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In recent years, service isolation and service miniaturization have become very popular. The large services are dismantled into
multiple low-cost and simple small services to improve the scalability and disaster tolerance of the entire services. A service
network composed of unmanned aerial vehicles (UAVs) and MEC servers is proposed in this paper, which aims at decoupling
multiple services of the SWIPT-MEC network. In this network, UAVs take charge of energy transmission and calculation task
scheduling and MEC servers are focused on task calculation. To meet the resource requirements of the ground nodes (GNs) in
the network, we designed a distributed iterative algorithm to solve the resource allocation decision problem of GNs and used the
modified expert bat algorithm to complete the UAV’s trajectory planning in a two-dimensional space. The results show that the
algorithm can formulate a more fair resource allocation strategy, and its performance is improved by 7% compared with the
traditional bat algorithm. In addition, the algorithm in this paper can also adapt to changes in task length and has a certain
degree of stability.

1. Introduction

In the past few decades, the Internet of things (IoT) technol-
ogy has attracted widespread attention from the academic
and commercial circles [1, 2]. It is worth mentioning that
the communication technology in IoT is one of the current
research hotspots [3]. Generally, devices in IoT have low
computing ability and energy storage. Most of them cannot
perform high-intensity calculations without external auxil-
iary equipment [4]. Meanwhile, these devices do not have
enough energy to undertake the massive data interaction
requirements in the intelligent age [5].

Cisco estimates that in 2023, at least 8.7 billion commu-
nication devices are connected to the 5G networks [6]. In
addition, the data transmission rate in the 5G networks
can reach up to 10Gb/s and the transmission success rate
can be maintained at 99.99999% [7]. To support all devices
to enjoy real-time and high-throughput services, researchers
and engineers proposed a simultaneous wireless information
and power transfer- (SWIPT-) based mobile edge computing
(MEC) networks.

2. Related Work

MEC was proposed by the European Telecommunications
Standards Institute (ETSI) to improve the performance of
cloud computing services. It has higher quality of service
(QoS), lower cost delay, and faster calculation speed [8, 9].
Compared with mobile cloud computing (MCC), the signal
transmission distance between the MEC server and the
access device is shorter, which can effectively reduce the
transmission energy consumption of the devices [10]. Unlike
the uplink, the SWIPT technology allows the networks to
return the calculation result and energy to the device simul-
taneously via the downlink. Furthermore, this technology
can make up for the problem of excessive attenuation in tra-
ditional long-distance wireless power transfer (WPT) [11].
There are currently two mainstream SWIPT transmission
modes: time switching (TS) and power switching (PS).
Devices that use the TS mode must have a time-division
receiver and those that use PS the mode must equip a
frequency-division receiver [12]. Although the energy trans-
mitted by the MEC server is sufficient for devices close to the
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base station (BS), it is unsatisfactory for devices that are
always at the edge of the MEC service range. Due to insuffi-
cient power, the device will be unexpectedly out of service,
which is fatal to human-embedded devices or safety detection
devices. To make up for this shortcoming, some scholars pro-
posed device-to-device (D2D) networks based on SWIPT
[13–16]. This network allows devices with sufficient energy
to transmit energy to insufficient ones. However, this method
requires each device to be equipped with additional sending
and receiving equipment, which causes unnecessary waste of
funds. Therefore, it is necessary to design a network that can
solve this problem in a low-cost way.

In recent years, more and more scholars have begun to use
unmanned aerial vehicles (UAVs) to assist communication
[17–19]. Its unique advantages of cheapness and flexibility
enable the networks to provide better services to devices at a
very low cost. UAVs are divided into two types: fixed-wing
UAVs and rotary-wing UAVs. With its vertical takeoff and
hovering functions, many scholars have integrated rotary-
wing UAVs into their research [20–22]. At the same time,
the variability and flexibility of the rotary-wing UAV’s trajec-
tory allows the networks to be applied to various scenarios
with insufficient BSs (e.g., disaster areas, mountainous areas,
and densely populated cities) [23]. Therefore, in this paper,
we attempt to introduce a UAV into the SWIPT-based MEC
networks of densely populated cities to improve the QoS of
the networks and avoid waste of funds.

Compared to fixed BSs, UAVs have a higher probability
of establishing better quality communication links with
ground nodes (GNs): line-of-sight (LOS) links [24]. Refer-
ence [25] assumes that the link between the UAV and GNs
is LOS links and the UAV is equipped with a distributed
charging device, which can charge multiple GNs at the same
time. Both LOS and non-LOS (NLOS) links are considered
in [26]. Moreover, the authors assume that a UAV works
in urban areas and proposes a hybrid offline-online method
to maximize the transmission rate of drones. Reference [27]
improves the fading model of the LOS link, so that the
model can more accurately express the link in the environ-
ment with large obstacles.

