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Aimed at the problem of order determination of short-term power consumption in a time series model, a new method was
proposed to determine the order p and the moving average q of the ARMA model by particle swarm optimization
(PSO).According to the difference between the predicted value and the real value of the ARMA model, the fitness function of
the particle swarm optimization algorithm is constructed, while the optimal solution which satisfies the ARMA model is
confirmed by adjusting the inertia weight, population size, particle velocity, and iteration number. Finally, SVR regression is
performed by using a support vector machine to correct the residual sequence obtained after the prediction of ARMA. The final
prediction result is obtained by adding the predicted values and corrected residual. Based on the data of historical electricity
load of a residential district in 2016~2017, the proposed method is compared with the traditional models. The result of the use
of MATLAB simulation shows that the method is simple and feasible, greatly improves the model prediction accuracy, and
implements the new method for short-term load forecasting of a small sample.

1. Introduction

The short-term load forecast of the power system is generally
a series of forecasts based on the data of the next few days or
several weeks. Since electric energy cannot be stored in large
quantities and the demand for electric power in society is
constantly changing, it is necessary to predict short-term
electricity consumption in order to achieve a dynamic bal-
ance between the power supply end and the power genera-
tion end. The higher the accuracy of the short-term load
forecasting, the more beneficial it is to the normal operation
of the power grid system, and it also provides an important
basis for the power grid to formulate a short-term reasonable
dispatch plan [1]. With the increase in the scale of power
systems, the increase in nonlinear loads, and the introduc-
tion of market competition mechanisms, it becomes more
important and urgent to study combinatorial optimization

algorithms with higher prediction accuracy [2]. Liu and
Zhang propose cluster-based CIIoT wherein the cluster
heads perform cooperative spectrum sensing to get avail-
able spectrum and the nodes transmit via nonorthogonal
multiple access (NOMA) [3]. Then, Liu et al. furtherly
propose a joint optimization algorithm based on Lagrange
dual decomposition which is proposed to achieve the opti-
mal solution [4]. Jia et al. propose a space segment design
based on a spectrum sensing-based cooperative framework,
in consideration of the presence of MUs [5]. Moreover, a
novel detector which joints the QOC and Fixed Sphere
Decoding (FSD) algorithm is proposed by Jia et al. to
address multiplexing overlapped carriers [6].

The essence of load forecasting is to extract the changing
law of historical electricity consumption data over time.
Because the load is affected by various factors such as temper-
ature and weather, the difficulty of load forecasting also

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 6691537, 12 pages
https://doi.org/10.1155/2021/6691537

https://orcid.org/0000-0001-7835-4990
https://orcid.org/0000-0003-0457-1989
https://orcid.org/0000-0003-2491-9196
https://orcid.org/0000-0002-6436-6568
https://orcid.org/0000-0003-4318-0278
https://orcid.org/0000-0001-6150-1368
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6691537


increases [7]. Traditional load forecasting methods include
time series method, autoregressive method, Kalman filter
[8], and so on. These methods mainly make predictions
based on the time series of historical load data. Therefore,
the prediction accuracy of data with strong time series is
relatively high, but for some nonlinear data, the effect of
using this method to predict is relatively poor. Traditional
prediction methods have difficulty in meeting higher predic-
tion accuracy requirements. In recent years, artificial intelli-
gence algorithms represented by support vector machines
and neural networks [9] have attracted widespread attention
due to their high prediction accuracy and strong computing
capabilities. Among them, the most widely used is the BP
neural network model, which is also simpler and faster, for
prediction, but the BP neural network is easy to fall into the
local optimum, and it is difficult to obtain the global opti-
mum solution [10, 11]. Yue et al. proposed a short-term load
prediction model of a ridgelet recurrent neural network,
which improved the accuracy of prediction to a certain
extent, but too much data resulted in slower training speed
[12]. Wang and others put forward an ARIMA-SVM com-
bined forecasting model through research, which has strong
generalization ability and is suitable for load forecasting with
strong fluctuations [13]. Wang et al. proposed a short-term
prediction model of a convolutional neural network with an
encoder and particle swarm optimization algorithm. The
PSO algorithm is used to optimize the parameters of the
convolutional neural network to improve the prediction
accuracy [14]. Li and Wang proposed a short-term load fore-
casting method based on the PSO algorithm and RNN, which
overcomes the problem of large random value of the initial
weight of RNN and has good convergence, but it does not
solve the gradient problem that easily occurs in RNN [15].
To further promote the forecasting precision, the adjustable
fractional weighted coefficients and corresponding time
parameter of the initial condition are estimated by utilizing
the particle swarm optimization (PSO) [16].

