
Research Article
A Privacy-Preserving Attribute-Based Encryption System for Data
Sharing in Smart Cities

Xieyang Shen ,1,2 Chuanhe Huang ,1,2 Danxin Wang,1,2 and Jiaoli Shi 3

1School of Computer Science, Wuhan University, China
2Collaborative Innovation Center of Geospatial Technology, China
3School of Information Science and Technology, Jiujiang University, Jiujiang, China

Correspondence should be addressed to Chuanhe Huang; huangch@whu.edu.cn

Received 28 June 2021; Accepted 8 September 2021; Published 8 October 2021

Academic Editor: Yushu Zhang

Copyright © 2021 Xieyang Shen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Information leakage and efficiency are the two main concerns of data sharing in cloud-aided IoT. The main problem is that smart
devices cannot afford both energy and computation costs and tend to outsource data to a cloud server. Furthermore, most
schemes focus on preserving the data stored in the cloud but omitting the access policy is typically stored in unencrypted
form. In this paper, we proposed a fine-grained data access control scheme based on CP-ABE to implement access policies
with a greater degree of expressiveness as well as hidden policies from curious cloud service providers. Moreover, to mitigate
the extra computation cost generated by complex policies, an outsourcing service for decryption can be used by data users.
Further experiments and extensive analysis show that we significantly decrease the communication and computation overhead
while providing a high-level security scheme compared with the existing schemes.

1. Introduction

The smart city is considered to be one of the promising
urban environments to achieve the goal of intelligent and
effective data sharing via different sectors of society [1]. Gov-
ernment, organizations, and companies orchestrate a wide
range of services through sensors or smart devices. These
associations build a multiauthority environment producing
massive data every second. The huge exchange causes
concerns about security and privacy issues in data sharing.
Such data loss may cause financial and physical problems
for citizens, so data must be transformed and stored in an
encrypted form.

Ciphertext attribute-based encryption (CP-ABE) is one
of the possible solutions for those problems. However,
existing CP-ABE schemes cannot fit the smart city envi-
ronment because they still have some demerits on both
expressive policy and privacy preservation. For instance,
a temperature sensor encrypted the data with an access
policy as {Date = September 11th AND Distance ≤ 1000
meters, Identity = ðadministrators ; subscribersÞ}. So, when

a legal user with the attribute {(Date = September 11th),
(Distance = 600 meters), subscribers} tries to get the tem-
perature data, sensors must transform its policy about dis-
tance into {Distance = 1 meter OR Distance = 2 meters …
OR Distance = 999 meters} so that the legal user can
access the data. Moreover, this kind of method of enumer-
ation cannot be used when numbers in attributes are non-
integer. Thus, we need a more flexible access control
scheme to meet this challenge of unequal comparison.

As a consequence of this, a much more detailed policy
also brings more privacy concerns. Recent smart city
researches [2, 3] show that smart nodes like sensors or wear-
able devices are more likely to attract malicious attackers.
Furthermore, fine-grained policies will reveal privacy infor-
mation as most of the policies are stored on the cloud without
hiding. There exist several methods of policy hidden in ABE,
but they cannot support those point-in-interval policies. For
this reason, compared to traditional cloud computing, it is
much more urgent to deploy a method to hide access policies
in smart city. On the other hand, a hidden access policy also
brings a problem: it is tougher for users to know whether they

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 6686675, 15 pages
https://doi.org/10.1155/2021/6686675

https://orcid.org/0000-0003-4807-823X
https://orcid.org/0000-0001-5554-4871
https://orcid.org/0000-0002-8908-1921
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6686675


can satisfy the access policy. This situation will take more
calculation cost, especially for those lightweight devices.
The existing access control scheme based on CP-ABE cannot
satisfy both requirements properly. Some of the schemes
[4–6] provide policy hiding method with traditional CP-
ABE but cannot be used for unequal comparison policy while
some others [7, 8] build just the reverse scheme.

The research goal of this paper is to construct an access
control scheme with flexible policies to realize unequal
attributes’ comparison and further hide the policy in the
ciphertext. Besides, to reduce the computation cost on
smart devices, decryption for ciphertext can be outsourced
to the cloud or other computing devices without leaking
any data information. The practical significance of our
work is that (1) the proposed scheme can implement fine-
grained access control for unequal attribute comparison.
(2) It can hide the access policy by transferring it into hid-
den values in the ciphertext. (3) Our scheme also provides
outsourced decryption for energy- or computation-limited
devices.

In order to present an ideal solution, we propose a new
access control scheme that can implement expressive policy
with attribute comparison by using 0-encoding and 1-
encoding. At the same time, we hide the detailed access policy
within a secret to avoid personal information leakage. At last,
we implement an outsourcing decryption method to keep the
safety of data as well as reduce the computation cost on the
node side. By making an efficient solution for addressing
the above issues, we try to decrease both storage and compu-
tation overheads.

In summary, our main contributions are threefold:

(i) We propose a more efficient access control method
based on 0-encoding and 1-encoding so that the
attributes of users and attributes in access policy
can be compared with “≥” or “≤”. With more flexi-
ble access control and less encryption/decryption
time, our scheme only pays the price of affordable
additional cost on the secret key size

(ii) We present a policy hidden method that can be
implemented on a policy with attribute comparison.
The attributes of the access structure are replaced
with hidden values to achieve a complete access pol-
icy hidden method

(iii) We construct an optional lightweight outsourcing
decryption method to significantly reduce the user-
side computation overhead for only one pairing
operation. Besides, the ciphertext length can be
reduced to constant size when the access policy has
no unequal attributes

The remainder of this paper is as follows. We first depict
some related work by other researchers in Section 2. In Sec-
tion 3, we list the main preliminaries and definitions of our
scheme. Section 4 describes the details of our access control
scheme in smart cities and introduces the security game
based on it. Section 5 firstly analyzes the security of our
scheme and gives the proof of the security game above and

then shows the result of simulation and experiments. At last,
in Section 6, we conclude our work and discuss the merits
and demerits.

2. Related Work

Smart cities have changed the way of traditional computing
services and need to be aware of security and privacy threats
[9]. It unifies servers, clients, and smart devices to cooperate
for offering services. In schemes proposed by Yang et al. [10]
and Wang et al. [11], applications are distributed and wide-
spread, supporting different nodes providing services quietly
with nearly zero requirements for latency or price. To guar-
antee the safety and privacy of these nodes and data they
generated, it is critical to survey the security and privacy
issues with its nodes. The accessibility and Internet associa-
tion of nodes have given more challenges like privacy
preserving in [12], energy saving in [13], and anonymous
authentication in [14]. In a word, we not only need to focus
on security issues but also take the factor of smart cities into
consideration.

To deal with the inequalities’ comparison between attri-
butes, some researchers have used the sketch proposed in
[15], which presents a range as a predefined attribute using
AND, OR to build the policy. For example, Shi et al. [16]
proposed a predicate encryption scheme to set a point that
is associated with ciphertext and a multidimensional range
that is related to the key so that the decryption process works
if the point is in the range. However, their scheme can only
support access policy with AND gate. Later on, Gay et al.
[17] developed a lattice-based variant of the previous scheme
[16]. Furthermore, by introducing range attributes and
range compare, Attrapadung et al. [7] have greatly improved
the efficiency of numeric comparison. After that, they have
proposed a generic method to convert traditional ABE into
range attribute ones in [18]. Other methods like using 0-
encoding and 1-encoding presented by Xue et al. [8] signif-
icantly reduced the computation overhead from Oðlog NÞ
to Oð1Þ. However, in this scheme, data owners must define
their access policies first. Then, attribute authorities can gen-
erate private keys for specific users unsuitable for smart
cities’ environments. Furthermore, all the above schemes
stored their access policies in plaintext to expose more infor-
mation to the cloud. From the above, most of the previous
work on unequal attribute comparison normally cannot hide
the access policy.