The SWIPT-based MEC networks has two main services:
computing services and energy services. In terms of comput-
ing services, a UAV can be used as a mobile MEC server to
meet the computing needs of GNs. In [28], a rotary-wing
UAV equipped with an MEC server is used to provide
charging and computing services for GNs in a time-
division multiple access (TDMA) mode. And the authors
design the UAV flight trajectory to minimize the energy
consumption of the UAV. Although reference [29] also
regards a UAV as a mobile BS, it uses the OFDMA technol-
ogy instead of the TDMA technology, so that each GN can
simultaneously enjoy UAV services. Likewise, reference
[30] uses the ant colony system (ACS) algorithm to design
the trajectory of the rotary-wing UAV. It is undeniable that
the service capability of the MEC server attached to the UAV
is far from that installed on the base station. The idea of let-
ting multiple UAVs cooperate to undertake the computing
tasks of GNs was proposed by [31]. Due to not requiring
BS, this method is indeed very suitable in the disaster area.

But this method will inevitably cause waste of BSs already
installed in each cities.

In terms of energy services, a UAV can assist the SWIPT-
based MEC networks by acting as a relay node. To overcome
the huge fading problem with the target node, reference [32]
proposes a method for a UAV to relay energy to bypass large
obstacles. Reference [33] is to relay energy through the hover-
ing UAV to reduce the overall energy consumption of the net-
works. However, this relay method will cause two consecutive
attenuations, resulting in that the energy received by the GNs
is much less than the energy emitted by the source. In [34–36],
the self-collecting function is added to the UAV, so that it can
supplement the energy that needs to be forwarded during the
relay process, thereby indirectly increasing the energy received
by the GNs. But this method is still based on the model of two
consecutive attenuations and does not change the essence of
the problem.

In addition, although many of those papers mentioned
above have studied the flight trajectory of UAVs, most of
them assume that GNs are stationary. This is obviously not
in line with the reality. Therefore, the SWIPT-based MEC
networks in areas where communication is in malfunction
in the city need a better solution to solve the shortage of
computing services and energy services.

A SWIPT-MEC service network is proposed in this
paper that separates computing and energy services to solve
the two service problems mentioned above. And GNs in this
network are divided into three categories: vehicle-mounted
equipment, human equipment, and household equipment,
all of them moved randomly. We assume that GNs can sense
the location of the UAV and actively initiate a connection.
To solve the problem of time slot allocation and UAV flight
trajectory, a distributed iterative algorithm and an expert bat
algorithm are proposed. The solution can reuse a large num-
ber of MECs in the city, thereby saving improvement costs
and making service points flexible. The specific contribu-
tions of this paper are as follows:

(i) Compared to the traditional MEC networks, a ser-
vice cluster network composed of multiple UAVs
and one MEC has been proposed in this paper. In
order to make the MEC server focus on completing
computing tasks, the network allows UAVs to
schedule computing tasks and formulate energy dis-
tribution strategies. In addition, MEC uses the
orthogonal frequency-division multiple access
(OFDMA) technology to allocate the spectrum to
the UAV, allowing it to communicate with GNs in
the time-division multiple access (TDMA) mode
through this spectrum

(ii) Since user information is frequently changed, if the
networks apply a centralized algorithm, it will inev-
itably spend a lot of time to update the data. But the
distributed algorithm cannot know global informa-
tion. Therefore, this paper adopts a semidistributed
algorithm and the UAV needs to forward environ-
mental information in the area that it is responsible
for. For each GN, the decision information of other
GNs can be used as environmental information
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(iii) In order to plan the UAV path more accurately, we
use the bat algorithm to dynamically select the best
location point within the maximum range of
motion. According to the model in this paper, an
elite bat colony is introduced to further optimize
the algorithm

(iv) Through the analysis of the results, the distributed
iterative algorithm proposed in this paper can main-
tain stable fairness after the environment is stable.
At the same time, the bat algorithm proposed in this
paper can improve the performance of the networks
by 7% compared with the traditional algorithm. In
addition, in the results part, the sensitivity of each
parameter of the system is analyzed. The results
show that the algorithm in this paper can adapt well
to the change of task length, which enables the net-
works to better adapt to changes in the environment

The rest of the paper are structured as follows. In Section
3, the system model and problem formulation are discussed.
In Section 4, the path planning algorithm for the UAV is
designed. In Section 5, the distributed iterative algorithm is
used to solve the time allocation problem of GNs. Numerical
results and analysis are presented in Section 6. Finally, Sec-
tion 7 makes a summary of the paper.