In recent years, many experts have put forward many
new criteria and methods on how to determine the structure
of ARMA, which has improved compared with traditional
methods [17]. But the problem of applying the particle
swarm algorithm to ARMA model order determination has
been studied by few scholars. This paper proposes a new
order determination method for prediction. The particle
swarm algorithm is applied to the order problem of the
model, and the optimization is performed according to the
self-adaptation of the particle swarm algorithm and itera-
tively finds the optimal position of the particles, that is, the
autoregressive order. The optimal solution of the value of
the number p and the number of moving average terms q,
so as to determine the best ARMA model, uses SVR to per-
form regression correction on the residual data obtained after
prediction to obtain new effective residual data, combined
with the PSO-ARMA. The prediction results are added to
get the final prediction result. Additionally, Wu et al. con-
struct the EMD-GM-ARMA model via superimposing the
prediction results of each subsequence to predict the mining
safety production situation [18]. Guo et al. use a fruit fly opti-
mization algorithm to optimize the parameters in SVR [19].

The above modifications are considered effective improve-
ment, through case analysis and comparison with the predic-
tion results of other models. It is proven that the prediction
accuracy of the combined model has been significantly
improved.

2. Overview of the PSO-ARMA-SVR
Combination Model

2.1. Algorithm Overview. When determining the order of the
ARMA model, some uncertain factors often appear. After
comprehensive consideration of various constraints, this
paper uses the particle swarm algorithm to adaptively opti-
mize the parameters in the ARMA model. The order of
the ðp, qÞ model is iterated and optimized to finally
achieve the goal of improving the prediction accuracy of
the ARMAðp, qÞ model. The framework of the algorithm
is mainly divided into three parts:

(1) PSO-ARMA part

A new ARMA model order determination method is pro-
posed, through the continuous iteration of the particle swarm
algorithm to find the optimal solution that satisfies the
ARMAmodel autoregressive order p and the moving average
term q. According to the optimal solution obtained by the
dynamic weight iteration and the exhaustive method for
comparison and verification, it was confirmed that the value
is the global optimal solution.

(2) ARMA-SVR part

The residual sequence after fitting arma is x̂res =
fx̂res1c, x res2, x̂res3 ⋯ x̂resng. The support vector regression
(SVR)model is used for fitting, the new effective residual data
is obtained through regression correction, and the final pre-
diction results are combined with the prediction results
obtained by PSO-ARMA.

(3) Fitness function construction

In actual electricity consumption forecasting, usually
observable time series are modeled according to their part,
and the remaining part of the data is used for verification.
If the difference between the predicted value and the true
value is small, it represents the model. It is more accurate.
Otherwise, it means that the model has a large error and
needs to be remodeled. Therefore, the difference between
the predicted value and the true value can be used as a crite-
rion for judging whether the model is correct.

2.2. Algorithm Flow and Block Diagram. The PSO algorithm
is used to optimize the order of p and q parameters in ARMA,
so as to establish the optimal ARMA-SVR combined predic-
tion model. The PSO-ARMA-SVR modeling process is
shown in Figure 1. The specific optimization modeling steps
are as follows:

Step 1. Normalize the data. The purpose of normalization of
data is to narrow the difference between the attributes in the
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input data. If the difference is large, it will have a greater
impact on the predicted results; the normalization processing
formula is as follows:

x∗i,j =
xi,j − xmin
xmax − xmin

, ð1Þ

where xi,j represents the sample point in the ith row and jth
column and xmax and xmin represent the maximum and min-
imum values of the data.