Information leakage from access policy is also a signifi-
cant security problem in data access control [19]. Despite
the privacy-preserving issues of access policy designers,
attackers could infer the information of data users by
whether they can decrypt or not. To implement the hidden
policy, Ying et al. [5] separated the attributes into attribute
name and attribute value while hiding more sensitive attri-
bute value instead of the attribute name. This partially
hidden scheme can improve efficiency significantly. In the
scheme proposed by Helil and Rahman [20], they presented
an attribute hidden scheme by using sensitive data set to
limit user access control by partially changing the data set
constraint structure. They bring in a new entity named

2 Wireless Communications and Mobile Computing



constraint detect server to check the user legitimacy before
access operations. Wang et al. [21] defined a model under
multiple data owner scenes with searchable and revocable
policy hidden methods. By using keyword index, the accu-
racy of searching ciphertext can be significantly improved
and correctly decrypted the ciphertext. By dividing users
into different security domains, their scheme can manage
keys for data owners as well as users in batch. Zhang et al.
[6] proposed an access policy which is totally hidden to
improve the privacy-preserving issues, but their access struc-
ture can only use “AND” gate. Fan et al. [22] proposed a
policy hidden method with constant ciphertext length; they
further introduced central authority (CA) to promulgate
certification and keys in the multiauthority environment.
As we can see from the above cases, most current work on
policy hidden method cannot deal with inequalities’ com-
parison between attributes due to the high computation cost.

The most significant drawback of ABE in smart cities is
the computation overhead on the user side. In the scheme
proposed by Rasori et al. [3], the computation cost on the
user side is linear with the complexity of policy which
cannot afford for most of the devices in smart cities. So,
there are amounts of schemes eager to improve the efficiency
of decryption, such as the scheme of Shi et al. [23] which
used cloud-aided revocation and attribute scalability devised
by Wang et al. [24]. At this point, Green et al. [25] intro-
duced the ABE with outsourced decryption (OD-ABE) to
outsource a large amount of computation to third-party
entities such as cloud service providers. As a result, the com-
putational cost of decryption can be decreased significantly.
Besides, despite the similar problem of security issues in
cloud computing, smart devices also face the problem of
energy constraint. Thus, outsourcing their data and compu-
tation overhead to cloud service providers (CSP) seems to be
a better solution. The team of Shi et al. [23, 26] proposed
several schemes, exploring the way of cloud-aided decryp-
tion and revocation. Odelu et al. [27] seek another form of
reducing the storage and communication overhead by using
constant-size ciphertext. All of the schemes above tried to
reduce the computation overhead differently. However, the
data access control in smart city needs a more convenient
way like outsourcing to decrease the overhead significantly.

From the above analysis of existing schemes, it is hard
to find a balance between privacy-preserving and flexible
access control because nodes and devices are enslaved to
their computing power and capacity in smart cities. Most
schemes only consider one or two aspects of unequal attri-
bute comparison, policy hidden, and decryption outsourcing.
In addition, we give the comparison of the related scheme in
Table 1. As in our paper, we try to build a scheme with high-
level security as well as do not increase the computation cost
on smart nodes.

3. Preliminaries and Definitions

We will present some necessary definitions in this part.
Firstly, we introduce the bilinear map and the decisional
q-bilinear Diffie-Hellman exponent assumption. Secondly,
we give 0-encoding and 1-encoding proposed by Lin et al.

[30]. Finally, the generation of the extended attribute set first
presented by [8] will be introduced, and we further improved
the comparison method.

3.1. Bilinear Map. Let G and GT be two multiplicative cyclic
groups of prime p. Let g be the generator of group G, and
then, we have e : G × G⟶GT be a bilinear map that sat-
isfies the following three properties.

(1) Bilinearity: if ∀u, v ∈ G and x, y ∈ Zp, then we have
eðux, vyÞ = eðu, vÞxy

(2) Nondegeneracy: ∃g, h ∈G, eðg, gÞ ≠ 1

(3) Computability: ∀u, v ∈G, eðu, vÞ is an admissible
algorithm to compute the value of eðg, hÞ

3.2. Decisional Bilinear Diffie-Hellman Exponent Assumption.
The decisional q-bilinear Diffie-Hellman exponent assump-
tion is defined as follows. Let G be a group of prime order p
with the generator g. Randomly choose a and s as a, s ∈ Z∗

p .

Thus, an adversary must distinguish eðg, gÞaq+1s ∈GT from a
random element in GT when given ðg, g1,⋯, gq, gq+2, g1Þ.
The advantage for the adversary is

Advq−BDHE = Pr B y!, e g, gð Þaq+1s
� �

= 0
h i

− Pr B y!, R
� �

= 0
h i��� ���,

ð1Þ

where R is the random element in GT .

Definition 1. The q-BDHE assumption stands if and only if
no probability polynomial time algorithm has a nonnegligi-
ble advantage to solve the decisional q-BDHE problem.

3.3. 0-Encoding and 1-Encoding. The attribute comparison of
our scheme is based on an encoding method which was first
proposed by [30].

The 0-encoding and 1-encoding are transferred from a
binary string S = SnSn−1 ⋯ S1 ∈ f0, 1gn with the length of n.
The 0-encoding and 1-encoding of S are defined as follows:

S0s = snsn−1 ⋯ si+11 ∣ si = 0, 1 ≤ i ≤ nf g,
S1s = snsn−1 ⋯ si ∣ si = 1, 1 ≤ i ≤ nf g:

ð2Þ

These equations mean that 1-encoding is a set of all its
substrings that contained “1” as the last number, and 0-
encoding is a set of its substrings that contained “0” along
with a “1” at the end of the set. The procedure of comparison
is shown in Algorithm 1.

After encoding the binary string, we transfer two inte-
gers x and y into 1-encoding and 0-encoding as S1x and S0y ,
respectively. Then, we use the formula to check the compar-
ison as

x > y⟺ S1x ∩ S0y ≠∅: ð3Þ

From the formula, we can know that if and only if at
least one same element in both S1x and S0y can we make the

3Wireless Communications and Mobile Computing



conclusion of x > y. Let us take x = 10 and y = 8 as an example.
We could see from Table 2, 1-encoding of x and 0-encoding of
y have the same element 101 (with bold font), which means
that x > y holds. On the contrary, 0-encoding of x and 1-
encoding of y do not have any same part, so the inequality
y > x is not tenable.

After transferring unequal attributes into 0- and 1-
encoding, we will further attach them into the access struc-
ture. For example, we try to change the attributeAtr2 = 8 into
Atr2 > 8 in the access policy tree in Figure 1. First of all, we
turned the attribute into an access policy tree where the root
node is an OR gate, and the leaf nodes are corresponding
encoded binary strings. Then, we attach the subtree to the
leaf node of the original access tree. As we mentioned before,

if and only if at least one common element in both two sets
(encoded by 0-encoding and 1-encoding, respectively) can
the OR gate output the true result. So the OR gate can per-
fectly fit both encoding and the access policy. At last, when
a user tries to compare its attribute Atr2 = 10, encoding the
value into the 1-encoding format. Any binary string match
with the subtree leaf node means that the attribute Atr2 of
the user satisfied the access policy. Thus, the data user who
wants to access data can use the corresponding encoded attri-
bute to match the OR gate subtree. More details of unequal
attribute comparison will be given in the following section.

3.4. Unequal Attribute Set. To realize unequal attributes
comparing with “>,” “<,” “≤,” and “≥,” we developed the

Table 1: Comparison of existing schemes.