3. System Model and Problem Formulation

The SWIPT-based MEC networks in this paper within a sin-
gle base station in areas of communication paralysis are
shown in Figure 1. Its service range is RMEC = ½1 km × 1 km
� [37], and divide RMEC into M parts; each part is assigned
a UAV for cruise work, defined as RMEC

m . This network con-
sists of one MEC server, N GNs, and M UAVs. The BS’s
MEC server with multiple antennas is equipped at height
hMEC, while the working height of UAV is at HUAV. The
MEC server can simultaneously receive the GN calculation
tasks relayed by each UAV and return the calculation results
to the GNs through the UAV. UAVs and GNs are only
equipped with a full-duplex (FD) antenna and communicate
in the MEC networks by TDMA. At the beginning of each
slot, GNs will actively send a connection request to the
MEC server. After that, the communication address and
some basic information in the GN request will be forwarded
to the UAV by the MEC server. Finally, GNs will establish a
communication link with the corresponding UAV.

The UAV in the networks can not only relay computing
tasks but also charge GNs. We assume that the UAV is a
mobile energy source so that the energy received by GNs is
directly obtained from the energy source, rather than being
relayed by the UAV. However, the portable energy of UAV
is limited and they cannot work for a long time without
charging. Therefore, this paper innovatively installs the
UAV charging pile at the hsUAV of the BS and allows the
UAV to have an autonomous navigation function. When
the UAV senses that its power is insufficient, it will automat-
ically design a trajectory to return to the charging pile and
continue to work after replacing the battery. With the popu-

larization of 5G in the future, base stations will become
denser [38] and UAV charging will become more and more
convenient. Besides, the interference between different
UAVs and between different GNs can be ignored [39]. The
energy consumption of transmitters, receivers, and opti-
mized calculations is also not considered [40].

3.1. Mobile Model of GNs and UAVs. We assume that the
total working time of the networks is T and divide it into
NT time slots. The GNs on the ground are divided into three
categories: fixed in position, moving with humans, and
mounted on cars, expressed as GNH , GNH , and GNC ,
respectively. GN moves continuously in the plane without
interruption. To simplify the analysis, this article only sam-
ples the position of the GN at the beginning of the time slot.
The maximum moving speed of the GN belonging to cate-
gory GNH is VH and GNC is VC , and the remaining GNs
are always stationary. Similarly, the maximum speed of the
UAV is Vmax. In the three-dimensional space of the
SWIPT-based MEC networks, both GNs and UAVs perform
a two-dimensional motion in their respective horizontal
planes. The specific motion model is shown in Figure 2. At
the end of each time slot, GNs and UAVs will randomly
select a point in circle O as the starting position of the next
time slot. This point is determined by two random numbers.
The first is the angle θ with the horizontal axis X. The sec-
ond is the length d of the movement.

3.2. Binary Computation Offloading Mode. The computa-
tional offloading strategy of GNs under the binary offloading
mode will be discussed in detail in this section. In this mode,
the task is not required to be split and has a wider scope of
application. Each GNs in the network will make decisions
based on its energy storage and uplink energy consumption.
The specific decision plan is as follows:

bn =
0, ELC

n ≤ ER
n and E

LC
n ≤ EUL

n

1, else

 
, ð1Þ

where ER
n is the GN remaining energy, ELC

n is the energy con-
sumption of local computation, and EUL

n is the upload
energy consumption. Let B = fbn ∣ bn ∈ f0, 1g∀n ∈N g repre-
sents the offloading decision of each GN. When bn = 1, GNs
use local calculation. Otherwise, GNs will offload calculation
to the MEC server. GNs select local calculation only when
the local calculation energy consumption is lower than the
transmission energy consumption and the local remaining
energy.

3.3. Mobile Model of GNs and UAVs. There are both LOS
attenuation and NLOS attenuation during the operation of
the UAV. However, since the occurrence probability of
NLOS is much lower than that of LOS [41, 42], the attenua-
tion problem of NLOS can be ignored. Therefore, the chan-
nel attenuation between UAVs, MEC, and GNs can be
expressed as [43] follows:

hEn rð Þ = kLrα
L , ð2Þ
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where r is the distance between the UAV and the communi-
cation target. kL is the intercepts of the LOS and αL is the
path loss exponents for LOS.

3.3.1. Energy Harvesting. Since the transmission time of the
downlink is usually short, it is inefficient to use it to transmit
energy. The uplink is more suitable for energy transmission
because its transmission time is much longer than the one of
the downlinks. Thus, the FD-SWIPT technology [44] is
introduced to the networks so that GN can obtain energy
from the UAV while offloading computing tasks. The energy
collected by GNs can be defined as

EEH
n = bnαnT

GN
n PUAV

m hEn rð Þ, ð3Þ

where αn is the energy conversion rate of the receiving
equipment used by GNs and PUAV

m represents the power of
the transmitter equipped with the UAV. To simplify the
model, the energy consumption of the receiving device is
ignored in this network [45]. TGN

n is the length of the time
slot allocated to GN.