Step 2. Use the PSO algorithm to optimize the parameters,
initialize the position and velocity of the particles, and obtain
a new fitness function value through each iteration to verify
whether it is the optimal solution, until the optimal parame-
ters (p and q value) are obtained.

Step 3. Establish an ARMA model based on the p and q
parameters obtained by iterative optimization in the previous
step, and perform fitting prediction.

Step 4. The data fitting result of the prediction sample is sub-
tracted from the original training data to obtain the residual

data predicted by the ARMA model, and the SVR model is
further constructed based on the training residual data, and
then, the residual data is predicted.

Step 5. According to the residual value obtained after the
sample data prediction, the residual is used as the input of
the SVR model to perform regression, and a new residual
sequence is predicted.

Step 6. Concatenate the ARMA model and the SVR model,
train 70% of the data in the sample sequence, and the final
output result is the sum of the residual optimization result
obtained by the combined prediction model and the ARMA
prediction result, and compare the remaining 30% of the
data. The final output sequence is Fp = ð f1, f2,⋯,f pÞ.

3. Problem of Determining the ARMA Model
Order Based on Particle Swarm Optimization

3.1. Principle of the Particle Swarm Algorithm. The original of
the particle swarm algorithm is that people have a lot of dif-
ferent behavioral studies between bird groups. The biggest
feature of bird predation is that it can quickly search for a
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Figure 1: Flowchart of PSO-ARMA-SVR.
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range of predation between similar groups and between
groups. Certain sharing of food information is conducive to
the coevolution of individuals and groups [13]. The particle
swarm algorithm corresponds to one of the solutions of each
“flying” particle in space and summarizes the characteristic
information of the particle with the three indicators of flight
speed, position, and fitness function value and iterates the
optimization according to the fitness function. The calculated
value is used to judge the quality of particles. By judging the
“flying” path of itself and other particles, the particle changes
its position and direction to continuously find a better area,
thus completing the process of continuous optimization in
the global search space [20].

The description of the particle swarm algorithm in the
past is as follows: assume that the search space of particles
in D dimension consists of N particles to form a population
X = fx1, x2,⋯xmg, where xi = fxi1, xi2,⋯xilg. The fitness
function is f ðxiÞ. The velocity of particle i is Vi. The best
position for the individual particle i to pass is Pbest. The
optimal position of population X is gbest. Suppose the charac-
teristic information of xi at time t is

speed:

Vt
i = vti1, vti2,⋯, vtiD

� �T , ð2Þ

position:

Xt
i = xti1, xti2,⋯, xtiD

� �T , ð3Þ

individual optimal position:

Pt
i = pti1, pti2,⋯, ptiD

� �T , ð4Þ

global optimal position:

Pt
g = vti1, vti2,⋯, vtiD

� �T
: ð5Þ

Then, the speed and position information of the particle
“flying” at time t + 1 is

vkid =wvk−1id + c1r1 pk−1id − xk−1id

� �
+ c2r2 pk−1gd − xk−1id

� �
,

xkid = xk−1id + vk−1id :

8<:
ð6Þ

Among them, vkid and xkid are the components of the
velocity and position of the particle i in the kth iteration in
the dth dimension, respectively; c1 and c2 are constants for
adjusting the learning step length; r1 and r2 are random
numbers distributed between ½0, 1�; and ω is used to adjust
the search range of the solution space. In order to keep the
particles in the search range, the speed and position of the
particles are generally limited to ½−vmax, vmax� and ½−xmax,
xmax�, respectively.
3.2. Basic Parameter Setting of Particle Swarm. Since the par-
ticle swarm algorithm is restricted by the fixed inertia weight

during the iteration process, the global search ability of the
algorithm is greatly weakened. In order to prevent the parti-
cles from falling into the local optimum prematurely, this
paper adopts a rule of diminishing inertia weight differential,
which is calculated as follows:

dω
dt

= 2 ωmax − ωminð Þ
t2max

· t,

ω = ωmax −
ωmax − ωminð Þ

t2max
∙t2:

