

Figure 3: Execution of the task set in Example 1.

Inputs:
T = τ1, τ2,⋯, τn;
P = p1, p2,⋯, pm;
Que¯Low,Que¯Slack = null;
Que¯Ready = T ;
Sys¯Mode = LO;
NST ,NT = 0:

Output:
Acceptance Ratio.

1: PT= schedulability analysis(Que¯Ready, P)
/∗PT = fQue Ready p1,⋯,Que Ready pmg, where
Que¯Ready¯p1 is the tasks allocated to p1 ∗/

2: if PT ≠ null then
3: for each Que¯Ready¯pm in PT do
4: Get the top element Jmexe out of Que¯Ready¯pm;
5: NT + +;
6: Rm

exe > CexeðLOÞ then
7: if Jmexe is HI-criticality and Sys¯Mode = LO

then
8: Abort all Jobs of LO-criticality in PT;
9: Insert LO-criticality jobs into Que¯Low as

Prp¯LO in descending order;
10: Sys¯Mode =HI;
11: Execute Jmexe in HI-criticality;
12: NST + +;
13: else
14: Abort Jmexe;
15: continue;
16 end if
17: else
18: Execute Jmexe;
19: NST + +;
20: Que_Slack= slack time collection(Jmexe, null);
21: continue;
22: end if
23: if Sys¯Mode =HI then
24: for each sf s from Que¯Slack do
25: Get the top element J jexe out of Que¯Low;
26: if ejexe ≤ qs then
27: Execute J jexe;
28: NST + +,NT + +;
29: Que_Slack= slack time collection(J jexe, sf s);
30: else
31: continue;
32: end if
33: end for
34: end if
35: end for
36: return NST /NT ;
37: end if

Algorithm 3: SSPS.

7Wireless Communications and Mobile Computing



experiments were run on a PC with a 3.40GHz 4 identical
processor and 8GBmemory. In the simulation, we compared
SSPS to the existing partition scheduling algorithms, DC-RM
[13] and MC-PARTITION [14], which are the classic and
representative algorithms in the research community of
MCS partition scheduling. Based on these two algorithms,
there are lots of derived algorithms for other real-time appli-
cation scenarios [16–19]. The task set parameters of the
experiments were randomly generated as follows:

(1) The utilization of each task ULO
i was in the range

[0.025, 0.975] and was generated by the Uunifast-
Discard algorithm

(2) The proportion of high-critical tasks to task set T
HTP, which directly affects the execution of LO-crit-
icality tasks and then affects the performance of our
SSPS strategy, was 0.5 by default. And the criticality
factor CF = CiðHIÞ/CiðLOÞ was set to 1.5, according
to Definition 1 where CF > 1

(3) Each task τi’s LO-criticality execution time CiðLOÞ
is randomly generated in the range from 1 to 10
in accordance with uniform distribution. And, τi’s
execution time of HI-criticality CiðHIÞ satisfies
CiðHIÞ = CF × CiðLOÞ

(4) The task τi’s relative deadline Di satisfies: Di =
CiðLOÞ/ULO

i , and τi’s period Ti is Ti =Di

(5) The task τi’s value of LO-criticality ViðLOÞ was gen-
erated randomly between 10 and 50, and its HI-criti-
cality ViðHIÞ was set to ViðHIÞ = 5 × CF × ViðLOÞ

The performance indicators include acceptance ratio
(AR), weighted schedulability (WS), and total values (TV).

(1) AR =NST /NT , where NST is the number of successful
tasks andNT is the number of system taskset. TheAR
shows the proportion of successful tasks to total task
set

(2) WS = ð∑i bi ×ULO
i Þ/∑i U

LO
i , where bi ∈ 0, 1. The WS

indicates the total utilization of each task

(3) TV =∑τi∈ST Vi, where ST is the successful tasks. The
TV represents the QoS of whole successful tasks

In order to measure the average number of job migra-
tions, 100 trials of simulations with different tasks are con-
ducted in the experiment.