3.3.2. Local Computing. The GNs that select local calculation
will no longer upload any calculation tasks to the MEC
server, and all calculation tasks are completed locally. In
order to prevent the locally calculated GNs from being
exhausted, the UAV will also transfer energy to such GNs.
Assume that the CPU of GNs needs X revolutions to calcu-
late one bit and the task length is D bits. Then, the local
computational energy consumption of each GN can be
expressed as

ELC
n = 1 − bnð ÞDnXκ

LCFnLC
2,

FnLC =
DnXNT

T
,

ð4Þ

where FLC
n is the calculation frequency of local calculations

and the meaning of κLC is the correlation coefficient of the
CPU of GNs. We assume that the task can be undertaken
by GNs.

3.3.3. Computing Offloading. In each time slot, the UAV will
dynamically allocate time TGN

n to the GNn within its service
range. Similarly, the UAV also needs to transfer the received
tasks to the MEC server at the BS in this time slot. BS will
use different antennas to connect to each UAV, so there is
no need to worry about conflicts between UAVs. However,
conflicts between GNs cannot be ignored, so we use a
dynamic TDMA [46] scheme shown in Figure 3 to provide
services for GNs. Also, we assume that the length of the
returned calculation result is much smaller than the calcula-
tion task, so the downlink transmission time can be ignored.
Then, we have.

C2 : 〠
n∈N

TGN
n + TUAV

m = T

NT
, ∀m ∈M,∀n ∈ RMEC

N , ð5Þ

MEC server

Part 1
Part m Part

UAV
GNs

Figure 1: Illustration of SWIPT-based MEC networks with UAV assistance.

θ

d

θ

d

UAV
GN

Figure 2: Illustration of the mobile model of GNs and UAVs.
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where TUAV
m is the time required for the UAV to relay the

computing task to the MEC server and can be denoted as

TUAV
m =

∑n∈RmMECDn

Blog2 1 + PUAV
m hEn rð Þ/σ2

� �� � : ð6Þ

Here, σ2 represents the power of the Gaussian white.
Thus, the transmission energy consumption of the UAV

can be defined as

EUAV
m = PUAV

m TUAV
m : ð7Þ

GNs in the computing offloading mode need to offload
their computing tasks to the UAV and forward them to
the MEC server for computing. In this process, the transmis-
sion rate of the GN transmission task is an identity, as
shown below

Dn

TGN
n

= Blog2 1 + PUL
n hnE rð Þ/σ2� �� �

, ð8Þ

where B represents the bandwidth of the channel occupied
by the transmission task. After some simple mathematical
transformations, the transmission power of GNs in the
uplink can be written as

PUL
n =

σ2 2Dn/TGN
n B − 1

� �
hnE rð Þ : ð9Þ

Since the transmitter power of GNs in the networks is
limited, PUL

n must meet the following constraints

C3 :
σ2 2Dn/TGN

n B − 1
� �

hnE rð Þ ≤ Pmax
n : ð10Þ

Here, Pmax
n represents the maximum transmission power

that the transmitter can withstand. C3 can also be written as

C3 :
Dn

Blog2 1 + Pmax
n hEn rð Þ/σ2

� �� � ≤ TGN
n : ð11Þ

According to (9), the energy consumption of GNs when
transmitting calculation tasks can be written as

EUL
n =

bnT
GN
n σ2 2Dn/TGN

n B − 1
� �
hnE rð Þ : ð12Þ

3.4. UAV Flight Trajectory Design. The flight trajectory
design of the UAV should consider not only the overall sit-
uation of the current time instant but also the positions of
the previous time. It must be ensured that the service period
of each GN is approximate. A fair and high-quality service
can ensure that the GNs served by it maintain sufficient
power. We believe that the UAV can establish a long-term
connection with MEC and GNs until it returns to the charg-
ing pile. The UAV can sense its own remaining power and
return to the charging pile when the power is low. When
the UAV is charging, another fully charged UAV will con-
tinue to complete the remaining work.