ð7Þ

ω represents the inertia weight, ωmax and ωmin are the
maximum and minimum weights, tmax represents the
maximum number of iterations, and t is the current num-
ber of iterations. When the value of ω is too small, the
search will gradually fall into the local optimum. When
the value of ω is larger, the global search ability is stron-
ger. Therefore, according to this dynamic method, the par-
ticles can be better at the global optimum status. First,
initialize the population of particles, set the initial position
and initial speed of the particle population randomly, and
set the number of populations to N (the setting of p and q
in the ARMA model by particle swarm). After many
experiments, it is found that the initial set number of pop-
ulations has no great influence on the iterative results of
particle swarm optimization. Therefore, in order to sim-
plify and save the iteration time, this paper chooses the
number of populations N = 50, for the selection of learn-
ing factors c1, c2, generally c1 = c2 = 2.

3.3. Determination of Fitness Function. For a time series
model, if you want to evaluate the pros and cons of the com-
bined model, you need to judge the accuracy of the model’s
prediction results. The higher the accuracy of the prediction,
the more reasonable the model is. In the actual electricity
consumption forecast, usually for the observable time series,
model according to its part and use the remaining part of the
data to verify. If the difference between the predicted value
and the true value is small, it means that the model is more
accurate. Otherwise, it means that the model has a large error
and needs to be remodeled. Therefore, the difference between
the predicted value and the true value can be used as a crite-
rion for judging whether the model is correct. Therefore,
according to this criterion, the square sum of the difference
between the predicted value and the actual value is estab-
lished. The smaller the value change obtained, the more
appropriate the model, which is defined as

Z = 〠
N

i=1
y∧ ið Þ − y ið Þ½ �2, ð8Þ

where ŷðiÞ is the predicted value and yðiÞ is the actual value.
According to formula (8), the fitness function can be

constructed:

f xð Þ = 1
Z
: ð9Þ
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It can be seen from formula (9) that the smaller the
change value Z, the more ideal the predicted effect. When
Z = 0, it means that the ARMAðp, qÞ model is the best
prediction model, and the prediction effect is the best.
Therefore, the above-mentioned Z value can be used as a
criterion function for judging the pros and cons of the
model, and the fitness function curve established according
to the rule of searching for extreme values of the particle
swarm algorithm can well represent the entire algorithm
iteration process.

4. ARMA-SVR Model

4.1. ARMA Fitting. Time series model research is based on
linearity. Usually in statistics, a set of random variables X1,
X2,⋯, Xt ,⋯ arranged in time is often used to represent a
time series of random events, abbreviated as fXt , t ∈ Tg or
fXtg. When the system response Xt at time t is not only
related to its own value at the previous time but also related
to the interference before entering the system, then we can
define this system as an autoregressivemoving average system,
and its mathematical model is recorded as ARMAðp, qÞ:

where the real parameter φið1 ≤ i ≤ nÞ is the autoregressive
coefficient, the real parameter θ jð1 ≤ j ≤mÞ is the moving
average coefficient, and fεtg is the white noise sequence. If
φ0 = 0, this model serves as a centralized ARMAðp, qÞmodel.
In particular, when q = 0, the ARMAðp, qÞ model becomes
the ARðpÞ model. When p = 0, the ARMAðp, qÞ model
becomes the MAðqÞ model. The construction of the above
model mainly includes the following steps:

Step 1. Data preprocessing. Due to the characteristics of the
ARMA model, we need to preprocess the current time series
before modeling, so that the data is in a stable trend, and
then, the next forecast can be made. This requires us to use
the differential method to perform differential processing
on the data from the first order to obtain the comparison
result of the initial data and the first-order difference as
shown in Figure 2. The data is finally in a stable state.

Step 2.Model the order. In this paper, particle swarm optimi-
zation is mainly used for self-adaptive optimization. To fur-
ther determine the self-regression order p and sliding
average number of items q in the ARMA model, this process
involves ensuring that the particles reach a global optimal
solution. Therefore, the exhaustive method is used to verify
the results.