8.2. Acceptance Ratio Analysis. The AR changes as tasks’
different LO-critical utilization ULO

i scheduled by MC-PAR-
TITION, DC-RM, and SSPS are demonstrated in Figure 4. It
can be seen that all algorithms’ AR decrease significantly as
the ULO

i grows from 0.3 to 1.0. And the DC-RM algorithm
has the least AR and the SSPS algorithm obtains the best
AR. When the ULO

i is below 0.5, SSPS is close to MC-
PARTITION and DC-RM in AR. But as ULO

i becomes larger
than 0.6, the SSPS begins to outperform the other two algo-

rithms, because in HI-criticality mode, SSPS executes the
LO-criticality tasks selectively, improving the AR of the
whole system, while the other two algorithms discard LO-
criticality tasks directly, which leads to a sharp descending
in AR.

It is illustrated that the AR varies in different high-critical
task proportion HTP in Figure 5, when ULO

i is set to 0.6 and
the HTP grows from 0.3 to 1.0. As shown by the result, with
the HTP increases, the additional HI-criticality tasks require
more executing time; thus, all algorithms’s AR continues to
decline. When the HTP is less than 0.5, all algorithms’ AR
is close because the competition of tasks’ execution is not
intense in LO-criticality system mode. As the HTP grows
larger than 0.6, the intense competition among tasks reduces
the AR, in which some task cannot finish its execution and
the system mode arises to HI-criticality.

Once the system mode upgrades to HI-criticality, the
task’s Ci becomes large. Compared to the MC-PARTITION
and DC-RM, the SSPS algorithm achieves a more stable
and higher AR, because the former two algorithms drop the
LO-criticality tasks directly. When the system mode switches
from LO-criticality to HI-criticality, the SSPS algorithm exe-
cutes some LO-criticality jobs in an idle time of the processor
and gradually decreases as HTP increases.

8.3. Schedulability Analysis. It is shown that the weighted
schedulability WS is declining with ULO

i arguments, where
HTP is set to 0.5 (see Figure 6). Compared to MC-
PARTITION and DC-RM algorithms, the SSPS gets higher
and more stable in WS through schedule the LO-criticality
task in HI-criticality system mode. In the beginning, the
WS obtained by all algorithms is falling steadily. When
HTP becomes larger than 0.6, MC-PARTITION and DC-
RM accelerate degradation in WS due to the more execution
time required by increased HI-criticality tasks and the dis-
carded of LO-criticality tasks directly in HI-criticality system
mode.

That weighted schedulability WS results change as HTP
grows is plotted in Figure 7, where ULO

i = 0:5. The HTP is

Utilization

A
R

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

DC-RM
MC-PARTITION
SSPS

Figure 4: Results of AR with the change of ULO
i .

8 Wireless Communications and Mobile Computing



represented on the horizontal axis, and the vertical axis is
WS. We can see that WS is gradually declining as HTP
arguments. Because with the number of HI-criticality
tasks increasing, the system resources they need are
increased. When the HTP is below 0.3, SSPS is almost
identical to MC-PARTITION and DC-RM algorithms
that get a steady decline in WS. With the HTP becoming
larger and the system criticality level arising, the execu-
tion time of the HI-criticality task becomes longer, which
can intensify competition among tasks and reduces the
system schedulability. The SSPS can obtain better WS
than the other two methods, because SSPS in HI-critical-
ity mode can take advantage of slack time produced by
HI-criticality task, to execute the selected LO-criticality
task globally.

8.4. Total Value Analysis. The simulation results for total
value TV changed with LO-critical system utilization ULO

i ’s

growth are shown in Figure 8, where the horizontal axis is
ULO

i and the vertical axis is TV. As shown in Figure 8, all
algorithms’ TV decrease as the ULO

i increases from 0.3 to
0.9. Compared to the other two algorithms, the MAPPS has
a significant advantage over the other two in TV, which grad-
ually decreases as the ULO

i grows. Because only the SSPS
chooses the task with high urgency and high value, thereby
obtaining better TV and improving the performance of the
system.

Figure 9 plots the TV with the change of HTP. It shows
that the total value TV presents the fluctuation of first up
then down as HTP grows from 0.1 to 0.9. In the beginning,
the growing number of HI-criticality tasks can take a larger
value. But with HTP increasing, the HI-criticality task’s lon-
ger executing time reduces the WS of the system, as shown
in Figure 9, which brings the TV decreasing. And SSPS can
obtain the best TV due to its choice of high urgency and
high-value tasks.