According to the survey in [47], we conclude that the
flight energy consumption of the rotary-wing UAV used in
this paper can be modeled as

EV
m Vtð Þ = 1

2
MmV

2
m, ð13Þ

where Mm means the weight of the UAV and Vm represents
the UAV flight speed with the maximum value of Vmax

which can be expressed as follows:

C4 : Vt ≤Vmax: ð14Þ

In addition, the position of the UAV cannot exceed
RMEC
m and the corresponding constraint is written as

C5 : 0 ≤OUT tð Þ, ð15Þ

UAV

GNs

MEC

T

TS1Preparation
Phase (PP) TS2PP TS NTPP

Figure 3: Communication interaction model of each device.
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where OUTð·Þ is an out-of-bounds determination function.
If the UAV is out of the bound, the result of the function
is negative, otherwise, positive. This function can be easily
implemented through programming, so there are no more
explanations here. And the autonomous back-to-home
charging function of the UAV can be realized by the follow-
ing constraints

t =
rMEC
Vmax

� �+
,

C6 : 0 ≤ ER
m − tEV

m Vmaxð Þ,
ð16Þ

where ½·�+ is the round-up function and rMEC represents the
distance between the UAV and the MEC server. t is the pre-
judgment time; the UAV can judge whether it can fly back to
the charging station after t. And ER

m is the remaining energy
of the UAV. Because tEV

m increases monotonically when V
increases, tEV

mðVmaxÞ is the maximum energy required for
the UAV to return to the charging station.

3.5. Utility Function of SWIPT-Based MEC Networks. In this
paper, we aim to maximize the remaining energy of GNs and
UAV energy consumption in each time slot, meanwhile
jointly optimizing the uplink time of GNs and the flight
position of the UAV. We assume that the position of the
UAV in each time slot is ZUAV

m and the specific model of
each time slot can be expressed as

max
ZUAV
m ,TGN

n ,bn
〠
n∈N

EEH
n − ELC

n − EUL
n

� �
− 〠

m∈M
W1E

V
m Vtð Þ +W2E

UAV
m

� �
s:t:C1 : bn ∈ 0, 1f g, ∀n ∈N

C2 ~ C6,

ð17Þ

where W1 and W2 are the weight coefficient used to main-
tain the same order of magnitude of each variable in the
objective function. The position of the UAV is represented
as ZUAV = fZUAV

m ∣m ∈Mg.

4. Algorithm Design for Path Planning

The model in this paper is composed of two kinds of agents.
The GNs have no way to know the location of the UAV in
the next time slot; it can only formulate a strategy based on
the environment of the current time slot. However, the UAV
needs to weigh the overall situation and find the optimal posi-
tion of the next time slot. This section aims at designing an
algorithm for the UAV, and the algorithm design of GNs will
be discussed in the next section. According to the above anal-
ysis, the submodel required in this section can be written as

max
ZUAV
m ,TGN

n ,bn
〠
n∈N

EEH
n − ELC

n − EUL
n

� �
− 〠

m∈M
W1E

V
m Vtð Þ +W2E

UAV
m

� �
s:t:C2 ~ C6:

ð18Þ

However, C2 and C3 in the model are both restrictive con-

ditions for a single time slot. If the algorithm simultaneously
considers the transition of the next time slot and the optimiza-
tion of the next time slot, the complexity of the algorithm will
greatly increase. In fact, in C2 and C3, only hEnðrÞ is related to
the position of the next UAV slot. After slightly modifying
hEnðrÞ, the submodel in this section can be written as

max
ZUAV
m

W3 〠
n∈N

rn − 〠
m∈M

W1E
V
m Vtð Þ +W2E

UAV
m

� �
s:t:C4 ~ C6:

ð19Þ

The specific process will be elaborated in the next section.
Furthermore, in the preparation phase of each time slot, MEC
will sense the location of the GNs and send the GN list of each
area to the corresponding UAV.

Since the position of GNs in this model is constantly
changing, reinforcement learning or convex optimization
theory cannot achieve good results. Therefore, we consider
using the bat algorithm as the basis of the algorithm in this
section. It can find the optimal solution while exploring
the unknown environment. But this algorithm is not capable
of considering multiple time slots jointly. In addition, path
planning is also very important, which can help the UAV
save flight energy. In order to solve those problems, we
introduce the function of path planning and multislot joint
consideration in the objective function part. The formula
of the objective function can be expressed as (20).

The formulas before HnW7r are all converted from the
submodels in this section, where Hn is the magnification
weight coefficient. The heavier weight range is n, and the
specific selection method is shown in Figure 4. For the left-
most hunger GN, its weight Hn value is n. The subsequent
GN’s value of Hn decreases in turn (the Hn of the next hun-
gry GN is n − 1) until Hn reaches the minimum value or the
edge of heavier weight. It is worth mentioning that since

Slot 1 GN 1 GN 2 GNGN n

Heavier weight

Slot 2 GN 1 GN 2 GNGN n+2GN 3 GN 4

Slot t GN 1 GNGN N-n+1GN 2

Slot t + 1 GN 1 GN 2 GNGN n

Hungry

Satisfied

n–1n n/2

n n/2

n–1n n/2

Figure 4: Communication interaction model of each device.
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GNs move randomly, the satisfied GNs may appear after the
hungry GN. In order to ensure that the requirements of each
GN are met, the high weight range will not change when
there are some satisfactory GNs inside.