Step 3. Parameter estimation. The commonly used parame-
ter estimation methods mainly include the least square
method, moment estimation method, and maximum likeli-
hood estimation method. Each of these methods has its
advantages and disadvantages. Generally, we use the
moment estimation method for low-order models, and the
calculation of the maximum likelihood estimation method
is too complicated. Therefore, this paper adopts the least
square method with higher accuracy and wider application
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Figure 2: Comparison of initial data distribution and first-order difference.

xt = φ0 + φ1xt−1+⋯+φpxt−p + εt + θ1εt−1 + θ2εt−2 ⋯ +θqεt−qφp ≠ 0, θq ≠ 0,

E εtð Þ = 0, Var εtð Þ = σ2ε , E εtεsð Þ = 0, s ≠ tE xsεtð Þ, = 0, ∀s < t,

(
ð10Þ
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and directly calls the armax function in MATLAB to esti-
mate the parameters.

Step 4. Test the model. For the test of the ARMA model,
we generally check the residual series by the white noise
test according to the theoretical method, but the actual
calculation process of the model is very cumbersome, so
the test of the rationality of the model is passed. The
final predicted value is compared with the actual value.
If the model is established, the model needs to be
remodeled.

4.2. SVR Concept. The support vector machine was initially
mainly used in linear problems such as binary classification,
and the sample points were divided into two parts as much
as possible by finding a hyperplane. A model that is often
used in the problem of SVM vector regression is the SVR
model [21], so the core technique of SVM is also applicable
to the SVR model. After raising the dimensionality of the
data to a high-dimensional space, a linear decision function
is constructed. Through this decision function, we can realize
the linear regression of the equation and replace the non-
linear part of the equation with the kernel function to
solve the problem between the nonlinear regression and
the dimension [22].

Set a training set D of sample data:

D = x1, y1ð Þ, x2, y2ð Þ, x3, y3ð Þ⋯ xn, ynð Þf g, yi ∈ R: ð11Þ

In the above data set, by mapping x to the high-
dimensional feature space through a nonlinear mapping
function ϕðxÞ, this regression equation can be written as

f x, yð Þ = ω∙ϕ xð Þ + b: ð12Þ

In the formula, ω is a constant vector, which determines
the direction of the hyperplane, and b is the displacement,
which determines the distance between the hyperplane and
the origin.

4.3. Regression Model Algorithm. The SVR model has a
regional “spacing zone” boundary at each end of the linear
function. Samples falling within this range do not need to
calculate the loss but only need to calculate the loss value
outside the boundary. Therefore, the purpose of the appli-
cation of the SVR model for regression is mainly to put
the sample distribution within the deviation range ε as
much as possible and describe the SVR model by formulas
(13) and (14):

min
w,b

1
2 wk k2 + C〠

n

i=1
f xið Þ − yij j

s:t: f xið Þ − yij j ≤ ε:

ð13Þ

In the formula, C represents the penalty coefficient,
which is generally a constant. By introducing the slack

variables ξ and ξ‘, then this formula can be transformed
into

min
w,b,ξi ,ξ‘i

1
2 wk k2 + C〠

n

i=1
ξi + ξi′

� �
, ð14Þ

s:t: f xið Þ − yi ≤ ε + ξi

yi− f xið Þ ≤ ε + ξi′

ξi ≥ 0:ξi′≥ 0, i = 1, 2⋯ , n:
ð15Þ

Figure 3: Intelligent meter data acquisition device.
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Figure 4: Trend chart of original power consumption of weekly
load.
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According to the above problem, the Lagrangian equa-
tion can be established and the dual problem can be
solved very well.

f xð Þ = 〠
n

i=1
αi′− αi

� �
ϕ xið ÞTϕ xj

� �
+ b: ð16Þ

In the above formula, αi′ and αi are both Lagrange
multipliers.