DC-RM
MC-PARTITION
SSPS

HTP

A
R

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5: Results of AR as HTP changes.

DC-RM
MC-PARTITION
SSPS

Utilization

W
S

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6: Results of WS with the change of ULO
i .

DC-RM
MC-PARTITION
SSPS

HTP

W
S

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7: Results of WS with the change of HTP.

DC-RM
MC-PARTITION
SSPS

Utilization

TV

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8: Results of TV with the change of HTP.

9Wireless Communications and Mobile Computing



9. Conclusions and Future Works

In recent years, with the increasing popularity of 6G wireless
communication technology, mixed-criticality systems (MCS)
in 6G-based edge computing have been grown quickly in
application scenarios. Meanwhile, with the multiprocessors’
development widely applied, including homogeneous, the
relative MCS scheduling technique is necessary to research.
In this paper, a smart semipartitioned scheduling algorithm
(SSPS) was designed on MCS in the homogeneous multipro-
cessors. Firstly, we analyze the task’s schedulability based on
the response time and allocate the processors. Then, a task’s
priority assignment function with multiple attributes, includ-
ing criticality, urgency, and the total value, is constructed.
Besides, a scheduling algorithm titled by SSPS has been
proposed with the schedulability analysis algorithm and the
priority assignment above. In the SSPS, we allocate the tasks
in LO-criticalitymode, while in HI-criticalitymode, the SSPS
not only finish the HI-criticality tasks but also choose the
LO-criticality tasks to execute under the utilization of the
processor’s slack time globally. The experimental results
illustrate that the SSPS could achieve the best performance
among the existing algorithms.

However, there are still some limitations of the SSPS
algorithm. In practical 6G-based edge computing applica-
tions, the task real-time scheduling is often related to the
sharing of limited resources. With the heterogeneous multi-
processors’ development, heterogeneous will be more the
case for the 6G-based real-time applications. We will explore
the scheduling and resource sharing issues of edge comput-
ing of heterogeneous multiprocessors based on the SSPS
algorithm. Besides, in other complex real-time applications,
like parallel industry systems and smart industrial networks
[31–33], it needs to consider several factors in data transmis-
sion and task scheduling; we are also planning to investigate
these issues. Moreover, we notice that modern IoT devices
are increasingly being equipped with multiple network inter-
faces; our future work will consider to apply the proposed

SSPS algorithm to optimize the promising multipath parallel
data transmission methods [34, 35] for the multihomed IoT
environment.

Data Availability

The data, including task’s properties and performance
indicators in the experiments, used to support the findings
of this study are available from the corresponding author
upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is funded by the National Natural Science
Foundation of China (NSFC) under Grant Nos. 61762040,
61962026, and 62041702; the Natural Science Foundation
of Jiangxi Province under Grant No. 20192ACBL21031; the
Provincial Key Research and Development Program of
Jiangxi Province (No. 20181ACE50029); the Science and
Technology Research Project of Jiangxi Provincial Depart-
ment of Education (Nos. GJJ170234 and GJJ160781); and
the doctoral research project of Jiangxi Normal University
(No. 12020361).

References

[1] F. Song, M. Zhu, Y. Zhou, I. You, and H. Zhang, “Smart collab-
orative tracking for ubiquitous power IoT in edge-cloud inter-
play domain,” IEEE Internet of Things, vol. 7, no. 7, pp. 6046–
6055, 2020.

[2] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and
C. Assi, “Dynamic task offloading and scheduling for low-
latency IoT services in multi-access edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 668–682, 2019.

[3] D. Wu, X. Nie, E. Asmare et al., “Towards distributed SDN:
mobility management and flow scheduling in software defined
urban IoT,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 31, no. 6, pp. 1400–1418, 2020.

[4] S. Hu and G. Li, “Dynamic request scheduling optimization in
mobile edge computing for IoT applications,” IEEE Internet of
Things, vol. 7, no. 2, pp. 1426–1437, 2020.

[5] S. Pandiyan, T. S. Lawrence, V. Sathiyamoorthi,
M. Ramasamy, Q. Xia, and Y. Guo, “A performance-aware
dynamic scheduling algorithm for cloud-based IoT applica-
tions,” Computer Communications, vol. 160, pp. 512–520,
2020.