ObjBm =W3 〠
n∈N

rn − 〠
m∈M

W1E
V
m Vtð Þ +W2E

UAV
m

� �
+W4a Vt −Vmin� �

+W4b Vmax −Vtð Þ
+W5OUT tð Þ +W6 EmR − tEV

m Vmaxð Þ� �
+HnW7r:

ð20Þ

Different from the traditional bat algorithm, we try to
reduce the overall number of iterations by adding efficient
exploration in each iteration. The best bat in each iteration
is regarded as an expert bat with self-intelligence. This expert
bat can use the bat algorithm in a small area to find a better
optimal position to indirectly optimize the movement direc-
tion of the nonexpert bat. The specific algorithm is shown in
Algorithm 1. Although this algorithm is not fair in each time

slot, it is fair in average time because the path of the UAV is
cyclically flying ½h�.

5. Algorithm Design for Time Slot Management

This section mainly solves the optimization problem of the
time occupied by each GNs in each time slot. After separat-
ing the relevant content of this section from the main model,
the following submodels can be obtained as follows

max
bn

〠
n∈N

maxEEH
n −maxEUL

n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P1

− ELC
n

0
BB@

1
CCA

s:t:C1, C2 P1ð Þ, C3 P1ð Þ:

ð21Þ

The separated submodel is split into two parts, one part
optimizes the time variable, denoted as P1, and the other

Input J , Jc: maximum of iterations;
NUMB/NUMCB:Number of bats/child bats;
AB/rB:Sonic loudness/pulse of bat;
αA/αr : Loudness/pulse update factor;
1: Use criterion (20) to find the best bat in the initial environment;
2: fort < Jdo
3: for each bat do
4: Randomly move each bat;
5: Generate a random number P;
6: ifP > rBthen
7: Randomly move this bat;
8: if better than the original then
9: Adopt current position;
10: else
11: Adopt original position;
12: end if
13: end if
14: if better than the better than the optimal bat and P < ABthen
15: Update optimal bat position;
16: AB = αAAB;
17: rB = ð1 − e−α

r tÞrB;
18: end if
19: end if
20: Add NUMCB child bats as the best bat copy;
21: fortc < Jcdo
22: for each child bats do
23: Randomly move child bats;
24: if better than the best then
25: Update the optimal solution;
26: end if
27: end for
28: tc + = 1
29: end for
30: t + = 1
31: end for

Algorithm 1: Expert bat algorithm.
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part optimizes the decision variable. But the hEnðrÞ in C2 and
C3 is related to the location of the UAV, which will make the
bat algorithm reallocate time every time it evaluates the loca-
tion of the bat. So, we consider separating the UAV position
and time in P1 to reduce the complexity of the algorithm.
After taking the logarithm of the objective function, it can
be written as

log EEH
n

� �
= log αnT

GN
n PUAV

m

� �
+ log hEn rð Þ

� �
,

−log EUL
n

� �
= − log TGN

n σ2 2Dn/TGN
n B − 1

� �� �
+ log hEn rð Þ

� �
:

ð22Þ

After removing formulas that have nothing to do with
optimization variables, P1 can be written as

max
TGN
n

WP1αnT
GN
n PUAV

m − TGN
n σ2 2Dn/TGN

n B − 1
� �

s:t:C2, C3:
ð23Þ

The simple process of delogarithmization and merging
the maximum function is omitted here. In order to keep
the two items in the objective function at the same order
of magnitude, we introduce an auxiliary variable WP1. On
the other hand, in the C2 constraint, only TUAV is related
to the UAV position. According to the maximum speed
limit of the UAV, the r of hEnðrÞ in TUAV can be expressed as

r′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 −HUAV
2

q
+ Vmax T

NT


 �2
+ HUAV

2

s
≥ r: ð24Þ

Because hEnðrÞ is inversely proportional to r and TUAV is
inversely proportional to hEnðrÞ, so, C2 can be shown as

C2 : 〠
n∈N

TGN
n + TUAV

m r′
� �

=
T

NT
, ∀m ∈M,∀n ∈ RMEC

m :

ð25Þ

According to TUAV
m ðr′Þ ≥ TUAV

m ðrÞ, it can be known that
the spent time will not exceed the time specified by each

Input: ε: Tolerance error
TG: Number of independent calculations
WC2a

n /WC2b
n : A copy of the auxiliary variable at

each GN
1: forT/NT − TUAV

m − Ttemp > εdo
2: • GNs
3: Update WC2a

n ,WC2b
n according to the received result;

4: fori < TGdo
5: for The change in TGN

n is more than εdo
6: for each GNs do
7: TGN

n − = ΔTGN
n ;

8: end for
9: end for;
10: Update WC2a

n ,WC2b
n ,WC3 with (28), (29), (30);

11: end for
12: Send WC2a

n ,WC2b
n , TGN

n to UAV
13: • UAV
14: WC2a/WC2b = Add and average the WC2a

n /WC2b
n of all GNs in this part;

15: Ttemp =∑n∈N TGN
n

16: Send all GNs’ TGN
n and WC2a,WC2b to each GN;

17: end for

Algorithm 2: Centralized and distributed algorithm of UAV and GN collaboration.