4.4. SVR Residual Correction. Since the initial original data is
randomly distributed, the residual of the ARMA model
contains some other random items with interference infor-
mation when it is generated. In order to correct and optimize
the residual generated by the ARMA model, we input it
into the SVR regression modeling which is performed in
the model. The residual optimization modeling steps of
ARMA-SVR are as follows:

Step 1. Input a training set D in the SVR model:

D = x1, y1ð Þ, x2, y2ð Þ,⋯, xn, ynð Þf g, yiϵR: ð17Þ

In the above formula, the time node value corresponding
to x is used as input; the residual value of SVR model correc-
tion corresponding to y is used as output. By mapping a
kernel function into a high-dimensional space, this article
uses the most commonly used Gaussian kernel function in
the form

ϕ xð Þ = exp − x − xck k2
2σ2

� 	
: ð18Þ

In the formula, xc is the center of the kernel function
and σ is the width parameter, which controls the radial
range of the function. According to the regression equation

f ðxÞ = ½ω, x� + b, the sample sequence F = ð f1, f2,⋯, f n+mÞ
can be defined. The training fit data is FT = ð f T1, f T2,⋯,
f TnÞ. The forecast data is FP = ð f P1, f P2,⋯, f pmÞ.

Step 2. There is a setting for the parameters and deviation
range of the SVR model. According to the kernel function
equation defined in the previous step, when the center of
the kernel function xc is very close to the value of x, then
the value of the kernel function is 1. When xc is far from x,
the value of the kernel function is 0. According to experience,
the parameter value of the penalty coefficient is 0:01 ≤ C ≤
1000. The value range of the insensitivity coefficient ε is
0:01 ≤ ε ≤ 1. Choose the mean square error (MSE) of the
calculation result as the fitness function. Use the PSO algo-
rithm to iteratively optimize the penalty coefficient C and
the insensitivity coefficient ε in the SVR model. Then, find
the optimal parameters to predict and correct the residual.

Step 3. Calculate the residual error of the sample after
data training based on the established ARMA model
ET = F − FT . From the start time of the residual sequence,
train 70% of the data in the residual sequence and use the
regression prediction method of the SVR model to predict
the remaining 30% of the data to obtain a new residual
sequence EP .

Step 4. Obtain the final short-term electricity consump-
tion load forecasting sequence FP ; then, the ARMA-
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Figure 5: First-order difference curve of weekly load data.

Table 1: Optimization results of the ARMA model.

Number of iterations 1 2 3 4 5 6 … 50

Autoregressive order p 3 3 3 4 4 2 … 2

Moving average coefficient q 7 6 6 6 6 7 … 7
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SVR combined model for residual forecasting expres-
sion is

FP = FP + EP: ð19Þ

5. Experimental Research on Short-Term
Electricity Consumption Forecast

5.1. Electricity Data Collection and Access. For the power
load forecasting system, different structured data and

unstructured data should be collected from an important
aspect of the system—the data collection layer. Once the
data center is configured, the data is automatically col-
lected to the cloud. As shown in Figure 3, the user’s load
data is collected through a trigger-type smart meter. This
type of smart meter generally uses the HT5019 chip as
the measurement chip, and the collection frequency is
generally 15 minutes. It can be connected with LORA,
4G, Wi-Fi, etc. Other submeters, terminals, and servers
are connected to give full play to the role of the data
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Figure 6: The relationship between evolutionary algebra and objective function.
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Figure 7: Comparison of the ARMA model predicted value and actual value trend.

8 Wireless Communications and Mobile Computing



collection layer and then actively upload the collected load
power data to the cloud. The power load forecasting sys-
tem obtains electricity consumption information mostly
by using the electricity consumption, voltage value, current
value, real-time power, etc. collected by smart meters. By

querying the weather port, it can also obtain data informa-
tion about weather, temperature, and seasons.

The research object of this paper selects the electricity
load data of 210 residents in a residential area in Guangdong
Province to conduct experiments. Through the method of

10 15 20 25 30
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0 5

Figure 8: Comparison between predicted and actual residual values of SVR model.

Table 2: Load forecasting results of the PSO-ARMA-SVR combined model.