[6] S. Baruah, “Schedulability analysis for a general model of
mixed-criticality recurrent real-time tasks,” in Proceedings of
the 37th IEEE Real-Time Systems Symposium (RTSS 2016),
pp. 25–34, Porto, Portugal, December 2016.

[7] A. Burns and R. Davis, “A survey of research into mixed
criticality systems,” ACM Computing Surveys, vol. 50, no. 6,
pp. 1–37, 2017.

[8] S. Vestal, “Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance,” in Proceed-
ings of the 28th IEEE International Real-Time Systems

DC-RM
MC-PARTITION
SSPS

HTP

TV

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 9: Results of TV with the change of HTP.

10 Wireless Communications and Mobile Computing



Symposium (RTSS 2007), pp. 239–243, Tucson, Arizona, USA,
December 2007.

[9] S. Baruah, V. Bonifaci, G. D'Angelo et al., “Scheduling real-
time mixed-criticality jobs,” IEEE Transactions on Computers,
vol. 61, no. 8, pp. 1140–1152, 2012.

[10] H. Li and S. Baruah, “Global mixed-criticality scheduling on
multi-processors,” in Proceedings of the 24th Euromicro Con-
ference on Real-Time Systems (ECRTS 2012), pp. 166–175,
Pisa, Italy, July 2012.

[11] B. B. Brandenburg and M. Gul, “Global scheduling not
required: simple, near-optimal multiprocessor real-time
scheduling with semi-partitioned reservations,” in Proceedings
of the 37th IEEE Real-Time Systems Symposium (RTSS 2016),
pp. 99–110, Porto, Portugal, December 2016.

[12] K. Yang and J. Anderson, “On the soft real-time optimality of
global EDF on uniform multiprocessors,” in Proceedings of the
38th IEEE Real-Time Systems Symposium (RTSS 2017),
pp. 319–330, Paris, France, December 2017.

[13] O. R. Kelly, H. Aydin, and B. Zhao, “On partitioned scheduling
of fixed-priority mixed-criticality task sets,” in Proceedings of
the 10th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, pp. 1051–
1059, Changsha, China, November 2011.

[14] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criti-
cality scheduling on multiprocessors,” Real-Time Systems,
vol. 50, no. 1, pp. 142–177, 2014.

[15] D. Niz and L. T. X. Phan, “Partitioned scheduling of multi-
modal mixed-criticality real-time systems on multiprocessor
platforms,” in Proceedings of the IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS
2014), pp. 111–122, Berlin, Germany, April 2014.

[16] S.-W. Cheng, J.-J. Chen, J. Reineke, and T.-W. Kuo, “Memory
bank partitioning for fixed-priority tasks in a multi-core sys-
tem,” in Proceedings of the 38th IEEE Real-Time Systems Sympo-
sium (RTSS 2017), pp. 209–219, Paris, France, December 2017.

[17] G. Chen, N. Guan, D. Liu et al., “Utilization-based scheduling
of flexible mixed-criticality real-time tasks,” IEEE Transactions
on Computers, vol. 67, no. 4, pp. 543–558, 2018.

[18] S. Senobary and M. Naghibzadeh, “Semi-partitioned schedul-
ing for fixed-priority real-time tasks based on intelligent rate
monotonic algorithm,” International Journal of Grid and Util-
ity Computing, vol. 6, no. 3/4, pp. 184–191, 2015.

[19] J. Anderson, J. Erickson, U. Devi, and B. Casses, “Optimal
semi-partitioned scheduling in soft real-time systems,” Journal
of Signal Processing Systems, vol. 84, no. 1, pp. 3–23, 2016.

[20] E. Cannella and T. P. Stefanov, “Energy efficient semi-
partitioned scheduling for embedded multiprocessor stream-
ing systems,” Design Automation for Embedded Systems,
vol. 20, no. 3, pp. 239–266, 2016.

[21] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing
mixed-criticality scheduling strictness for task sets scheduled
with FP,” in Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pp. 155–165, Pisa, Italy, July 2012.

[22] H. Su and D. Zhu, “An elastic mixed-criticality task model and
its scheduling algorithm,” in Proceedings of the 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE
2013), pp. 147–152, Grenoble, France, March 2013.