Table 1: Simulation parameters.

Parameters Value

UAV weight (Wm) 9:65 kg
Noise (σ2) 10−13 W
UAV/MEC height (HMEC,HUAV) 100/10m
Bandwidth (B) 106 Hz

CPU correlation coefficient (k0) 10−28

Bit length of the task (D) 1:5 ~ 2Mbit

Operational capability (X) 1000 cycles/bit

Maximum transmission power of GNs (Pmax) 1W
Transmission power of UAV (PUAV) 10W
Maximum speed (Vmax) 50m/s
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endpoint, so the transformation will not affect the next time
slot. Similarly, C3 can also be safely transformed into

C3 :
Dn

Blog2 1 + Pmax
n hEn r′

� �
/σ2

� �� � ≤ TGN
n : ð26Þ

Based on the above analysis, it can be simply concluded
that the constraints of C3 after the transformation are more
stringent than the original one. Besides, to facilitate subse-
quent processing, we decompose the transformed C2 in the
submodel into two constraints.

C2a : 〠
n∈N

TGN
n + TUAV

m r′
� �

≤
T

NT
, ∀m ∈M,∀n ∈ RMEC

m ,

C2b : 〠
n∈N

TGN
n + TUAV

m r′
� �

≥
T

NT
, ∀m ∈M,∀n ∈ RMEC

m :

ð27Þ

This section considers using the KKT algorithm as the
basic algorithm, and the Lagrangian function of P1 can be

written as (21), where WC2a,WC2b,WC3 are the auxiliary
variables introduced and the updated formulas are

WC2a+ = ∇C2a 〠
n∈N

TGN
n + TUAV

m r′
� �

−
T

NT

 !
, ð28Þ

WC2b+ = ∇C2b T

NT
− 〠

n∈N
TGN
n − TUAV

m r′
� � !

, ð29Þ

WC3+ = ∇C3 Dn

Blog2 1 + Pmax
n hEn r′

� �
/σ2

� �� � − TGN
n

0
@

1
A:

ð30Þ

Let ðLP1Þ′ = 0 can be obtained

LP1
� �′ = TGN

n B αnP
UAV
m WP1 + σ2 +WC3�

−WC2a +WC2b
�
σ22Dn/TGN

n B

� −TGN
n B + ln 2Dn

� �
− ln 2Dnσ

2 = 0:

ð31Þ
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Figure 5: The trajectory of UAVs. (a) 2 UAVs; (b) 3 UAVs; (c) 4 UAVs.
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Theorem 1. Equation ðLP1Þ′ = 0 has a one solution and it is
unique.

Proof Of Theorem 1.
Since this equation is a transcendental equation, the

answer cannot be calculated directly, so Newton’s iteration
method is used to find an approximate solution. The itera-
tive step can be expressed as

ΔTGN
n =

LP1
� �′
LP1
� �′′ , ð32Þ

where

LP1
� �′′ = B αnP

UAV
m WP1 + σ2 +WC3 −WC2a +WC2b

� �
−
σ22Dn/TGN

n B

B
ln 2Dn

TGN
n


 �2
−
Bln2Dn

TGN
n

+ B2

 !
:

ð33Þ

☐

Furthermore, both WC2a and WC2b need to collect all
GN information before they can be calculated, while WC3

only needs GN itself. This feature makes this paper more
suitable for using centralized and distributed algorithms. In
order to minimize the GNs’ information stored at UAV, this

paper allows GN to update WC2a and WC2b according to its
own situation, while UAV only plays an auxiliary role. The
specific algorithm is as Algorithm 2.
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Figure 6: The sum of the remaining energy of all GNs in a period.
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Figure 7: Fairness factor of each time slot.
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6. Simulation and Numerical Results

The numerical evaluation results of the time allocation algo-
rithm and path planning algorithm are shown in this sec-
tion. Unless specified, the network parameters are set up in
Table 1.