Methods Basic algorithm
Unequal attribute

comparison
Policy hidden Outsourcing Main contribution

[28] CP-ABE and KP-ABE No No No The first sketch of ABE for range attributes

[18] CP-ABE and KP-ABE Yes No No
ABE for Boolean formula over range

attributes

[16] CP-ABE Yes Yes No Range attribute comparison for AND gates

[29] CP-ABE No
Partial policy

hidden
Yes

Offline/online attribute-based encryption
algorithms

[8] CP-ABE and KP-ABE Yes No No
Comparable attribute-based encryption

using encoding

Proposed CP-ABE Yes Yes Yes Attribute comparison and policy hiding

Input: attribute set S with name and value
Output: encoding set for each unequal attributes S0 or S1

1: for any attribute a ∈ S do
2: Divide attribute into attribute name an and attribute value av ;
3: if attribute a is an unequal attribute then
4: Transfer av into binary string av2
5: if the access policy needs > or ≥ for attribute a then
6: for any digit i in av2 do
7: if i = 1 then
8: Set the first i digits Sa as a substring of av2
9: Add Sa into S1a
10: end if
11: end for
12: end if
13: if the access policy needs < or ≤ for attribute a then
14: for any digit i in av2 do
15: if i = 0 then
16: Set the first i − 1 digits Sa as a substring of av2
17: Add 1 at the end of the substring Sa
18: Add Sa into S0a
19: end if
20: end for
21: end if
22: Combine the attribute name an with S0a or S

1
a for unequal attributes

23: end if
24: end for

Algorithm 1: 0- and 1-encoding generation.

4 Wireless Communications and Mobile Computing



attribute set used by an access policy designer with three
different types. Let S0 be the original attribute set of unequal
attributes. For those attributes that the policy only needs “>,”
we replace them with 0-encoding, and for those that only
need “<,” we replace them with 1-encoding. For those that
both need “>” and “<,” we replace them with both 0-
encoding and 1-encoding. Furthermore, for comparing “≤”
and “≥,” check the equality first and then try the encoding
way. Then, we denote the unequal attribute set with a new
expression as S1, which data owners use to define the unequal
attributes in the access policy tree. For example, an unequal
attribute in the access policy is “Distance <10”; we first trans-
mit 10 to 1-encoding: “1” and “101” (as the binary number of
10 is “1010”). Then, the attribute set of “Distance < 10” is
extended to Distance1 = 1 and Distance1 = 101.

As for the user side, they also need an unequal attribute
set to compare their attributes with those in the access
policy. However, as the access policy is hidden by data
owners, users cannot tell whether the unequal attributes in
the access policy need “>,” “<,” “≤,” or “≥.” So we replace
those unequal attributes with both 0-encoding and 1-
encoding and further denote the new set as S2. In particular,
as the 1-encoding on the user side is used to compare with
the 0-encoding on access policy, to make it easier for com-
parison, we save 1-encoding in S2 as 0-encoding form and
vice versa. For instance, for a user with the unequal attribute
“Distance” and the value is “Distance =10”, we turn 10 both
into 0-encoding and 1-encoding and save them as Distanc
e1 = f11, 1011g (which actually is 0-encoding) and Distanc
e0 = f1,101g (which actually is 1-encoding).

4. System Structure and Security Model

The data access control in smart cities has a strong demand
on both user privacy and policy flexibility. However, we
could learn from previous work that CP-ABE has the
demerit to realize both of them. The main reason for this
problem is that a fine-grained access policy will inevitably
reveal more information about the data owner. Out of this
consideration, we try to build our system structure to strike
a balance between flexible policy and privacy preservation.

This section will briefly present the system model and
the security game based on the above problems. Then, we
will give the detailed process of our scheme. The list of nota-
tions can be found in Table 3.

4.1. System Model. We present the access control system in
the smart cities in this subsection. The system model is
formed of five types of entities: cloud service providers

(servers in the cloud), attribute authorities (AAs), smart
devices while providing storing or collecting services, data
owners, and data users. Our system model is shown in
Figure 2, and we will introduce them one by one.

Cloud servers play the role of storing data and execute
computation steps in the outsourced computing part. Typi-
cally, we consider those cloud servers are curious but honest,
which means that cloud service providers would give their
best to get the encrypted data stored on their servers but
treat correctly doing what data owners want to do as a
prerequisite.

Attribute authority (AA for short) manages attribute
keys and entitles them to different users in the whole system.
For the sake of authenticity, we defined that each AA is inde-
pendent and can manage an arbitrary number of attributes.
However, each attribute can only be managed, granted, or
revoked by one AA. In other words, any attribute can only
be authorized by one authority (which may suit most of
the situation in reality). Besides, AA will define what kind
of attributes are unequal attributes.

Smart devices are the infrastructure of our system; they
can collect, store, and process data unconsciously. Besides,
these devices may belong to different owners like attribute
authorities, service providers, or even data owners. For other
kinds of devices, they may have different functions like
storing data or providing computing power.

Data owners make the definition of access policy before
the data encryption on their side. However, the data owners
can also be some intelligence devices or sensors; they can
collect and store data by themselves. Besides, to decrypt
the ciphertext, all the unequal attributes along with other
attributes defined by owners in the access policy must be
satisfied by access entities.

In smart city systems, data users usually use lightweight
devices so that they cannot afford heavy computation over-
head. As we proposed an entirely hidden access policy in
our scheme, it is hard for data users to tell whether they
can fit the access policy, so they might try to decrypt the data
they did not get through. So, it is more suitable for users to
mitigate their decryption computation overhead to cloud
service providers.

4.2. Access Structure. The construction of the access struc-
ture is based on (t-n)-Shamir Secret Sharing Scheme. Let
us denote T as an access control policy tree, and the gener-
ation of T is divided into two parts: normal attributes and
unequal attributes. We built T with the following two steps.

The first step is to assign secret s in the access policy tree.
As we all know, the nonleaf node of T represents the thresh-
old gate and the leaf node of T stands for attributes. At this
point, we assigned the secret s to the root node and then
assigned the rest of the nodes from top to bottom. For every
unassigned nonleaf node, run the following steps recursively:

(1) If the unassigned node represents a threshold gate,
divide the corresponding secret Sx with (t-n)-Sha-
mir Secret Sharing Scheme where n is the number
of its child nodes and t is the number to recover
secret

Table 2: Comparison of 0-encoding and 1-encoding.

0-encoding 1-encoding

x = 10102
11 1

1011 101

y = 10002
11

1101

1001

5Wireless Communications and Mobile Computing



(2) If the unassigned node represents an “AND” gate,
use (t-n)-Shamir Secret Sharing Scheme the same
as above where set t = n

(3) If the unassigned node represents an “OR” gate, use
(t-n)-Shamir Secret Sharing Scheme the same as
above where set t = 1

The second step is to attach unequal attributes. After
all nonleaf nodes are assigned, replace the unequal attri-
butes in the leaf nodes as the one-layer subtree, which is
showed in Figure1. As these one-layer subtrees are all with

“OR” gate, assign all of its leaf nodes with point 3 as we
listed above.