Time
Actual weekly
load (kWh)

ARMA predictive model SVR predictive model
PSO-ARMA-SVR combined

forecasting model
ARMA predictive

value (kWh)
Generated residual

values (kWh)
Residual correction

value (kWh)
Combined

forecast (kWh)
Relative error
percentage

1 10311.97 9775.45 -536.52 -590.44 10365.89 0.52%

2 14413.53 18795.08 4381.55 4098.29 14696.79 1.97%

3 10588.25 7710.82 -2877.43 -2679.85 10390.68 1.87%

4 12814.41 13623.62 809.21 477.94 13145.67 2.59%

5 12142.79 12155.78 12.99 175.51 11980.27 1.34%

6 14913.20 16061.39 1148.19 1208.36 14853.04 0.40%

7 15691.73 16630.35 938.62 745.64 15884.71 1.23%

8 17136.46 17815.82 679.36 664.36 17151.45 0.09%

9 17461.99 16473.99 -988.00 -1131.84 17605.82 0.82%

10 14380.14 12203.63 -2176.51 -2150.11 14353.74 0.18%

11 11806.71 7565.42 -4241.29 -3983.82 11548.42 2.19%

12 11219.57 10607.95 -611.62 -362.13 10970.08 2.22%

13 13592.16 14522.68 930.52 796.68 13726.00 0.98%

14 14434.91 15302.29 867.38 729.56 14572.74 0.95%

15 14059.93 13014.50 -1045.43 -1035.21 14049.71 0.07%

16 13227.41 13906.55 679.14 660.36 13246.19 0.14%

17 10718.82 9663.97 -1054.85 -1429.69 11093.67 3.50%

18 5818.27 3018.05 -2800.22 -2768.48 5786.61 0.54%

19 6151.67 6240.11 88.44 96.57 6143.54 0.13%

20 5956.74 6811.51 854.77 160.82 6050.63 1.58%

21 5859.83 5140.24 -719.59 -751.24 5891.48 0.54%

22 4732.72 4440.30 -292.42 -290.90 4731.20 0.03%

23 5868.39 6933.94 1065.56 1106.77 5827.17 0.70%

24 5754.71 7310.60 1555.89 983.47 5851.92 1.69%

25 5747.34 6525.16 777.82 689.01 5836.07 1.54%

26 5164.24 5158.25 -6.01 -135.80 5294.03 2.51%

27 6081.69 7066.28 984.59 597.73 6168.53 1.43%

28 5793.72 6227.32 433.60 153.39 5773.93 0.34%
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ARMA modeling and SVR residual correction method, we
combined the forecast of the work load data of 103 weeks
from 2016 to 2017.

This experiment was completed in the simulation envi-
ronment of MATLAB 2018a. After the required data was
collected, the data was reasonably selected by analyzing the
distribution law of the sample data. At the same time, abnor-
mal points should be processed according to the previous and
next moments. Data with a large difference is regarded as an
abnormal point. For missing data, replace the average of sev-
eral similar daily load data based on the periodic characteris-
tics of electricity usage. Further build the particle swarm
algorithm to find the optimal parameters to build the ARMA
model for load forecasting. Finally, the difference between the
predicted data and the true value of the verification set data is
made to obtain the predicted error value. The residual
sequence is introduced into the SVR vector regression as
the input variable, and the residual correction value of the
ARMA model is obtained. Finally, the sum of the ARMA
predicted value and the SVR residual correction value is used
as the final weekly load forecast result. The combined predic-
tion model was compared with a single ARMA model, SVR
model, and SVR-ARMA model, and the performance
evaluation results of the combined prediction model were
obtained.

5.2. ARMA-SVR Model Experimental Results and Analysis
Based on the Particle Swarm Algorithm. The ARMA model
has the characteristics of stability when predicting. Usually,
we need to test the stationarity of the data first. If the original
data is in a random distribution state, then the data must be
processed by multiorder difference until it is in a stable state.
Referring to electricity usage rules, Figure 4 shows the weekly

load data distribution map of a residential area from 2016 to
2017. By observing the data distribution status of the map, it
can be seen that the data has a large range of changes and pre-
sents a periodic distribution law.

By performing the first-order difference change on the
data as shown in Figure 5, it can be observed that its distribu-
tion fluctuates roughly above and below the mean. After
passing the ADF test, it can be determined that the time
series is first-order difference stationary.

The optimal model results obtained after 40 iterations of
the particle swarm algorithm are shown in Table 1.