When the GNs is stationary, the flight trajectory of the
UAVs is shown in Figure 5. Sub-pictures a, b, and c corre-
spond to different UAV numbers. The red dot in the figure
represents GNs, the blue line represents the UAV’s flight tra-
jectory, and the red line represents the area boundary. It can
be seen that the UAV in this paper adopts a dynamic and
autonomous way to specify the time used for a service cycle.
When the service area of a UAV increases, its service cycle
will also increase. And the algorithm of this paper can
dynamically change the path with the change of the environ-
ment. The environment in which the UAV starts to serve
from the base station and from the end of the previous ser-
vice cycle is different. So, each area in Figure 5 will show two
slightly different flight paths. The trace in Figure 5 has pro-
trusions at the corners. This is because UAVs in the net-
works will consider the needs of every GNs, including GNs
in remote corners.

In order to make the performance analysis more realis-
tic, Figure 6 adds the function of random motion to the
GNs. In addition, the performance of the system under dif-
ferent GNs and UAV numbers and different bat algorithms
is shown in Figure 6. It can be seen that the remaining
energy of the GNs in this network increases with time. This
is because the network in this paper can guarantee that the
received energy of GNs is greater than the consumption in
each time slot. When the number of the UAV decreases,
the total energy obtained by GNs will also decrease. And
when the number of GNs in the networks increases, the total
energy obtained by the GNs will decrease by 20%. In addi-
tion, Figure 6 also proves that the bat algorithm of this paper

improves the network performance by 7%. Therefore, the
number of UAVs in the network can be changed according
to the energy requirements of the GNs, thereby avoiding
unnecessary waste of resources.

It is not rigorous to only analyze the sum of energy
acquired by GNs, because it is very likely that the sum of
energy acquired by GNs is very large, but some GNs in the
networks have insufficient energy. For this reason, Figure 7
uses the method in [48] to analyze the fairness of energy
obtained by GNs under different conditions. It can be seen
in Figure 7 that the fairness coefficient in the networks grad-
ually tends to a fixed value through the slow stabilization of
the networks. This is because in the previous time slot, the
UAV has just entered the networks and has not yet formed
a stable circular orbit. In addition, the change in the number
of GNs has an impact on fairness of only about 0.01, but
when the number of UAVs is reduced by one, the decrease
is 0.1. This is because the decrease in the number of UAVs
will increase the service area of each UAV, which will make
the period for UAVs to provide high-quality services to each
GN longer, resulting in uneven energy held by GNs.

The correlation analysis of the model’s sensitivity to
power, task length, and power is shown in Figure 8. When
the mission length increases, the remaining energy of the
GNs in the system decreases slightly, only a 7% decrease
each 1Mbit. It shows that the algorithm designed in this
paper can be well applied to actual scenarios, because the
length of the user’s task is generally variable and unpredict-
able. However, it is very sensitive to the power and working
height of the UAV. Therefore, it is necessary to lower the
working height of the UAV and increase the transmission
power of the UAV as much as possible.

Figure 9 shows the working path of the UAV when there
are 3 UAVs performing tasks at the same time and the
power is insufficient. We deliberately modulate the UAV
reserve power to be very low to show that the UAV charging
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Figure 9: Examples of UAV automatic charging: (a) the first charge; (b) the second charge.
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process and the time slot of each point are marked. Accord-
ing to the constraints of C6, when the UAV senses that it is
running out of power, it will enter the return state in
advance and continue to work after charging, as shown in
Figure 9(b) and the UAV will continue to complete the tasks
that were not completed in Figure 9(a) after charging.

7. Conclusion

This paper proposes a SWIPT-based MEC network com-
posed of multiple UAVs and one MEC server. The main task
is to provide computing assistance and energy transmission
services for GNs. In order to ensure the flexibility of the net-
works, we proposed a distributed iterative algorithm and
designed an expert bat algorithm to ensure the freedom of
the UAV’s trajectory. Experimental results show that com-
pared with the traditional bat algorithm, this algorithm can
guarantee the fairness of network services and can improve
the network performance by 7%. In addition, the distributed
iterative algorithm in this paper can also be well adapted to
fluctuations in task length, ensuring the stability of the
networks.

Appendix

A. Proof Of Theorem 1

The equation ðLP1Þ′ = 0 can be regarded as a problem of
finding the intersection of a linear function and a nonlinear
function, where the linear function −TGN

n BðαnPUAV
m WP1 +

σ2 +WC3 −WC2a +WC2bÞ is a straight line across the origin
and the nonlinear function σ22Dn/TGN

n Bð−TGN
n B + ln 2DnÞ −

ln 2Dnσ
2 consists of two multiplying monotonically decreas-

ing functions and a constant term, so it is also monotonically
decreasing. And when TGN

n approaches infinity, the function
value is negative infinity. When TGN

n approaches 0, the func-
tion value is infinite. Therefore, the straight line must have
only one intersection with the curve.
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