4.3. Architecture Framework. We denote AID = f1, 2,⋯g be
the index set of the AA and different attribute authorities
can be listed as AA1, AA2. Besides, we use dðd ∈AIDÞ as
the index of attribute authority AAd and Ud is the set of
attributes managed by AAd . The attribute universe of the
whole system as U =

S
d∈AID Ud . Each AA does not share

their attributes with other authorities and further does not
need to know the existence of each other as we mentioned
before, which means that U i ∩U j =∅ for all i ≠ j ∈AID.
We defined our architecture framework below:

(i) GlobalSetupðλÞ⟶GPP, gid: the input of this
phase is the security parameters λ and the output
are the global public parameters GPP which will
be used in other phases later. Besides, each user
will get an identifier gid in this phase

(ii) AuthoritySetupðGPP,UdÞ⟶ ðAPK, ASKÞ: each
AA must run the setup algorithm before the whole
system runs. It takes the inputs as GPP, which out-
puts in GlobalSetup phase, the attribute domain
Ud of the authority itself. The output of this phase
is the authority secret key ASK which is used for
the authority itself and the public key APK, which
sends to users for attribute authentication

(iii) SKeyGenðgid, GPP, ASKÞ⟶ ðSKgidÞ: the secret
key generation outputs the secret key SKgid for
users. At the same time, the inputs are the users’
global identity gid, the global public parameters
GPP, and the secret key ASK. After generating

AND

Atr1 Atr2 = 8 Atr3

AND

Atr1 Atr3OR

11 101 1001 0-encoding
of 8

Exist match

1 101 1-encoding
of 10

Attribute of user: Atr2 = 10

Change Atr2 = 8
to Atr2 > 8

Figure 1: Model of comparison and matching for unequal attribute.

Table 3: List of notations.

Notations Explanations

T Access control policy tree

AID Attribute authority index

Ud Attribute set authorized by AAd

U Universal attribute set s

CT Ciphertext of access control policy

gid Global identity

APK Attribute authority public key

ASK Attribute authority secret key

SKgid,i Secret key of attribute i for user with gid

Sn Extended attribute set with index n

S0x
A binary string with 0-encoding transformed by

attribute x

S1x
A binary string with 1-encoding transformed by

attribute x

6 Wireless Communications and Mobile Computing



the secret key, the authority will send it to the cor-
responding user in a secure channel

(iv) EncryptðM, T , GPP, APKÞ⟶ ðCTÞ: encryption
phase including the input part of message M,
access control policy T , the global public parame-
ters GPP, and the public keys APK generated by
different authorities. The outputs part only contain
the ciphertext CT

(v) DecryptðCT, GPP, ASKÞ⟶ ðMÞor⊥: the phase
is run on the user side when they decided to
decrypt the ciphertext by themselves. User inputs
ciphertext download from other entities, their
secret key ASK, and the global public parameters
GPP. If the attribute satisfied the access policy
(which is hidden in the ciphertext), the user
could get the output as the message M. Other-
wise, the output is a reject symbol ⊥ implying
decryption failed

(vi) OutKeyGenðSKÞ⟶ ðOK, RKÞ: the outsourced
key generation phase is run by the data user when
the devices of user cannot afford the computation
or energy cost on decryption. It takes inputs as
the user’s secret key and outputs a key pair OK
(outsourced key) and RK (recovery key) used for
outsourced decryption and recover the true
plaintext

(vii) OutDecryptðCT, OKÞ⟶ CT′: this phase is run
by cloud server or other computing devices. It
takes the input of the previous ciphertext CT and
the outsourced key from data user. It outputs the
new ciphertext for user to decrypt

(viii) UserDecryptðGPP, RK, CT′Þ⟶ ðMÞor⊥: user
decryption phase runs after receiving CT′ from
the outsourcing entities, and the user uses the
recovery key and the public key to recover M from
CT′

4.4. Security Model. In our schemes, we take these points
into consideration. (1) The cloud service providers are
honest but curious about the data and access policy; they
will try their best to get them. (2) Cloud servers may send
the data (in the form of ciphertext) to unauthorized users.
(3) Users and cloud servers may collude with each other.
Under such a presupposition, we defined our security
game which runs between an adversary A and a challenger
B with five steps.

(i) Setup: (1) the adversary A randomly chooses an
access structure to challenge. After deciding the
structure, A sends it to challenger B in a secure
channel. (2) B runs GlobalSetup and publishes the
global public parameters GPP. (3) B runs Authority-
Setup and asks all authorities to send their public
key APK to A

(ii) Key query phase 1: A first generates an attribute
set that cannot access the data through the access
structure generated in Setup phase and sends the
attribute set to B along with gid. Then, B runs
SKeyGen to generate a secret key and OutKeyGen
to generate an outsourced key for A, respectively

(iii) Challenge phase: A submits two equal length plain-
text M0 and M1 to B. After this, the adversary
should give the public key APK of all authorities

Data owner

Data user
Computing devices

Storing devices

User CloudSmart environment

Attribute authority

Attribute authority

Collecting devices

Cloud service 
provider

Data flow

Key flow

Figure 2: System model in smart cities.

7Wireless Communications and Mobile Computing



whose attributes appear in the access policy to the
challenger. Then, challenger throws a coin β ∈ f0,
1g and sends it to A the encrypted Mβ

(iv) Key query phase 2: A can makes as many queries as
he wants according to phase 1

(v) Guess: A submits a guess β′ for β. The advantage of
A is defined as ∣Pr ½β = β′� − 1/2 ∣

Definition 2. Our scheme is secure if any adversary cannot
win the game above in any polynomial time with a nonnegli-
gible advantage.

4.5. Access Control Scheme. In this section, we will explain
the detail of our access control scheme step by step. Based
on the architecture framework, our scheme contains four
primary phases: system initialization (ran by authorities),
key generation (ran by AA), data encryption (ran by owner),
and data decryption (ran by user). Besides, the execution of
the other three outsourcing phases depends on the require-
ments of users.

4.5.1. Phase 1: System Initialization. The system initialization
phase runs before the whole system starts. In this phase,
authorities generate essential parameters and publish the
attribute public key. The first step is global setup and the sec-
ond is authority setup.

(1) Global Setup. At the beginning of this phase, let a bilinear
group G and the corresponding map e : G ×G⟶GT with
the order p, g is a generator of G. The global parameter
GPP which is used in other phases is published as GPP =
ðp, g, e,H,G,GTÞ, where H is a hash function that maps a
binary string of any length to an element of group G as
H : f0, 1g∗ ⟶G. Besides, all users will be granted a global
identifier gid in this phase.

(2) Authority Setup. Authority setup runs after GPP is gener-
ated. Each authority AAd manages their own attribute uni-
verse Ud with nd different attributes attiði ∈ ½1, nd�Þ. We
assume that each attribute only belongs to a specific author-
ity. Thus, different attribute keys generated by different
authorities will not have data conflicts. This kind of assump-
tion is practicable as different authorities may belong to dif-
ferent associations or enterprises in reality.

AAd chooses ai, bi ∈ Z∗
p ði ∈ ½1, nd�Þ for each attribute atti

(both normal attributes and unequal attributes). Authorities
save the set of ai and bi as the authority secret key ASK,
namely,

ASK = <ai, bi >f g: ð4Þ

After this, AAd calculates xi, yi as follows:

xi = g−ai ,

yi = e g, gð Þbi :
ð5Þ

Then, AAd publishes the combination of xi, yi for every
attribute as the public key and can add a signature for integ-
rity if needed. So the attribute authority public key is com-
posed of

APK = <xi, yi >f g: ð6Þ

4.5.2. Phase 2: Key Generation. The key generation algorithm
runs by authority and takes the input as the authority secret
key ASK, user’s global identifier gid, and corresponding
attribute set S2. This phase outputs the secret key SKgid,i
which associates with the user’s global identity and the cor-
responding attribute.