[23] A. Burns and S. Baruah, “Towards a more practical model for
mixed criticality systems,” in Proceedings of the Workshop on
Mixed-Criticality Systems (WMC 2013), pp. 1–6, Vancouver,
Canada, December 2013.

[24] S. Baruah, A. Burns, and Z. Guo, “Scheduling mixed-criticality
systems to guarantee some service under all non-erroneous
behaviors,” in Proceedings of the 28th Euromicro Conference
on Real-Time Systems (ECRTS 2016), pp. 131–138, Toulouse,
France, July 2016.

[25] S. Baruah, A. Easwaran, and Z. Guo, “MC-Fluid: simplified
and optimally quantified,” in Proceedings of the 36th IEEE
Real-Time Systems Symposium (RTSS 2015), pp. 327–337,
San Antonio, TX, USA, December 2015.

[26] J. Lee, S. Ramanathan, K. Phan, A. Easwaran, I. Shin, and
I. Lee, “MC-Fluid: multi-core fluid-based mixed-criticality
scheduling,” IEEE Transactions on Computers, vol. 67, no. 4,
pp. 469–483, 2018.

[27] H. Chen, “A real-time tasks scheduling method based on
dynamic priority,” Journal of Circuits, Systems and Computers,
vol. 23, no. 2, article 1450029, 2014.

[28] S. Asyaban and M. Kargahi, “An exact schedulability test for
fixed-priority preemptive mixed-criticality real-time systems,”
Real-time Systems, vol. 54, no. 1, pp. 32–90, 2018.

[29] S. Zhao, P. Dziurzanski, and L. S. Indrusiak, “Value-driven
manufacturing planning using cloud-based evolutionary opti-
misation,” 2019, http://arxiv.org/abs/1912.01562.

[30] Z. Jiang, S. Zhao, D. Pan et al., “Re-thinking mixed-criticality
architecture for automotive industry,” in IEEE International
Conference on Computer Design (ICCD 2020), Hartford, CT,
USA, October 2020.

[31] F. Song, Y.-T. Zhou, Y. Wang, T.-M. Zhao, I. You, and
H.-K. Zhang, “Smart collaborative distribution for privacy
enhancement in moving target defense,” Information Sci-
ences, vol. 479, pp. 593–606, 2019.

[32] F. Song, Y. Zhou, L. Chang, and H. Zhang, “Modeling space-
terrestrial integrated networks with smart collaborative the-
ory,” IEEE Network, vol. 33, no. 1, pp. 51–57, 2019.

[33] H. Chen, H. Jin, and S. Wu, “Minimizing inter-server commu-
nications by exploiting self-similarity in online social
networks,” IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 27, no. 4, pp. 1116–1130, 2016.

[34] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,
“Receiver-assisted partial-reliable multimedia multipathing
over multi-homed wireless networks,” IEEE Access, vol. 7,
pp. 177675–177689, 2019.

[35] Y. Cao, M. Collotta, S. Xu, L. Huang, X. Tao, and Z. Zhou,
“Towards adaptive multipath managing: a lightweight path
management mechanism to aid multihomed mobile comput-
ing devices,” Applied Sciences, vol. 10, no. 1, pp. 1–18, 2020.

11Wireless Communications and Mobile Computing


	A Smart Semipartitioned Real-Time Scheduling Strategy for Mixed-Criticality Systems in 6G-Based Edge Computing
	1. Introduction
	1.1. Organization

	2. Related Work
	3. Overall Framework
	3.1. Our Contributions

	4. System Model and Notation
	4.1. System Model and Notation
	4.2. Assumptions of the Model

	5. Schedulability Analysis
	6. Priority Assignment of Task
	6.1. Criticality and Value
	6.2. Assignment of Task’s Priority

	7. Scheduling Algorithm
	7.1. Smart Semipartitioned Scheduling Strategy (SSPS)
	7.2. Analysis of SSPS

	8. Simulations and Analysis
	8.1. Simulation Experiments
	8.2. Acceptance Ratio Analysis
	8.3. Schedulability Analysis
	8.4. Total Value Analysis

	9. Conclusions and Future Works
	Data Availability
	Conflicts of Interest
	Acknowledgments