It can be concluded from Table 1 that the final region of
the iteration process is stable, and the curve of evolutionary
algebra and objective function is shown in Figure 6.

As can be seen from the above figure, as the evolutionary
algebra gradually increases, the optimal value of the objective
function gradually tends to be in a stable state, indicating that
the solution at this time is the optimal solution; then,
ARMAð2, 7Þ can be used as the optimal model to make
predictions.

The optimal ARMAð2, 7Þ model obtained after applying
the particle swarm to determine the order is used to simulate
the electricity consumption data of 103 households from
2016 to 2017, select 70% of the sample data for training,
and use 30% of the data as the verification set; its simulated
trend chart is shown in Figure 7.

The SVR model is established based on the residual data
of the ARMA prediction results, and the input data is divided
into two parts using the hold-out method. One part is used as
the training set (about 70%), and the other part is used as the
test set (about 30%) for verification. The SVR model predic-
tion value and actual value trend comparison chart of the
residual data is shown in Figure 8.
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The PSO-ARMA-SVR combined forecasting model pro-
posed in this paper is used to predict the weekly load data of
103 residents in a community. The forecast results are shown
in Table 2. It can be seen from the table that the residual cor-
rection value in the SVR prediction model is the correction
result of the residual value generated by the ARMA model,
and the prediction value of the combined model is the sum
of the prediction value of the ARMA prediction model and
the SVR residual correction value. It can be seen from the
table that the prediction error of the combined model is
smaller than that of the single ARMA model. The maximum
error is 374.85 kWh, and the minimum error is only
1.52 kWh, indicating that the combined prediction model is
more effective.

5.3. Comparative Analysis. In order to verify the prediction
accuracy of the PSO-ARMA-SVR combined prediction
model used in this article, the prediction values of the three
models of ARMA, SVR, and SVR-ARMA were established
for comparison. The initial values and parameter settings of
each model were compared with PSO-ARMA-SVR. The
ARMA-SVR models are all the same, and the prediction
comparison results are shown in Figure 9.

Through the comparison and analysis of the prediction
results of the four prediction models in the figure, it can be
seen that the PSO-ARMA-SVR combined prediction model
proposed in this paper has the highest degree of agreement
with the actual value, indicating that the model has good fit-
ting performance. In order to test the model, according to the
quality, the error value of the fitting was studied, and the
result is shown in Figure 10.

From the comparison of the four types of prediction
errors in the figure, it can be seen that the prediction effects
of the ARMA model and the SVR model are relatively poor,

and the prediction accuracy of the combined prediction
model is significantly higher than that of the single prediction
model. The error fitting curve of the PSO-ARMA-SVR com-
bined prediction model proposed in this paper tends to be 0,
and the prediction deviation drops to 0.03%. The 28 periods
of data in the figure are compared to the average prediction of
each period of the combined model SVR-ARMA. The perfor-
mance increased by 0.95%, indicating that the combined
model constructed in this paper is more effective for load
forecasting and the forecasting effect is relatively better.

6. Conclusion

With the increasing demand for electricity consumption in
cities, the state grid has become increasingly in demand for
accurate electricity consumption distribution and dispatch.
Based on the traditional ARMA prediction model, this paper
establishes a PSO-ARMA-SVR combined prediction model
combining linear and nonlinear features to achieve accurate
prediction of short-term electricity consumption in residen-
tial areas. The ARMA model is constructed by building a
particle swarm algorithm. A newmethod of order determina-
tion, by optimizing the parameters C and ε in the SVR, real-
izes the correction of the ARMA prediction residual value in
the SVR regression prediction model, improves the accuracy
of the prediction model, and reduces the prediction deviation
to 0.03%. The PSO-ARMA-SVR model proposed in this
paper is evaluated based on the prediction results and the
percentage of data errors after data fitting, which proves that
the method has outstanding performance in load forecasting
and provides a new idea for future research, having good
application prospects.

Data Availability

The data of historical electricity load of a residential district
in 2016~2017, which is used to support the findings of this
study, have not been made available because the data involve
the principle of commercial confidentiality.
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