In this phase, each AA first generates users’ unequal
attribute set from S0 to transfer unequal attributes to 0-
encoding and 1-encoding form. After that, authority ran-
domly selects a security parameter related to gid as ud and
a set of security parameters for every unequal attribute in
S2 as frj ∣ j ∈ S2g. Then, user will get the secret from one

authority as Dj = gbj+ud ·HðjÞr j and D′j = grj where j is the
unequal attribute with the index of i. At last, the secret for
unequal attributes will be combined by user as

D = Dj = gud ·H jð Þr j ,Dj′= grj ∣∀j ∈ S2
n o

, ð7Þ

where S2 stands for the unequal attribute set. The attri-
bute authority AAd calculates the secret key for the rest of
the attributes as

SKgid,i = gbi+udH gidð Þai : ð8Þ

Then, the user can combine the secret key from each
authority to set his own as follows:

SKgid = <SKgid,i = gbi+udH gidð Þai>,D
n o

: ð9Þ

4.5.3. Phase 3: Data Encryption by Owners. In this phase, we
can divide the operation of data owners into two steps. The
first one is to build the access tree with unequal attributes.
The data owner selects a random secret s ∈ Zp

∗ and assigns
it to the root node. As we mentioned in Access Structure
parts, we use (t-n)-Shamir Secret Sharing Scheme to set
the secret s. For every unassigned node, owner selects a ran-
dom polynomial qx with the degree dx = kx − 1, where kx is
the threshold value. Then, the secret assigned by this node
sx is the constant term of qx. Let us take threshold ð2, 3Þ
as an example; then, we can generate the polynomial like
qx = a1x + sx and assign the secret qxð0Þ = sx, qxð1Þ = a1 +
sx, qxð2Þ = 2a1 + sx to each child node, respectively.

After building the access tree, each attribute in the access
policy will be represented by a leaf node x for normal attri-
butes or a one-layer subtree for unequal attributes. For all
the one-layer subtree that has the “OR” gate, we can assign

8 Wireless Communications and Mobile Computing



the corresponding secret sx to the leaf node of the subtree.
Then, we calculate C as

C = Cj = gsx , Cj′=H jð Þsx ∣∀j ∈ S1
n o

: ð10Þ

The second step is to encrypt the data. For the sake of
security and computation efficiency, we use symmetric
encryption to encrypt the plaintext at first. The owner sets
C0 = EKðMÞ where K is the key of symmetric encryption.
Then, the data owner selects a random secret s ∈ Zp

∗ and cal-
culates

C1 =
Y

gsi = gs,

C2 =
Y

g−ai
� �s

,

C3 = K
Y

e g, gð Þbi
� �s

:

ð11Þ

Same as the secret key, CT is also composed of two parts:
C stands for the unequal attributes while C1, C2, C3 is used
for decryption. Thus, data owners can set the ciphertext
CT as

CT = C0, C1, C2, C3, Cf g: ð12Þ

After the encryption phase, the access policy information
will be transformed to s and hidden in the ciphertext CT but
still have C for unequal attribute comparison. By doing this,
we can hide the access policy from third-party entities (cloud
or smart devices) and data users as well as providing a
numerical comparison.

4.5.4. Phase 4: Data Decryption by Users. As we mentioned
before, there are two kinds of scenes for user decryption.
When the user wants to execute a data processing operation,
devices can decrypt by themselves or not, depending on user
settings or electric quantity. Moreover, if a user is far away
from storing devices or the cloud, it can also call the out-
sourcing phase. Users can choose either phase 4 or phase 5
for decryption. This phase started on the user side when
the user decided to decrypt the ciphertext.

Like the encryption phase, the decryption phase also
needs to deal with the unequal attribute first either. As every
unequal attribute in the access tree is transmitted to C in CT,
the user first checks the attribute in C and finds the corre-
sponding D in SK. Let the corresponding attribute be j,
and then, the user calculates as follows:

Fj =
e Cj,Dj

� �
e Dj′, Cj′
� � =

e gud ·H jð Þr j , gsð Þ
e grj ,H jð Þsð Þ = e g, gð Þuds: ð13Þ

Here, Fj is built to check whether the user’s unequal
attributes can meet the demand of access policy. After calcu-

lating Fj for all unequal attributes in the access policy, the
user can get a secret for all unequal attributes as

S =
Y

e g, gð Þuds = e g, gð Þus u = 〠
AID

d=0
ud

 !
: ð14Þ

Then, the plaintext can be recovered by

De =
C3 · S

e H gidð Þ, C2ð Þe SKgid,i, C1
� �

=
K
Q

e g, gð Þbi
� �s

e g, gð Þus

e H gidð Þ, Q g−aið Þsð Þe Q gbi+uH gidð Þai , gs
� �

=
K
Q

e g, gð Þbi+u
� �s

e H gidð Þ, Q g−aið Þsð Þe Q gbi+u, gs
� �

e
Q

H gidð Þai , gsð Þ
= K:

ð15Þ

4.5.5. Phase 5: Data Decryption with Outsourcing. When a
user needs a smart node to get data from a remote node or
does not want to afford computation cost, this phase will
run instead of phase 4. This phase contains three steps: Out-
KeyGen, OutDecrypt, and UserDecrypt. We will introduce
these three steps together for brevity.

User first generates the outsourced key and recover key
for OutKeyGen phase. The user generates the outsourced
key as

OKgid = <OKgid,i = g
bi+udð Þ

σ H gidð Þai>,D,H gidð Þ
� �

: ð16Þ

Here, σ ∈ Z∗ as the recover key RK is selected by the data
user.

The second step OutDecrypt is run by CSP or computing
devices. The trustee first downloads the ciphertext from stor-
ing devices after receiving OK. The same as in decryption
phase on users, unequal attribute key is calculated the same
as in Equation (13). Then, the corresponding S of all unequal
attributes is also generated. The ciphertext will be partially
decrypted by

CT′ = C3 · S
e H gidð Þ, C2ð Þe OKgid,i, C1

� �
=

K
Q

e g, gð Þbi
� �s

e g, gð Þus

e H gidð Þ, Q g−aið Þsð Þe Q gbi+ ud/σð ÞH gidð Þai , gs
� �

=
K
Q

e g, gð Þ bi+uð Þ
� �s

e H gidð Þ, Q g−aið Þsð Þe Q g bi+udð Þ/σ, gs
� �

e
Q

H gidð Þai , gsð Þ
= K e g, gð Þ1/σ� �

:

ð17Þ

9Wireless Communications and Mobile Computing



The last phase is UserDecrypt which is executed on the
user side. After the user gets CT′ from outsourcing entities,
retrieve the plaintext by using RK:

De = CT′e g, gð Þ−1/σ = Ke g, gð Þ1/σ� �
e g, gð Þ−1/σ = K: ð18Þ

5. Security and Performance Evaluation

In this phase, we will first give the security proof according
to the security model and then analyze the security proper-
ties from different aspects. Besides, performance evaluations
on computation cost and storage cost will be given.

5.1. Security Proof

Theorem 3. If the q-BDHE assumption holds, any adversary
cannot break our scheme in polynomial time with a nonnegli-
gible advantage.

Proof. We first suppose that there exists an adversary A
which can break our scheme with advantage ε. Then, there
will be a simulator B which can play the q-BDHE game with
advantage ε/2 according to Theorem 3.

Our q-BDHE build on a group ðg, h = gs, y!g,α,n, TÞ, and
then, the simulator can generate y!g,α,n = ðg, g1,⋯, g2n−1,
g2nÞ. B randomly chooses τ ∈ f0, 1g and can get T as

T = e gn+1, hð Þ, τ = 0,

T ∈GT , τ = 1:

(
ð19Þ

The simulation of our security game goes in five steps.

(1) Setup: the adversary first chose an access structure
and built an attribute set containing normal and
unequal attributes that do not satisfy the structure.
After receiving the access structure, B randomly
chooses i∗ ∈ I and ai, bi, ci ∈ Zp where I represents
the number of attributes. B calculates public keys as
follows.

For i = i∗, B first checks whether the corresponding attri-
butes belong to the access structure which is sent by A. If so,
the public key is generated as

xi, yið Þ = gai
Y

gn+1−i, e g, gð Þci e g, gð Þαn+1
� �

: ð20Þ

Otherwise,

xi, yið Þ = g−ai , e g, gð Þbi
� �

: ð21Þ

For i ∈ I − ði∗Þ, B checks the attributes as above opera-
tions and generates ðxi, yiÞ.

If the attribute belongs to the access structure,

xi∗ , yi∗ð Þ = gaign+1−i, e g, gð Þcið Þ: ð22Þ

Otherwise, B calculates the public key as in Equation
(21).

(2) Key query: the first time key query begins when A
sent the attribute set and gid to B. Along with
attribute, A also needs to send a token to B to
ask for secret key SK or outsourced key OK. Before
generating the secret key for this attribute set, B
generates the hash function (used in secret key)
as HðgidÞ = g · gz where z ∈ Zp and randomly
selected σ ∈ Z∗. Furthermore, B selects an attribute
attk which does not belong to the access structure.
Then, for the situation in Equation (20), B calcu-
lates the private key as

SKgid,i = OKgid,i = gkð Þ−aigci
Y

i∈I− i∗ð Þ
g−1n+1−i+k

0
@

1
A yið Þ−z: ð23Þ

For the situation in Equation (21), set

SKgid,i = OKgid,i = gkð Þ−aigcigq+1−i+k yið Þ−z: ð24Þ

For the situation in Equation (22), set

SKgid,i =H gidð Þgbi+u,
OKgid,i =H gidð Þg bi+uð Þ/σ,

ð25Þ

where u is randomly chosen by B which is associated
with gid. However, B cannot send both SKgid,i and OKgid,i
with the same gid and i to A. Then, B returns the corre-
sponding key to A depending on the token of whether using
the outsourced key or not.

(3) Challenge: A randomly generates two equal length
messages M0 and M1 for B to pick. After receiving
the message, B flips a secure coin v ∈ f0, 1g to make
sure A does not have any information about the flip-
ping. For each ai and ci, we use aI =∑ ai and cI =∑ ci
to define the ciphertext which is generated by B:
sourced key or not.

C1 ′ = h,

C2 ′ =
Q

g−aið Þs = g−ai∗
Y

l∈I− i∗ð Þ
gn+1−l

Y
l∈I− i∗ð Þ

g−1
n+1−k

0
@

1
A

s

= h−aI ,

C3 ′ =MvTe g, hð ÞcI :
ð26Þ

As we mentioned before in Equation (19), for τ = 0 and
T = eðgn+1, hÞ, we can get

10 Wireless Communications and Mobile Computing



C3 ′ =MvTe g, hð ÞcI =Mve gn+1, hð Þe g, hð ÞcI
=Mve gn+1, hð Þ

Y
i∈I

e g, hð Þci =Mve g, hð Þci∗+αn+1
Y

l∈I− i∗ð Þ
e g, gð Þcl

=Mv

Y
e g, gð Þbi

� �s
:

ð27Þ

Thus, CT′ = fC0, C1 ′, C2 ′, C3 ′, Cg be the right cipher-
text of Mv. Otherwise, when τ = 1, T is a random value on
group GT ; CT′ is also a random value ciphertext.

(4) Key query: A can make as many queries as he wants
according to phase 2 and B must return correspond-
ing results. Here, we must emphasize that for the
same attributes and gid, A cannot query both S
Kgid,i and OKgid,i.

(5) Guess: A outputs a guess for v as v′ according to the
phase above. Then, B checks the result and outputs τ.
For v′ ≠ v outputs τ = 1 and for v′ = v outputs τ = 0.

The values of v and τ in our game are independent of
each other so that A cannot obtain any information about
v. When τ′ = 0, the ciphertext is valid and A can guess v with
a nonnegligible advantage of Pr ½v = v′jτ′ = 0� = ð1/2Þ + ε.
However, when τ′ = 1, T is a random value and CT′ cannot
be identified either. So the probability of guessing v by A is
Pr ½v ≠ v′ ∣ τ′ = 1� = 1/2.

In conclusion, the advantage of B in q-BDHE game can
be summarized as

Adv =
1
2
Pr v = v′ ∣ τ′ = 0
h i

+
1
2
Pr v ≠ v′ ∣ τ′ = 1
h i

−
1
2

=
1
2

1
2
+ ε

	 

+
1
2
1
2
−
1
2
=
ε

2
:

ð28Þ

Based on the above equation, we can know that if there
does exist an adversary that can break our scheme, there
must be a simulator that can play q-BDHE game with the
advantage of ε/2. Relatively, no one can break our scheme
under the q-BDHE construction in the security game pro-
posed before.

5.2. Security Analysis. In CP-ABE, the access policy is
attached to the ciphertext by transforming it into tree form.
However, although this kind of method does provide conve-
nience to access control, it also leaks the privacy of the access
policy. Malicious users may infer the identity of data owners
by different access policies they made. Consequently, the
policy hiding scheme offers high-level security but intro-
duces concerns about the correctness of the access policy.
In our scheme, these concerns can be divided into two parts:
policy confidentiality and unequal attribute comparison.
Besides, we also take collusion attacks into consideration.
Analysis of these security issues is listed below.

5.2.1. Policy Confidentiality. The access policy tree in our
scheme is hidden through the secret s. By replacing each
node of the access tree with a secret value associated with s,
we can shift the operation of verifying access policy to
recover the secret s. In particular, unequal attributes can be
hidden through the OR gate subtree by being transformed
into 0-encoding and 1-encoding ways. So the decryption
result cannot leak any information about attributes or data.
Furthermore, our scheme can prevent attacks like guess
access structure through multiple access applications by
hiding the access tree through the secret.

5.2.2. Unequal Attributes. The correctness of 0-encoding
and 1-encoding can be found in [30]. Furthermore, if the
attribute set of a user meets the demand of access policy,
there must be an encoding that belongs to the extended
attribute set. On the opposite, if the user’s attribute does
not satisfy the access policy, the match between the encoding
set will be failed. Our extended attribute set contains not only
attribute name but also attribute value which can also resist
malicious users misusing encoding or fake attributes.

5.2.3. Collusion Attacks. There may exist several kinds of
collude operations in our model, and we will dissect them
one by one. The first one is collusion between different users.
For those users who cannot satisfy the access control policy,
we assume a scene that they want to combine their secret key
to get a legal one. Since the prime order of their secret key is
randomly chosen by authorities, respectively, no matter
what kinds of attribute set they ever had, they cannot get a
proper key in any case.

Another case is the collusion between an unauthorized
user with gid1 and a revoked user with gid2. User with gid1
may want the secret key gid2 ever had to get a combination
of attributes and his own gid1. As mentioned before, this
kind of collusion cannot exist either because of the random
oracle and multiple authorities.

The last situation is about different users colluding with
each other to speculate the access structure, especially the
unequal range. Illegal users who cannot satisfy the access
policy may want to construct a new key by corrupting with
other illegal users. But the only feedback of a failure decryp-
tion operation is nothing but a fail symbol ⊥; thus, illegal
users cannot know exactly which attributes did not satisfy
the policy. Moreover, every user has a specific secret key
as gid of each user is different. So, a part of the secret key
HðgidÞ is totally different either. All in all, malicious users
cannot combine their keys or guess any helpful information
for decryption.

5.3. Performance Evaluation. The simulation platform of
our scheme is on an Ubuntu 14.04 system with an Intel
Core(TM) i5-5600U at 2.6GHz and 4GB RAM. The
implementation is based on Java Pairing-Based Cryptogra-
phy library (JPBC ver2.0.0) and adopts a 160-bit group order
on the curve y2 = x3 + x. Besides, we add one unequal attri-
bute in every three attributes and set their value randomly.
All the times shown in the below figures are the mean of
1000 times for the purpose of accuracy. We will analyze our

11Wireless Communications and Mobile Computing



scheme on both computation overhead and storage over-
head. For computation overhead, we mainly focus on the cost
of encryption and decryption phase; as for storage overhead,
the size of ciphertext and secret key will be taken into
consideration.

5.3.1. Computation Overhead. As shown in Figures 3 and 4,
the computation cost of our scheme grows linearly on
encryption and almost stays the same on decryption with
the increasing of attribute value space. For encryption time,
compared with the scheme revised by Wan et al. [31], our
method does not need to generate another structure for pol-
icy and attributes, which can fit the environment of power-

limited devices better. For the scheme in [8], as we all used
0-encoding and 1-encoding for attribute comparison, our
scheme takes more time because of the secret generation
for policy hiding. Our computation cost on encryption
exceeded 650ms when the attribute number reaches 210. It
is affordable in consideration of data owner does not need
to publish their data very often.

Decryption time in our scheme (without outsourcing)
and scheme in [8] almost stay the same as the attribute num-
ber grows. When the user tries to use outsourcing for decryp-
tion, computation costs will be largely decreased. For all
schemes we compared with, decryption time grows very
slowly as the range of attributes increases.

450

500

550

600

650

700

750

800

En
cr

yp
tio

n 
tim

es
 (m

s)

Data range of attributes

Our scheme
Xue et al. (2017a)
Wan, Liu, Deng (2012)

23 24 25 26 27 28 29 210

Attrapadung et al. (2016)
Shi et al. (2016)

Figure 3: Encryption time on nodes.

23 24 25 26 27 28 29 210
200

300

400

500

600

700

800

900

1000

D
ec

ry
pt

io
n 

tim
es

 (m
s)

Data range of attributes

Our scheme (without outsourcing)
Xue et al. (2017a)
Wan, Liu, Deng (2012)

Shi et al. (2016)
Our scheme (with outsourcing)

Figure 4: Decryption time on users.

12 Wireless Communications and Mobile Computing



The experiments on computation overhead show that
our scheme takes a bit more time on both encryption and
decryption compared to the existing methods. But as our
scheme can provide policy hidden method which is not pro-
posed by other schemes, we could say that we proposed a
more cost-efficient solution in the smart city environment.

5.3.2. Storage Overhead. Figure 5 shows the comparison of
ciphertext size growing trends through the increase of attri-
bute number in the attribute universe. To clearly show the
transformation of the ciphertext size, we do not take the
symmetric encryption key and the data size into consider-
ation. This means that we delete the data part in all schemes,

while in our method, it is C0 with symmetric encryption key
K . So the ciphertext in our experiments is fC1, C2, C3, Cg.
Due to the unequal attributes being a quarter of all attri-
butes, the ciphertext size could be huge when the number
of attributes is low. This is because we must generate C part
in ciphertext according to Equations (10) and (12). How-
ever, as the number of attributes grows, ciphertext size in
our scheme increases slowly and will have better perfor-
mance in complicated real-world scenarios. Furthermore,
the ciphertext size will greatly influence the performance of
the whole system as it will introduce high communication
costs and heavy storage overhead on different entities
(including resource-constrained smart devices).

4

8

16

32

64

128

256

Ci
ph

er
te

xt
 (w

ith
ou

t d
at

a)
 si

ze
 (K

B)

Data range of attributes

Our scheme
Xue et al. (2017a)
Wan, Liu, Deng (2012)

Attrapadung et al. (2016)
Shi et al. (2016)

23 24 25 26 27 28 29 210

Figure 5: Comparison of ciphertext size.

4

6

8

10

12

14

16

18

20

Ke
y 

siz
e (

KB
)

Data range of attributes

Our scheme
Xue et al. (2017a)
Wan, Liu, Deng (2012)

Attrapadung et al. (2016)
Shi et al. (2016)

23 24 25 26 27 28 29 210

Figure 6: Comparison of secret key size.

13Wireless Communications and Mobile Computing



There is another advantage of the scheme on ciphertext
size, which cannot directly be shown in Figure 5. Suppose
the data owner defined an access policy without unequal
attributes. In that case, the unequal attribute comparison
part C is no longer needed, and the length of our ciphertext
decreased to 2jGj + jGT j, where jGj and jGT j are the length
of elements in group G and GT , respectively. From this
aspect, we can see that the main cost of ciphertext depends
on the unequal attributes as the number of attributes grows.

Similar to the ciphertext size, our secret key size is also
larger than the scheme in [8] as shown in Figure 6. As we
can see from Equations (7), (8), and (9), our secret key has
two components: SKgid,i and D. For the first part, with the
same gid and corresponding a, b, u, the size of SKgid,i stays
the same as a constant size. As for D in Equation (6), its
size is associated with the number of unequal attributes
and their encoding binary strings. As the proportion of
unequal attributes of our experiment is the exact, storage cost
on D determines the number of its binary strings of 0-
encoding and 1-encoding. With the combination of SKgid,i
and D, the size of the secret key is Log2N + C where N is
the value space of attributes and C is a constant number.
For the unequal attributes that have the same proportion in
our experiment, key size grows steady as the attribute num-
ber grows. In this case, we could say that the additional over-
head is affordable, because with more than one thousand
attributes, our scheme only needs an extra 4KB for key size.

Based on performance evaluations on both computation
and storage costs, our scheme has advantages on decryption
overhead at the expense of affordable extra secret key size.
Furthermore, with the increase of the attribute universe, both
computation overhead and storage overhead do not grow sig-
nificantly. At this point, our scheme is suitable to be applied
in smart city environments and power-constrained devices.

6. Conclusion

In this paper, we focus on how to provide both unequal attri-
bute comparison and policy hiding method in smart city
access control environment. Our scheme constructed an effi-
cient solution by attaching an encoding subtree to the
unequal attribute leaf node and transferred access policy into
corresponding values to implement the above properties,
respectively. Both theoretical analysis and experimental
results show that compared to the existing works, our
scheme implements better encryption and decryption speed
as well as reduces storage overhead for ciphertext to some
extent. Although our method takes extra space to store the
secret keys, the rate of extra cost grows slowly enough as
we only need an extra 4KB for every thousand attributes.
In this case, even the lightweight devices can afford the addi-
tional cost in exchange for protecting the privacy of access
control policy.

Therefore, we believe that our scheme provides a more
efficient method for ABE to overcome the weakness of
high computational overhead and inflexible access control.
However, the unequal subtree still takes more storage and
communication cost and is hard to update or revoke.

Accordingly, future research lies in unequal attribute updat-
ing and revocation as these operations will influence a large
number of users and raise computation costs. For security
and privacy parts, the problem of unequal attribute informa-
tion leakage will be taken into consideration either.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Science Founda-
tion of China under Grant Number 61772385 and Number
61572370.

References

[1] L. Cui, G. Xie, Y. Qu, L. Gao, and Y. Yang, “Security and
privacy in smart cities: challenges and opportunities,” IEEE
Access, vol. 6, pp. 46134–46145, 2018.

[2] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia,
“PHOABE: securely outsourcing multi-authority attribute
based encryption with policy hidden for cloud assisted IoT,”
Computer Networks, vol. 133, pp. 141–156, 2018.

[3] M. Rasori, P. Perazzo, and G. Dini, “A lightweight and scalable
attribute-based encryption system for smart cities,” Computer
Communications, vol. 149, pp. 78–89, 2020.

[4] J. Hao, C. Huang, J. Ni, H. Rong, M. Xian, and X. S. Shen,
“Fine-grained data access control with attribute-hiding policy
for cloud-based IoT,” Computer Networks, vol. 153, pp. 1–10,
2019.

[5] Z. B. Ying, M. A. Jian-Feng, and J. T. Cui, “Partially policy hid-
den CP-ABE supporting dynamic policy updating,” Journal on
Communications, 2015.

[6] L. Zhang, Y. Cui, and Y.Mu, Improving Privacy-Preserving CP-
ABE with Hidden Access Policy, Springer, 2018.

[7] N. Attrapadung, G. Hanaoka, K. Ogawa, G. Ohtake,
H. Watanabe, and S. Yamada, “Attribute-based encryption
for range attributes,” in International Conference on Security
& Cryptography for Networks, Springer-Verlag New York,
Inc, 2016.

[8] K. P. Xue, J. Hong, Y. Xue, D. S. L. Wei, N. Yu, and P. Hong,
“CABE: a new comparable attribute-based encryption con-
struction with 0-encoding and 1-encoding,” IEEE Transactions
on Computers, vol. 66, no. 9, pp. 1491–1503, 2017.

[9] Y. Qu, M. R. Nosouhi, L. Cui et al., “Privacy preservation in
smart cities,” in Smart Cities Cybersecurity and Privacy,
pp. 75–88, Elsevier, 2019.

[10] K. P. Xue, Y. Xue, J. Hong et al., “RAAC: robust and auditable
access control with multiple attribute authorities for public
cloud storage,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 4, pp. 953–967, 2017.

[11] W. Jing, C. Huang, and J. Wang, Scalable Access Policy for
Attribute Based Encryption in Cloud Storage, Springer, 2015.

14 Wireless Communications and Mobile Computing



[12] S. Liu, J. Yu, C. Hu, and M. Li, “Traceable multiauthority
attribute-based encryption with outsourced decryption and
hidden policy for CIoT,” Wireless Communications and
Mobile Computing, vol. 2021, Article ID 6682580, 16 pages,
2021.

[13] A. K. Junejo and N. Komninos, “A lightweight attribute-based
security scheme for fog-enabled cyber physical systems,”Wire-
less Communications and Mobile Computing, vol. 2020, Article
ID 2145829, 18 pages, 2020.

[14] A. Arfaoui, O. R. M. Boudia, A. Kribeche, S. M. Senouci, and
M. Hamdi, “Context-aware access control and anonymous
authentication in WBAN,” Computers & Security, vol. 88,
p. 101496, 2020.

[15] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in 2007 IEEE Symposium on Secu-
rity and Privacy (SP '07), Berkeley, CA, USA, May 2007.

[16] E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in 2007 IEEE
Symposium on Security and Privacy (SP '07), p. 350364, Berke-
ley, CA, USA, May 2007.

[17] R. Gay, P. Meaux, and H. Wee, “Predicate encryption for
multi-dimensional range queries from lattices,” in PKC, J.
Katz, Ed., vol. 9020, p. 752776, LNCS, 2015.

[18] N. Attrapadung, G. Hanaoka, K. Ogawa, G. Ohtake,
H. Watanabe, and S. Yamada, “Attribute-based encryption
for range attributes,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences,
vol. 101-A, no. 9, pp. 1440–1455, 2018.

[19] L. Gao, T. H. Luan, B. Gu et al., Privacy-Preserving in Edge
Computing, 2021.

[20] N. Helil and K. Rahman, CP-ABE Access Control Scheme for
Sensitive Data Set Constraint with Hidden Access Policy and
Constraint Policy, Security and Communication Networks,
2017.

[21] S. P. Wang, T. Gao, and Y. Zhang, “Searchable and revocable
multi-data owner attribute-based encryption scheme with hid-
den policy in cloud storage,” PLoS One, vol. 13, no. 11, 2018.

[22] Y. D. Fan, X. P. Wu, and J. S. Wang, “Multi-authority
attribute-based encryption access control scheme with hidden
policy and constant length ciphertext for cloud storage,” in
2017 IEEE Second International Conference on Data Science
in Cyberspace (DSC), pp. 205–212, Shenzhen, China, June
2017.

[23] J. L. Shi, C. H. Huang, J. Wang, K. He, and J. H. Wang, “An
access control scheme with direct cloud-aided attribute revo-
cation using version key,” Algorithms and Architectures for
Parallel Processing, Ica3pp 2014, Pt I, vol. 8630, pp. 429–442,
2014.

[24] J. Wang, C. Huang, N. N. Xiong, and J. Wang, “Blocked linear
secret sharing scheme for scalable attribute based encryption
in manageable cloud storage system,” Information Sciences,
vol. 424, pp. 1–26, 2018.

[25] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the
decryption of ABE ciphertexts,” Proceedings of the 20th USE-
NIX Conference on Security, USENIX Association, 2011.

[26] J. L. Shi, C. Huang, J. Wang, K. He, and X. Shen, “An access
control scheme with dynamic user management and cloud-
aided decryption,” Security and Communication Networks,
vol. 9, no. 18, 5672 pages, 2016.

[27] V. Odelu, A. K. Das, Y. S. Rao, S. Kumari, M. K. Khan, and
K. K. R. Choo, “Pairing-based CP-ABE with constant-size

ciphertexts and secret keys for cloud environment,” Computer
Standards & Interfaces, vol. 54, pp. 3–9, 2017.

[28] A. Sahai and B. Waters, “Fuzzy identity-based encryption,”
Advances in Cryptology – EUROCRYPT 2005, vol. 3494,
pp. 457–473, 2005.

[29] X. Yan, G. He, J. Yu, Y. Tang, and M. Zhao, “Offline/online
outsourced attribute-based encryption with partial policy hid-
den for the internet of things,” Journal of Sensors, vol. 2020,
Article ID 8861114, 11 pages, 2020.

[30] H. Y. Lin andW. G. Tzeng,An Efficient Solution to theMillion-
Aires Problem Based on Homomorphic Encryption, 2005.

[31] Z. Wan, J. Liu, and R. H. Deng, “Hasbe: a hierarchical
attribute-based solution for flexible and scalable access control
in cloud computing,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 2, pp. 743–754, 2012.

15Wireless Communications and Mobile Computing


	A Privacy-Preserving Attribute-Based Encryption System for Data Sharing in Smart Cities
	1. Introduction
	2. Related Work
	3. Preliminaries and Definitions
	3.1. Bilinear Map
	3.2. Decisional Bilinear Diffie-Hellman Exponent Assumption
	3.3. 0-Encoding and 1-Encoding
	3.4. Unequal Attribute Set

	4. System Structure and Security Model
	4.1. System Model
	4.2. Access Structure
	4.3. Architecture Framework
	4.4. Security Model
	4.5. Access Control Scheme
	4.5.1. Phase 1: System Initialization
	4.5.2. Phase 2: Key Generation
	4.5.3. Phase 3: Data Encryption by Owners
	4.5.4. Phase 4: Data Decryption by Users
	4.5.5. Phase 5: Data Decryption with Outsourcing


	5. Security and Performance Evaluation
	5.1. Security Proof
	5.2. Security Analysis
	5.2.1. Policy Confidentiality
	5.2.2. Unequal Attributes
	5.2.3. Collusion Attacks

	5.3. Performance Evaluation
	5.3.1. Computation Overhead
	5.3.2. Storage Overhead


	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

